Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngonegrmul Structured version   Visualization version   GIF version

Theorem rngonegrmul 37658
Description: Negation of a product in a ring. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
ringnegmul.1 𝐺 = (1st𝑅)
ringnegmul.2 𝐻 = (2nd𝑅)
ringnegmul.3 𝑋 = ran 𝐺
ringnegmul.4 𝑁 = (inv‘𝐺)
Assertion
Ref Expression
rngonegrmul ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐻𝐵)) = (𝐴𝐻(𝑁𝐵)))

Proof of Theorem rngonegrmul
StepHypRef Expression
1 ringnegmul.3 . . . . . . 7 𝑋 = ran 𝐺
2 ringnegmul.1 . . . . . . . 8 𝐺 = (1st𝑅)
32rneqi 5935 . . . . . . 7 ran 𝐺 = ran (1st𝑅)
41, 3eqtri 2754 . . . . . 6 𝑋 = ran (1st𝑅)
5 ringnegmul.2 . . . . . 6 𝐻 = (2nd𝑅)
6 eqid 2726 . . . . . 6 (GId‘𝐻) = (GId‘𝐻)
74, 5, 6rngo1cl 37653 . . . . 5 (𝑅 ∈ RingOps → (GId‘𝐻) ∈ 𝑋)
8 ringnegmul.4 . . . . . 6 𝑁 = (inv‘𝐺)
92, 1, 8rngonegcl 37641 . . . . 5 ((𝑅 ∈ RingOps ∧ (GId‘𝐻) ∈ 𝑋) → (𝑁‘(GId‘𝐻)) ∈ 𝑋)
107, 9mpdan 685 . . . 4 (𝑅 ∈ RingOps → (𝑁‘(GId‘𝐻)) ∈ 𝑋)
112, 5, 1rngoass 37620 . . . . . . 7 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋 ∧ (𝑁‘(GId‘𝐻)) ∈ 𝑋)) → ((𝐴𝐻𝐵)𝐻(𝑁‘(GId‘𝐻))) = (𝐴𝐻(𝐵𝐻(𝑁‘(GId‘𝐻)))))
12113exp2 1351 . . . . . 6 (𝑅 ∈ RingOps → (𝐴𝑋 → (𝐵𝑋 → ((𝑁‘(GId‘𝐻)) ∈ 𝑋 → ((𝐴𝐻𝐵)𝐻(𝑁‘(GId‘𝐻))) = (𝐴𝐻(𝐵𝐻(𝑁‘(GId‘𝐻))))))))
1312com24 95 . . . . 5 (𝑅 ∈ RingOps → ((𝑁‘(GId‘𝐻)) ∈ 𝑋 → (𝐵𝑋 → (𝐴𝑋 → ((𝐴𝐻𝐵)𝐻(𝑁‘(GId‘𝐻))) = (𝐴𝐻(𝐵𝐻(𝑁‘(GId‘𝐻))))))))
1413com34 91 . . . 4 (𝑅 ∈ RingOps → ((𝑁‘(GId‘𝐻)) ∈ 𝑋 → (𝐴𝑋 → (𝐵𝑋 → ((𝐴𝐻𝐵)𝐻(𝑁‘(GId‘𝐻))) = (𝐴𝐻(𝐵𝐻(𝑁‘(GId‘𝐻))))))))
1510, 14mpd 15 . . 3 (𝑅 ∈ RingOps → (𝐴𝑋 → (𝐵𝑋 → ((𝐴𝐻𝐵)𝐻(𝑁‘(GId‘𝐻))) = (𝐴𝐻(𝐵𝐻(𝑁‘(GId‘𝐻)))))))
16153imp 1108 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐻𝐵)𝐻(𝑁‘(GId‘𝐻))) = (𝐴𝐻(𝐵𝐻(𝑁‘(GId‘𝐻)))))
172, 5, 1rngocl 37615 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐻𝐵) ∈ 𝑋)
18173expb 1117 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐻𝐵) ∈ 𝑋)
192, 5, 1, 8, 6rngonegmn1r 37656 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐴𝐻𝐵) ∈ 𝑋) → (𝑁‘(𝐴𝐻𝐵)) = ((𝐴𝐻𝐵)𝐻(𝑁‘(GId‘𝐻))))
2018, 19syldan 589 . . 3 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋)) → (𝑁‘(𝐴𝐻𝐵)) = ((𝐴𝐻𝐵)𝐻(𝑁‘(GId‘𝐻))))
21203impb 1112 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐻𝐵)) = ((𝐴𝐻𝐵)𝐻(𝑁‘(GId‘𝐻))))
222, 5, 1, 8, 6rngonegmn1r 37656 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐵𝑋) → (𝑁𝐵) = (𝐵𝐻(𝑁‘(GId‘𝐻))))
23223adant2 1128 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐵) = (𝐵𝐻(𝑁‘(GId‘𝐻))))
2423oveq2d 7432 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐻(𝑁𝐵)) = (𝐴𝐻(𝐵𝐻(𝑁‘(GId‘𝐻)))))
2516, 21, 243eqtr4d 2776 1 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐻𝐵)) = (𝐴𝐻(𝑁𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  ran crn 5675  cfv 6546  (class class class)co 7416  1st c1st 7993  2nd c2nd 7994  GIdcgi 30420  invcgn 30421  RingOpscrngo 37608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pr 5425  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-ov 7419  df-1st 7995  df-2nd 7996  df-grpo 30423  df-gid 30424  df-ginv 30425  df-ablo 30475  df-ass 37557  df-exid 37559  df-mgmOLD 37563  df-sgrOLD 37575  df-mndo 37581  df-rngo 37609
This theorem is referenced by:  rngosubdi  37659
  Copyright terms: Public domain W3C validator