![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngoneglmul | Structured version Visualization version GIF version |
Description: Negation of a product in a ring. (Contributed by Jeff Madsen, 19-Jun-2010.) |
Ref | Expression |
---|---|
ringnegmul.1 | ⊢ 𝐺 = (1st ‘𝑅) |
ringnegmul.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
ringnegmul.3 | ⊢ 𝑋 = ran 𝐺 |
ringnegmul.4 | ⊢ 𝑁 = (inv‘𝐺) |
Ref | Expression |
---|---|
rngoneglmul | ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝐻𝐵)) = ((𝑁‘𝐴)𝐻𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringnegmul.3 | . . . . . . 7 ⊢ 𝑋 = ran 𝐺 | |
2 | ringnegmul.1 | . . . . . . . 8 ⊢ 𝐺 = (1st ‘𝑅) | |
3 | 2 | rneqi 5962 | . . . . . . 7 ⊢ ran 𝐺 = ran (1st ‘𝑅) |
4 | 1, 3 | eqtri 2768 | . . . . . 6 ⊢ 𝑋 = ran (1st ‘𝑅) |
5 | ringnegmul.2 | . . . . . 6 ⊢ 𝐻 = (2nd ‘𝑅) | |
6 | eqid 2740 | . . . . . 6 ⊢ (GId‘𝐻) = (GId‘𝐻) | |
7 | 4, 5, 6 | rngo1cl 37899 | . . . . 5 ⊢ (𝑅 ∈ RingOps → (GId‘𝐻) ∈ 𝑋) |
8 | ringnegmul.4 | . . . . . 6 ⊢ 𝑁 = (inv‘𝐺) | |
9 | 2, 1, 8 | rngonegcl 37887 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ (GId‘𝐻) ∈ 𝑋) → (𝑁‘(GId‘𝐻)) ∈ 𝑋) |
10 | 7, 9 | mpdan 686 | . . . 4 ⊢ (𝑅 ∈ RingOps → (𝑁‘(GId‘𝐻)) ∈ 𝑋) |
11 | 2, 5, 1 | rngoass 37866 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ ((𝑁‘(GId‘𝐻)) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (((𝑁‘(GId‘𝐻))𝐻𝐴)𝐻𝐵) = ((𝑁‘(GId‘𝐻))𝐻(𝐴𝐻𝐵))) |
12 | 11 | 3exp2 1354 | . . . 4 ⊢ (𝑅 ∈ RingOps → ((𝑁‘(GId‘𝐻)) ∈ 𝑋 → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (((𝑁‘(GId‘𝐻))𝐻𝐴)𝐻𝐵) = ((𝑁‘(GId‘𝐻))𝐻(𝐴𝐻𝐵)))))) |
13 | 10, 12 | mpd 15 | . . 3 ⊢ (𝑅 ∈ RingOps → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (((𝑁‘(GId‘𝐻))𝐻𝐴)𝐻𝐵) = ((𝑁‘(GId‘𝐻))𝐻(𝐴𝐻𝐵))))) |
14 | 13 | 3imp 1111 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝑁‘(GId‘𝐻))𝐻𝐴)𝐻𝐵) = ((𝑁‘(GId‘𝐻))𝐻(𝐴𝐻𝐵))) |
15 | 2, 5, 1, 8, 6 | rngonegmn1l 37901 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = ((𝑁‘(GId‘𝐻))𝐻𝐴)) |
16 | 15 | 3adant3 1132 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘𝐴) = ((𝑁‘(GId‘𝐻))𝐻𝐴)) |
17 | 16 | oveq1d 7463 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘𝐴)𝐻𝐵) = (((𝑁‘(GId‘𝐻))𝐻𝐴)𝐻𝐵)) |
18 | 2, 5, 1 | rngocl 37861 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐻𝐵) ∈ 𝑋) |
19 | 18 | 3expb 1120 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐻𝐵) ∈ 𝑋) |
20 | 2, 5, 1, 8, 6 | rngonegmn1l 37901 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ (𝐴𝐻𝐵) ∈ 𝑋) → (𝑁‘(𝐴𝐻𝐵)) = ((𝑁‘(GId‘𝐻))𝐻(𝐴𝐻𝐵))) |
21 | 19, 20 | syldan 590 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑁‘(𝐴𝐻𝐵)) = ((𝑁‘(GId‘𝐻))𝐻(𝐴𝐻𝐵))) |
22 | 21 | 3impb 1115 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝐻𝐵)) = ((𝑁‘(GId‘𝐻))𝐻(𝐴𝐻𝐵))) |
23 | 14, 17, 22 | 3eqtr4rd 2791 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝐻𝐵)) = ((𝑁‘𝐴)𝐻𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ran crn 5701 ‘cfv 6573 (class class class)co 7448 1st c1st 8028 2nd c2nd 8029 GIdcgi 30522 invcgn 30523 RingOpscrngo 37854 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-1st 8030 df-2nd 8031 df-grpo 30525 df-gid 30526 df-ginv 30527 df-ablo 30577 df-ass 37803 df-exid 37805 df-mgmOLD 37809 df-sgrOLD 37821 df-mndo 37827 df-rngo 37855 |
This theorem is referenced by: rngosubdir 37906 |
Copyright terms: Public domain | W3C validator |