| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngoneglmul | Structured version Visualization version GIF version | ||
| Description: Negation of a product in a ring. (Contributed by Jeff Madsen, 19-Jun-2010.) |
| Ref | Expression |
|---|---|
| ringnegmul.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| ringnegmul.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
| ringnegmul.3 | ⊢ 𝑋 = ran 𝐺 |
| ringnegmul.4 | ⊢ 𝑁 = (inv‘𝐺) |
| Ref | Expression |
|---|---|
| rngoneglmul | ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝐻𝐵)) = ((𝑁‘𝐴)𝐻𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringnegmul.3 | . . . . . . 7 ⊢ 𝑋 = ran 𝐺 | |
| 2 | ringnegmul.1 | . . . . . . . 8 ⊢ 𝐺 = (1st ‘𝑅) | |
| 3 | 2 | rneqi 5903 | . . . . . . 7 ⊢ ran 𝐺 = ran (1st ‘𝑅) |
| 4 | 1, 3 | eqtri 2753 | . . . . . 6 ⊢ 𝑋 = ran (1st ‘𝑅) |
| 5 | ringnegmul.2 | . . . . . 6 ⊢ 𝐻 = (2nd ‘𝑅) | |
| 6 | eqid 2730 | . . . . . 6 ⊢ (GId‘𝐻) = (GId‘𝐻) | |
| 7 | 4, 5, 6 | rngo1cl 37928 | . . . . 5 ⊢ (𝑅 ∈ RingOps → (GId‘𝐻) ∈ 𝑋) |
| 8 | ringnegmul.4 | . . . . . 6 ⊢ 𝑁 = (inv‘𝐺) | |
| 9 | 2, 1, 8 | rngonegcl 37916 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ (GId‘𝐻) ∈ 𝑋) → (𝑁‘(GId‘𝐻)) ∈ 𝑋) |
| 10 | 7, 9 | mpdan 687 | . . . 4 ⊢ (𝑅 ∈ RingOps → (𝑁‘(GId‘𝐻)) ∈ 𝑋) |
| 11 | 2, 5, 1 | rngoass 37895 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ ((𝑁‘(GId‘𝐻)) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (((𝑁‘(GId‘𝐻))𝐻𝐴)𝐻𝐵) = ((𝑁‘(GId‘𝐻))𝐻(𝐴𝐻𝐵))) |
| 12 | 11 | 3exp2 1355 | . . . 4 ⊢ (𝑅 ∈ RingOps → ((𝑁‘(GId‘𝐻)) ∈ 𝑋 → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (((𝑁‘(GId‘𝐻))𝐻𝐴)𝐻𝐵) = ((𝑁‘(GId‘𝐻))𝐻(𝐴𝐻𝐵)))))) |
| 13 | 10, 12 | mpd 15 | . . 3 ⊢ (𝑅 ∈ RingOps → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (((𝑁‘(GId‘𝐻))𝐻𝐴)𝐻𝐵) = ((𝑁‘(GId‘𝐻))𝐻(𝐴𝐻𝐵))))) |
| 14 | 13 | 3imp 1110 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝑁‘(GId‘𝐻))𝐻𝐴)𝐻𝐵) = ((𝑁‘(GId‘𝐻))𝐻(𝐴𝐻𝐵))) |
| 15 | 2, 5, 1, 8, 6 | rngonegmn1l 37930 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = ((𝑁‘(GId‘𝐻))𝐻𝐴)) |
| 16 | 15 | 3adant3 1132 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘𝐴) = ((𝑁‘(GId‘𝐻))𝐻𝐴)) |
| 17 | 16 | oveq1d 7404 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘𝐴)𝐻𝐵) = (((𝑁‘(GId‘𝐻))𝐻𝐴)𝐻𝐵)) |
| 18 | 2, 5, 1 | rngocl 37890 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐻𝐵) ∈ 𝑋) |
| 19 | 18 | 3expb 1120 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐻𝐵) ∈ 𝑋) |
| 20 | 2, 5, 1, 8, 6 | rngonegmn1l 37930 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ (𝐴𝐻𝐵) ∈ 𝑋) → (𝑁‘(𝐴𝐻𝐵)) = ((𝑁‘(GId‘𝐻))𝐻(𝐴𝐻𝐵))) |
| 21 | 19, 20 | syldan 591 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑁‘(𝐴𝐻𝐵)) = ((𝑁‘(GId‘𝐻))𝐻(𝐴𝐻𝐵))) |
| 22 | 21 | 3impb 1114 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝐻𝐵)) = ((𝑁‘(GId‘𝐻))𝐻(𝐴𝐻𝐵))) |
| 23 | 14, 17, 22 | 3eqtr4rd 2776 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝐻𝐵)) = ((𝑁‘𝐴)𝐻𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ran crn 5641 ‘cfv 6513 (class class class)co 7389 1st c1st 7968 2nd c2nd 7969 GIdcgi 30425 invcgn 30426 RingOpscrngo 37883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-1st 7970 df-2nd 7971 df-grpo 30428 df-gid 30429 df-ginv 30430 df-ablo 30480 df-ass 37832 df-exid 37834 df-mgmOLD 37838 df-sgrOLD 37850 df-mndo 37856 df-rngo 37884 |
| This theorem is referenced by: rngosubdir 37935 |
| Copyright terms: Public domain | W3C validator |