Proof of Theorem rngonegrmul
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ringnegmul.3 | . . . . . . 7
⊢ 𝑋 = ran 𝐺 | 
| 2 |  | ringnegmul.1 | . . . . . . . 8
⊢ 𝐺 = (1st ‘𝑅) | 
| 3 | 2 | rneqi 5947 | . . . . . . 7
⊢ ran 𝐺 = ran (1st
‘𝑅) | 
| 4 | 1, 3 | eqtri 2764 | . . . . . 6
⊢ 𝑋 = ran (1st
‘𝑅) | 
| 5 |  | ringnegmul.2 | . . . . . 6
⊢ 𝐻 = (2nd ‘𝑅) | 
| 6 |  | eqid 2736 | . . . . . 6
⊢
(GId‘𝐻) =
(GId‘𝐻) | 
| 7 | 4, 5, 6 | rngo1cl 37947 | . . . . 5
⊢ (𝑅 ∈ RingOps →
(GId‘𝐻) ∈ 𝑋) | 
| 8 |  | ringnegmul.4 | . . . . . 6
⊢ 𝑁 = (inv‘𝐺) | 
| 9 | 2, 1, 8 | rngonegcl 37935 | . . . . 5
⊢ ((𝑅 ∈ RingOps ∧
(GId‘𝐻) ∈ 𝑋) → (𝑁‘(GId‘𝐻)) ∈ 𝑋) | 
| 10 | 7, 9 | mpdan 687 | . . . 4
⊢ (𝑅 ∈ RingOps → (𝑁‘(GId‘𝐻)) ∈ 𝑋) | 
| 11 | 2, 5, 1 | rngoass 37914 | . . . . . . 7
⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝑁‘(GId‘𝐻)) ∈ 𝑋)) → ((𝐴𝐻𝐵)𝐻(𝑁‘(GId‘𝐻))) = (𝐴𝐻(𝐵𝐻(𝑁‘(GId‘𝐻))))) | 
| 12 | 11 | 3exp2 1354 | . . . . . 6
⊢ (𝑅 ∈ RingOps → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → ((𝑁‘(GId‘𝐻)) ∈ 𝑋 → ((𝐴𝐻𝐵)𝐻(𝑁‘(GId‘𝐻))) = (𝐴𝐻(𝐵𝐻(𝑁‘(GId‘𝐻)))))))) | 
| 13 | 12 | com24 95 | . . . . 5
⊢ (𝑅 ∈ RingOps → ((𝑁‘(GId‘𝐻)) ∈ 𝑋 → (𝐵 ∈ 𝑋 → (𝐴 ∈ 𝑋 → ((𝐴𝐻𝐵)𝐻(𝑁‘(GId‘𝐻))) = (𝐴𝐻(𝐵𝐻(𝑁‘(GId‘𝐻)))))))) | 
| 14 | 13 | com34 91 | . . . 4
⊢ (𝑅 ∈ RingOps → ((𝑁‘(GId‘𝐻)) ∈ 𝑋 → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → ((𝐴𝐻𝐵)𝐻(𝑁‘(GId‘𝐻))) = (𝐴𝐻(𝐵𝐻(𝑁‘(GId‘𝐻)))))))) | 
| 15 | 10, 14 | mpd 15 | . . 3
⊢ (𝑅 ∈ RingOps → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → ((𝐴𝐻𝐵)𝐻(𝑁‘(GId‘𝐻))) = (𝐴𝐻(𝐵𝐻(𝑁‘(GId‘𝐻))))))) | 
| 16 | 15 | 3imp 1110 | . 2
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐻𝐵)𝐻(𝑁‘(GId‘𝐻))) = (𝐴𝐻(𝐵𝐻(𝑁‘(GId‘𝐻))))) | 
| 17 | 2, 5, 1 | rngocl 37909 | . . . . 5
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐻𝐵) ∈ 𝑋) | 
| 18 | 17 | 3expb 1120 | . . . 4
⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐻𝐵) ∈ 𝑋) | 
| 19 | 2, 5, 1, 8, 6 | rngonegmn1r 37950 | . . . 4
⊢ ((𝑅 ∈ RingOps ∧ (𝐴𝐻𝐵) ∈ 𝑋) → (𝑁‘(𝐴𝐻𝐵)) = ((𝐴𝐻𝐵)𝐻(𝑁‘(GId‘𝐻)))) | 
| 20 | 18, 19 | syldan 591 | . . 3
⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑁‘(𝐴𝐻𝐵)) = ((𝐴𝐻𝐵)𝐻(𝑁‘(GId‘𝐻)))) | 
| 21 | 20 | 3impb 1114 | . 2
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝐻𝐵)) = ((𝐴𝐻𝐵)𝐻(𝑁‘(GId‘𝐻)))) | 
| 22 | 2, 5, 1, 8, 6 | rngonegmn1r 37950 | . . . 4
⊢ ((𝑅 ∈ RingOps ∧ 𝐵 ∈ 𝑋) → (𝑁‘𝐵) = (𝐵𝐻(𝑁‘(GId‘𝐻)))) | 
| 23 | 22 | 3adant2 1131 | . . 3
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘𝐵) = (𝐵𝐻(𝑁‘(GId‘𝐻)))) | 
| 24 | 23 | oveq2d 7448 | . 2
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐻(𝑁‘𝐵)) = (𝐴𝐻(𝐵𝐻(𝑁‘(GId‘𝐻))))) | 
| 25 | 16, 21, 24 | 3eqtr4d 2786 | 1
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝐻𝐵)) = (𝐴𝐻(𝑁‘𝐵))) |