Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoneglmul Structured version   Visualization version   GIF version

Theorem rngoneglmul 37486
Description: Negation of a product in a ring. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
ringnegmul.1 𝐺 = (1st β€˜π‘…)
ringnegmul.2 𝐻 = (2nd β€˜π‘…)
ringnegmul.3 𝑋 = ran 𝐺
ringnegmul.4 𝑁 = (invβ€˜πΊ)
Assertion
Ref Expression
rngoneglmul ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (π‘β€˜(𝐴𝐻𝐡)) = ((π‘β€˜π΄)𝐻𝐡))

Proof of Theorem rngoneglmul
StepHypRef Expression
1 ringnegmul.3 . . . . . . 7 𝑋 = ran 𝐺
2 ringnegmul.1 . . . . . . . 8 𝐺 = (1st β€˜π‘…)
32rneqi 5938 . . . . . . 7 ran 𝐺 = ran (1st β€˜π‘…)
41, 3eqtri 2753 . . . . . 6 𝑋 = ran (1st β€˜π‘…)
5 ringnegmul.2 . . . . . 6 𝐻 = (2nd β€˜π‘…)
6 eqid 2725 . . . . . 6 (GIdβ€˜π») = (GIdβ€˜π»)
74, 5, 6rngo1cl 37482 . . . . 5 (𝑅 ∈ RingOps β†’ (GIdβ€˜π») ∈ 𝑋)
8 ringnegmul.4 . . . . . 6 𝑁 = (invβ€˜πΊ)
92, 1, 8rngonegcl 37470 . . . . 5 ((𝑅 ∈ RingOps ∧ (GIdβ€˜π») ∈ 𝑋) β†’ (π‘β€˜(GIdβ€˜π»)) ∈ 𝑋)
107, 9mpdan 685 . . . 4 (𝑅 ∈ RingOps β†’ (π‘β€˜(GIdβ€˜π»)) ∈ 𝑋)
112, 5, 1rngoass 37449 . . . . 5 ((𝑅 ∈ RingOps ∧ ((π‘β€˜(GIdβ€˜π»)) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)) β†’ (((π‘β€˜(GIdβ€˜π»))𝐻𝐴)𝐻𝐡) = ((π‘β€˜(GIdβ€˜π»))𝐻(𝐴𝐻𝐡)))
12113exp2 1351 . . . 4 (𝑅 ∈ RingOps β†’ ((π‘β€˜(GIdβ€˜π»)) ∈ 𝑋 β†’ (𝐴 ∈ 𝑋 β†’ (𝐡 ∈ 𝑋 β†’ (((π‘β€˜(GIdβ€˜π»))𝐻𝐴)𝐻𝐡) = ((π‘β€˜(GIdβ€˜π»))𝐻(𝐴𝐻𝐡))))))
1310, 12mpd 15 . . 3 (𝑅 ∈ RingOps β†’ (𝐴 ∈ 𝑋 β†’ (𝐡 ∈ 𝑋 β†’ (((π‘β€˜(GIdβ€˜π»))𝐻𝐴)𝐻𝐡) = ((π‘β€˜(GIdβ€˜π»))𝐻(𝐴𝐻𝐡)))))
14133imp 1108 . 2 ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (((π‘β€˜(GIdβ€˜π»))𝐻𝐴)𝐻𝐡) = ((π‘β€˜(GIdβ€˜π»))𝐻(𝐴𝐻𝐡)))
152, 5, 1, 8, 6rngonegmn1l 37484 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) β†’ (π‘β€˜π΄) = ((π‘β€˜(GIdβ€˜π»))𝐻𝐴))
16153adant3 1129 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (π‘β€˜π΄) = ((π‘β€˜(GIdβ€˜π»))𝐻𝐴))
1716oveq1d 7432 . 2 ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ ((π‘β€˜π΄)𝐻𝐡) = (((π‘β€˜(GIdβ€˜π»))𝐻𝐴)𝐻𝐡))
182, 5, 1rngocl 37444 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (𝐴𝐻𝐡) ∈ 𝑋)
19183expb 1117 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)) β†’ (𝐴𝐻𝐡) ∈ 𝑋)
202, 5, 1, 8, 6rngonegmn1l 37484 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐴𝐻𝐡) ∈ 𝑋) β†’ (π‘β€˜(𝐴𝐻𝐡)) = ((π‘β€˜(GIdβ€˜π»))𝐻(𝐴𝐻𝐡)))
2119, 20syldan 589 . . 3 ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)) β†’ (π‘β€˜(𝐴𝐻𝐡)) = ((π‘β€˜(GIdβ€˜π»))𝐻(𝐴𝐻𝐡)))
22213impb 1112 . 2 ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (π‘β€˜(𝐴𝐻𝐡)) = ((π‘β€˜(GIdβ€˜π»))𝐻(𝐴𝐻𝐡)))
2314, 17, 223eqtr4rd 2776 1 ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (π‘β€˜(𝐴𝐻𝐡)) = ((π‘β€˜π΄)𝐻𝐡))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  ran crn 5678  β€˜cfv 6547  (class class class)co 7417  1st c1st 7990  2nd c2nd 7991  GIdcgi 30356  invcgn 30357  RingOpscrngo 37437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5428  ax-un 7739
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-riota 7373  df-ov 7420  df-1st 7992  df-2nd 7993  df-grpo 30359  df-gid 30360  df-ginv 30361  df-ablo 30411  df-ass 37386  df-exid 37388  df-mgmOLD 37392  df-sgrOLD 37404  df-mndo 37410  df-rngo 37438
This theorem is referenced by:  rngosubdir  37489
  Copyright terms: Public domain W3C validator