Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngonegrmul Structured version   Visualization version   GIF version

Theorem rngonegrmul 36807
Description: Negation of a product in a ring. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
ringnegmul.1 𝐺 = (1st β€˜π‘…)
ringnegmul.2 𝐻 = (2nd β€˜π‘…)
ringnegmul.3 𝑋 = ran 𝐺
ringnegmul.4 𝑁 = (invβ€˜πΊ)
Assertion
Ref Expression
rngonegrmul ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (π‘β€˜(𝐴𝐻𝐡)) = (𝐴𝐻(π‘β€˜π΅)))

Proof of Theorem rngonegrmul
StepHypRef Expression
1 ringnegmul.3 . . . . . . 7 𝑋 = ran 𝐺
2 ringnegmul.1 . . . . . . . 8 𝐺 = (1st β€˜π‘…)
32rneqi 5936 . . . . . . 7 ran 𝐺 = ran (1st β€˜π‘…)
41, 3eqtri 2760 . . . . . 6 𝑋 = ran (1st β€˜π‘…)
5 ringnegmul.2 . . . . . 6 𝐻 = (2nd β€˜π‘…)
6 eqid 2732 . . . . . 6 (GIdβ€˜π») = (GIdβ€˜π»)
74, 5, 6rngo1cl 36802 . . . . 5 (𝑅 ∈ RingOps β†’ (GIdβ€˜π») ∈ 𝑋)
8 ringnegmul.4 . . . . . 6 𝑁 = (invβ€˜πΊ)
92, 1, 8rngonegcl 36790 . . . . 5 ((𝑅 ∈ RingOps ∧ (GIdβ€˜π») ∈ 𝑋) β†’ (π‘β€˜(GIdβ€˜π»)) ∈ 𝑋)
107, 9mpdan 685 . . . 4 (𝑅 ∈ RingOps β†’ (π‘β€˜(GIdβ€˜π»)) ∈ 𝑋)
112, 5, 1rngoass 36769 . . . . . . 7 ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ (π‘β€˜(GIdβ€˜π»)) ∈ 𝑋)) β†’ ((𝐴𝐻𝐡)𝐻(π‘β€˜(GIdβ€˜π»))) = (𝐴𝐻(𝐡𝐻(π‘β€˜(GIdβ€˜π»)))))
12113exp2 1354 . . . . . 6 (𝑅 ∈ RingOps β†’ (𝐴 ∈ 𝑋 β†’ (𝐡 ∈ 𝑋 β†’ ((π‘β€˜(GIdβ€˜π»)) ∈ 𝑋 β†’ ((𝐴𝐻𝐡)𝐻(π‘β€˜(GIdβ€˜π»))) = (𝐴𝐻(𝐡𝐻(π‘β€˜(GIdβ€˜π»))))))))
1312com24 95 . . . . 5 (𝑅 ∈ RingOps β†’ ((π‘β€˜(GIdβ€˜π»)) ∈ 𝑋 β†’ (𝐡 ∈ 𝑋 β†’ (𝐴 ∈ 𝑋 β†’ ((𝐴𝐻𝐡)𝐻(π‘β€˜(GIdβ€˜π»))) = (𝐴𝐻(𝐡𝐻(π‘β€˜(GIdβ€˜π»))))))))
1413com34 91 . . . 4 (𝑅 ∈ RingOps β†’ ((π‘β€˜(GIdβ€˜π»)) ∈ 𝑋 β†’ (𝐴 ∈ 𝑋 β†’ (𝐡 ∈ 𝑋 β†’ ((𝐴𝐻𝐡)𝐻(π‘β€˜(GIdβ€˜π»))) = (𝐴𝐻(𝐡𝐻(π‘β€˜(GIdβ€˜π»))))))))
1510, 14mpd 15 . . 3 (𝑅 ∈ RingOps β†’ (𝐴 ∈ 𝑋 β†’ (𝐡 ∈ 𝑋 β†’ ((𝐴𝐻𝐡)𝐻(π‘β€˜(GIdβ€˜π»))) = (𝐴𝐻(𝐡𝐻(π‘β€˜(GIdβ€˜π»)))))))
16153imp 1111 . 2 ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ ((𝐴𝐻𝐡)𝐻(π‘β€˜(GIdβ€˜π»))) = (𝐴𝐻(𝐡𝐻(π‘β€˜(GIdβ€˜π»)))))
172, 5, 1rngocl 36764 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (𝐴𝐻𝐡) ∈ 𝑋)
18173expb 1120 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)) β†’ (𝐴𝐻𝐡) ∈ 𝑋)
192, 5, 1, 8, 6rngonegmn1r 36805 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐴𝐻𝐡) ∈ 𝑋) β†’ (π‘β€˜(𝐴𝐻𝐡)) = ((𝐴𝐻𝐡)𝐻(π‘β€˜(GIdβ€˜π»))))
2018, 19syldan 591 . . 3 ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)) β†’ (π‘β€˜(𝐴𝐻𝐡)) = ((𝐴𝐻𝐡)𝐻(π‘β€˜(GIdβ€˜π»))))
21203impb 1115 . 2 ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (π‘β€˜(𝐴𝐻𝐡)) = ((𝐴𝐻𝐡)𝐻(π‘β€˜(GIdβ€˜π»))))
222, 5, 1, 8, 6rngonegmn1r 36805 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐡 ∈ 𝑋) β†’ (π‘β€˜π΅) = (𝐡𝐻(π‘β€˜(GIdβ€˜π»))))
23223adant2 1131 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (π‘β€˜π΅) = (𝐡𝐻(π‘β€˜(GIdβ€˜π»))))
2423oveq2d 7424 . 2 ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (𝐴𝐻(π‘β€˜π΅)) = (𝐴𝐻(𝐡𝐻(π‘β€˜(GIdβ€˜π»)))))
2516, 21, 243eqtr4d 2782 1 ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (π‘β€˜(𝐴𝐻𝐡)) = (𝐴𝐻(π‘β€˜π΅)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  ran crn 5677  β€˜cfv 6543  (class class class)co 7408  1st c1st 7972  2nd c2nd 7973  GIdcgi 29738  invcgn 29739  RingOpscrngo 36757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-1st 7974  df-2nd 7975  df-grpo 29741  df-gid 29742  df-ginv 29743  df-ablo 29793  df-ass 36706  df-exid 36708  df-mgmOLD 36712  df-sgrOLD 36724  df-mndo 36730  df-rngo 36758
This theorem is referenced by:  rngosubdi  36808
  Copyright terms: Public domain W3C validator