Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoneglmul Structured version   Visualization version   GIF version

Theorem rngoneglmul 36391
Description: Negation of a product in a ring. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
ringnegmul.1 𝐺 = (1st𝑅)
ringnegmul.2 𝐻 = (2nd𝑅)
ringnegmul.3 𝑋 = ran 𝐺
ringnegmul.4 𝑁 = (inv‘𝐺)
Assertion
Ref Expression
rngoneglmul ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐻𝐵)) = ((𝑁𝐴)𝐻𝐵))

Proof of Theorem rngoneglmul
StepHypRef Expression
1 ringnegmul.3 . . . . . . 7 𝑋 = ran 𝐺
2 ringnegmul.1 . . . . . . . 8 𝐺 = (1st𝑅)
32rneqi 5891 . . . . . . 7 ran 𝐺 = ran (1st𝑅)
41, 3eqtri 2764 . . . . . 6 𝑋 = ran (1st𝑅)
5 ringnegmul.2 . . . . . 6 𝐻 = (2nd𝑅)
6 eqid 2736 . . . . . 6 (GId‘𝐻) = (GId‘𝐻)
74, 5, 6rngo1cl 36387 . . . . 5 (𝑅 ∈ RingOps → (GId‘𝐻) ∈ 𝑋)
8 ringnegmul.4 . . . . . 6 𝑁 = (inv‘𝐺)
92, 1, 8rngonegcl 36375 . . . . 5 ((𝑅 ∈ RingOps ∧ (GId‘𝐻) ∈ 𝑋) → (𝑁‘(GId‘𝐻)) ∈ 𝑋)
107, 9mpdan 685 . . . 4 (𝑅 ∈ RingOps → (𝑁‘(GId‘𝐻)) ∈ 𝑋)
112, 5, 1rngoass 36354 . . . . 5 ((𝑅 ∈ RingOps ∧ ((𝑁‘(GId‘𝐻)) ∈ 𝑋𝐴𝑋𝐵𝑋)) → (((𝑁‘(GId‘𝐻))𝐻𝐴)𝐻𝐵) = ((𝑁‘(GId‘𝐻))𝐻(𝐴𝐻𝐵)))
12113exp2 1354 . . . 4 (𝑅 ∈ RingOps → ((𝑁‘(GId‘𝐻)) ∈ 𝑋 → (𝐴𝑋 → (𝐵𝑋 → (((𝑁‘(GId‘𝐻))𝐻𝐴)𝐻𝐵) = ((𝑁‘(GId‘𝐻))𝐻(𝐴𝐻𝐵))))))
1310, 12mpd 15 . . 3 (𝑅 ∈ RingOps → (𝐴𝑋 → (𝐵𝑋 → (((𝑁‘(GId‘𝐻))𝐻𝐴)𝐻𝐵) = ((𝑁‘(GId‘𝐻))𝐻(𝐴𝐻𝐵)))))
14133imp 1111 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (((𝑁‘(GId‘𝐻))𝐻𝐴)𝐻𝐵) = ((𝑁‘(GId‘𝐻))𝐻(𝐴𝐻𝐵)))
152, 5, 1, 8, 6rngonegmn1l 36389 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑁𝐴) = ((𝑁‘(GId‘𝐻))𝐻𝐴))
16153adant3 1132 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐴) = ((𝑁‘(GId‘𝐻))𝐻𝐴))
1716oveq1d 7369 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴)𝐻𝐵) = (((𝑁‘(GId‘𝐻))𝐻𝐴)𝐻𝐵))
182, 5, 1rngocl 36349 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐻𝐵) ∈ 𝑋)
19183expb 1120 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐻𝐵) ∈ 𝑋)
202, 5, 1, 8, 6rngonegmn1l 36389 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐴𝐻𝐵) ∈ 𝑋) → (𝑁‘(𝐴𝐻𝐵)) = ((𝑁‘(GId‘𝐻))𝐻(𝐴𝐻𝐵)))
2119, 20syldan 591 . . 3 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋)) → (𝑁‘(𝐴𝐻𝐵)) = ((𝑁‘(GId‘𝐻))𝐻(𝐴𝐻𝐵)))
22213impb 1115 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐻𝐵)) = ((𝑁‘(GId‘𝐻))𝐻(𝐴𝐻𝐵)))
2314, 17, 223eqtr4rd 2787 1 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐻𝐵)) = ((𝑁𝐴)𝐻𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  ran crn 5633  cfv 6494  (class class class)co 7354  1st c1st 7916  2nd c2nd 7917  GIdcgi 29330  invcgn 29331  RingOpscrngo 36342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5241  ax-sep 5255  ax-nul 5262  ax-pr 5383  ax-un 7669
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2888  df-ne 2943  df-ral 3064  df-rex 3073  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-nul 4282  df-if 4486  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4865  df-iun 4955  df-br 5105  df-opab 5167  df-mpt 5188  df-id 5530  df-xp 5638  df-rel 5639  df-cnv 5640  df-co 5641  df-dm 5642  df-rn 5643  df-res 5644  df-ima 5645  df-iota 6446  df-fun 6496  df-fn 6497  df-f 6498  df-f1 6499  df-fo 6500  df-f1o 6501  df-fv 6502  df-riota 7310  df-ov 7357  df-1st 7918  df-2nd 7919  df-grpo 29333  df-gid 29334  df-ginv 29335  df-ablo 29385  df-ass 36291  df-exid 36293  df-mgmOLD 36297  df-sgrOLD 36309  df-mndo 36315  df-rngo 36343
This theorem is referenced by:  rngosubdir  36394
  Copyright terms: Public domain W3C validator