![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpolinv | Structured version Visualization version GIF version |
Description: The left inverse of a group element. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grpinv.1 | ⊢ 𝑋 = ran 𝐺 |
grpinv.2 | ⊢ 𝑈 = (GId‘𝐺) |
grpinv.3 | ⊢ 𝑁 = (inv‘𝐺) |
Ref | Expression |
---|---|
grpolinv | ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴)𝐺𝐴) = 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinv.1 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
2 | grpinv.2 | . . 3 ⊢ 𝑈 = (GId‘𝐺) | |
3 | grpinv.3 | . . 3 ⊢ 𝑁 = (inv‘𝐺) | |
4 | 1, 2, 3 | grpoinv 30557 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (((𝑁‘𝐴)𝐺𝐴) = 𝑈 ∧ (𝐴𝐺(𝑁‘𝐴)) = 𝑈)) |
5 | 4 | simpld 494 | 1 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴)𝐺𝐴) = 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ran crn 5701 ‘cfv 6573 (class class class)co 7448 GrpOpcgr 30521 GIdcgi 30522 invcgn 30523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-grpo 30525 df-gid 30526 df-ginv 30527 |
This theorem is referenced by: grpoinvid1 30560 grpoinvid2 30561 grpolcan 30562 grpo2inv 30563 grponpcan 30575 nvlinv 30684 hhssabloilem 31293 rngoaddneg2 37889 isdrngo2 37918 |
Copyright terms: Public domain | W3C validator |