Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoneglmul Structured version   Visualization version   GIF version

Theorem rngoneglmul 37989
Description: Negation of a product in a ring. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
ringnegmul.1 𝐺 = (1st𝑅)
ringnegmul.2 𝐻 = (2nd𝑅)
ringnegmul.3 𝑋 = ran 𝐺
ringnegmul.4 𝑁 = (inv‘𝐺)
Assertion
Ref Expression
rngoneglmul ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐻𝐵)) = ((𝑁𝐴)𝐻𝐵))

Proof of Theorem rngoneglmul
StepHypRef Expression
1 ringnegmul.3 . . . . . . 7 𝑋 = ran 𝐺
2 ringnegmul.1 . . . . . . . 8 𝐺 = (1st𝑅)
32rneqi 5882 . . . . . . 7 ran 𝐺 = ran (1st𝑅)
41, 3eqtri 2754 . . . . . 6 𝑋 = ran (1st𝑅)
5 ringnegmul.2 . . . . . 6 𝐻 = (2nd𝑅)
6 eqid 2731 . . . . . 6 (GId‘𝐻) = (GId‘𝐻)
74, 5, 6rngo1cl 37985 . . . . 5 (𝑅 ∈ RingOps → (GId‘𝐻) ∈ 𝑋)
8 ringnegmul.4 . . . . . 6 𝑁 = (inv‘𝐺)
92, 1, 8rngonegcl 37973 . . . . 5 ((𝑅 ∈ RingOps ∧ (GId‘𝐻) ∈ 𝑋) → (𝑁‘(GId‘𝐻)) ∈ 𝑋)
107, 9mpdan 687 . . . 4 (𝑅 ∈ RingOps → (𝑁‘(GId‘𝐻)) ∈ 𝑋)
112, 5, 1rngoass 37952 . . . . 5 ((𝑅 ∈ RingOps ∧ ((𝑁‘(GId‘𝐻)) ∈ 𝑋𝐴𝑋𝐵𝑋)) → (((𝑁‘(GId‘𝐻))𝐻𝐴)𝐻𝐵) = ((𝑁‘(GId‘𝐻))𝐻(𝐴𝐻𝐵)))
12113exp2 1355 . . . 4 (𝑅 ∈ RingOps → ((𝑁‘(GId‘𝐻)) ∈ 𝑋 → (𝐴𝑋 → (𝐵𝑋 → (((𝑁‘(GId‘𝐻))𝐻𝐴)𝐻𝐵) = ((𝑁‘(GId‘𝐻))𝐻(𝐴𝐻𝐵))))))
1310, 12mpd 15 . . 3 (𝑅 ∈ RingOps → (𝐴𝑋 → (𝐵𝑋 → (((𝑁‘(GId‘𝐻))𝐻𝐴)𝐻𝐵) = ((𝑁‘(GId‘𝐻))𝐻(𝐴𝐻𝐵)))))
14133imp 1110 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (((𝑁‘(GId‘𝐻))𝐻𝐴)𝐻𝐵) = ((𝑁‘(GId‘𝐻))𝐻(𝐴𝐻𝐵)))
152, 5, 1, 8, 6rngonegmn1l 37987 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑁𝐴) = ((𝑁‘(GId‘𝐻))𝐻𝐴))
16153adant3 1132 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐴) = ((𝑁‘(GId‘𝐻))𝐻𝐴))
1716oveq1d 7367 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴)𝐻𝐵) = (((𝑁‘(GId‘𝐻))𝐻𝐴)𝐻𝐵))
182, 5, 1rngocl 37947 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐻𝐵) ∈ 𝑋)
19183expb 1120 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐻𝐵) ∈ 𝑋)
202, 5, 1, 8, 6rngonegmn1l 37987 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐴𝐻𝐵) ∈ 𝑋) → (𝑁‘(𝐴𝐻𝐵)) = ((𝑁‘(GId‘𝐻))𝐻(𝐴𝐻𝐵)))
2119, 20syldan 591 . . 3 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋)) → (𝑁‘(𝐴𝐻𝐵)) = ((𝑁‘(GId‘𝐻))𝐻(𝐴𝐻𝐵)))
22213impb 1114 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐻𝐵)) = ((𝑁‘(GId‘𝐻))𝐻(𝐴𝐻𝐵)))
2314, 17, 223eqtr4rd 2777 1 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐻𝐵)) = ((𝑁𝐴)𝐻𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  ran crn 5620  cfv 6487  (class class class)co 7352  1st c1st 7925  2nd c2nd 7926  GIdcgi 30477  invcgn 30478  RingOpscrngo 37940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-1st 7927  df-2nd 7928  df-grpo 30480  df-gid 30481  df-ginv 30482  df-ablo 30532  df-ass 37889  df-exid 37891  df-mgmOLD 37895  df-sgrOLD 37907  df-mndo 37913  df-rngo 37941
This theorem is referenced by:  rngosubdir  37992
  Copyright terms: Public domain W3C validator