Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoneglmul Structured version   Visualization version   GIF version

Theorem rngoneglmul 37351
Description: Negation of a product in a ring. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
ringnegmul.1 𝐺 = (1st β€˜π‘…)
ringnegmul.2 𝐻 = (2nd β€˜π‘…)
ringnegmul.3 𝑋 = ran 𝐺
ringnegmul.4 𝑁 = (invβ€˜πΊ)
Assertion
Ref Expression
rngoneglmul ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (π‘β€˜(𝐴𝐻𝐡)) = ((π‘β€˜π΄)𝐻𝐡))

Proof of Theorem rngoneglmul
StepHypRef Expression
1 ringnegmul.3 . . . . . . 7 𝑋 = ran 𝐺
2 ringnegmul.1 . . . . . . . 8 𝐺 = (1st β€˜π‘…)
32rneqi 5933 . . . . . . 7 ran 𝐺 = ran (1st β€˜π‘…)
41, 3eqtri 2755 . . . . . 6 𝑋 = ran (1st β€˜π‘…)
5 ringnegmul.2 . . . . . 6 𝐻 = (2nd β€˜π‘…)
6 eqid 2727 . . . . . 6 (GIdβ€˜π») = (GIdβ€˜π»)
74, 5, 6rngo1cl 37347 . . . . 5 (𝑅 ∈ RingOps β†’ (GIdβ€˜π») ∈ 𝑋)
8 ringnegmul.4 . . . . . 6 𝑁 = (invβ€˜πΊ)
92, 1, 8rngonegcl 37335 . . . . 5 ((𝑅 ∈ RingOps ∧ (GIdβ€˜π») ∈ 𝑋) β†’ (π‘β€˜(GIdβ€˜π»)) ∈ 𝑋)
107, 9mpdan 686 . . . 4 (𝑅 ∈ RingOps β†’ (π‘β€˜(GIdβ€˜π»)) ∈ 𝑋)
112, 5, 1rngoass 37314 . . . . 5 ((𝑅 ∈ RingOps ∧ ((π‘β€˜(GIdβ€˜π»)) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)) β†’ (((π‘β€˜(GIdβ€˜π»))𝐻𝐴)𝐻𝐡) = ((π‘β€˜(GIdβ€˜π»))𝐻(𝐴𝐻𝐡)))
12113exp2 1352 . . . 4 (𝑅 ∈ RingOps β†’ ((π‘β€˜(GIdβ€˜π»)) ∈ 𝑋 β†’ (𝐴 ∈ 𝑋 β†’ (𝐡 ∈ 𝑋 β†’ (((π‘β€˜(GIdβ€˜π»))𝐻𝐴)𝐻𝐡) = ((π‘β€˜(GIdβ€˜π»))𝐻(𝐴𝐻𝐡))))))
1310, 12mpd 15 . . 3 (𝑅 ∈ RingOps β†’ (𝐴 ∈ 𝑋 β†’ (𝐡 ∈ 𝑋 β†’ (((π‘β€˜(GIdβ€˜π»))𝐻𝐴)𝐻𝐡) = ((π‘β€˜(GIdβ€˜π»))𝐻(𝐴𝐻𝐡)))))
14133imp 1109 . 2 ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (((π‘β€˜(GIdβ€˜π»))𝐻𝐴)𝐻𝐡) = ((π‘β€˜(GIdβ€˜π»))𝐻(𝐴𝐻𝐡)))
152, 5, 1, 8, 6rngonegmn1l 37349 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) β†’ (π‘β€˜π΄) = ((π‘β€˜(GIdβ€˜π»))𝐻𝐴))
16153adant3 1130 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (π‘β€˜π΄) = ((π‘β€˜(GIdβ€˜π»))𝐻𝐴))
1716oveq1d 7429 . 2 ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ ((π‘β€˜π΄)𝐻𝐡) = (((π‘β€˜(GIdβ€˜π»))𝐻𝐴)𝐻𝐡))
182, 5, 1rngocl 37309 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (𝐴𝐻𝐡) ∈ 𝑋)
19183expb 1118 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)) β†’ (𝐴𝐻𝐡) ∈ 𝑋)
202, 5, 1, 8, 6rngonegmn1l 37349 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐴𝐻𝐡) ∈ 𝑋) β†’ (π‘β€˜(𝐴𝐻𝐡)) = ((π‘β€˜(GIdβ€˜π»))𝐻(𝐴𝐻𝐡)))
2119, 20syldan 590 . . 3 ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)) β†’ (π‘β€˜(𝐴𝐻𝐡)) = ((π‘β€˜(GIdβ€˜π»))𝐻(𝐴𝐻𝐡)))
22213impb 1113 . 2 ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (π‘β€˜(𝐴𝐻𝐡)) = ((π‘β€˜(GIdβ€˜π»))𝐻(𝐴𝐻𝐡)))
2314, 17, 223eqtr4rd 2778 1 ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (π‘β€˜(𝐴𝐻𝐡)) = ((π‘β€˜π΄)𝐻𝐡))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1085   = wceq 1534   ∈ wcel 2099  ran crn 5673  β€˜cfv 6542  (class class class)co 7414  1st c1st 7985  2nd c2nd 7986  GIdcgi 30287  invcgn 30288  RingOpscrngo 37302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-1st 7987  df-2nd 7988  df-grpo 30290  df-gid 30291  df-ginv 30292  df-ablo 30342  df-ass 37251  df-exid 37253  df-mgmOLD 37257  df-sgrOLD 37269  df-mndo 37275  df-rngo 37303
This theorem is referenced by:  rngosubdir  37354
  Copyright terms: Public domain W3C validator