Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngoneglmul | Structured version Visualization version GIF version |
Description: Negation of a product in a ring. (Contributed by Jeff Madsen, 19-Jun-2010.) |
Ref | Expression |
---|---|
ringnegmul.1 | ⊢ 𝐺 = (1st ‘𝑅) |
ringnegmul.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
ringnegmul.3 | ⊢ 𝑋 = ran 𝐺 |
ringnegmul.4 | ⊢ 𝑁 = (inv‘𝐺) |
Ref | Expression |
---|---|
rngoneglmul | ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝐻𝐵)) = ((𝑁‘𝐴)𝐻𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringnegmul.3 | . . . . . . 7 ⊢ 𝑋 = ran 𝐺 | |
2 | ringnegmul.1 | . . . . . . . 8 ⊢ 𝐺 = (1st ‘𝑅) | |
3 | 2 | rneqi 5858 | . . . . . . 7 ⊢ ran 𝐺 = ran (1st ‘𝑅) |
4 | 1, 3 | eqtri 2764 | . . . . . 6 ⊢ 𝑋 = ran (1st ‘𝑅) |
5 | ringnegmul.2 | . . . . . 6 ⊢ 𝐻 = (2nd ‘𝑅) | |
6 | eqid 2736 | . . . . . 6 ⊢ (GId‘𝐻) = (GId‘𝐻) | |
7 | 4, 5, 6 | rngo1cl 36141 | . . . . 5 ⊢ (𝑅 ∈ RingOps → (GId‘𝐻) ∈ 𝑋) |
8 | ringnegmul.4 | . . . . . 6 ⊢ 𝑁 = (inv‘𝐺) | |
9 | 2, 1, 8 | rngonegcl 36129 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ (GId‘𝐻) ∈ 𝑋) → (𝑁‘(GId‘𝐻)) ∈ 𝑋) |
10 | 7, 9 | mpdan 685 | . . . 4 ⊢ (𝑅 ∈ RingOps → (𝑁‘(GId‘𝐻)) ∈ 𝑋) |
11 | 2, 5, 1 | rngoass 36108 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ ((𝑁‘(GId‘𝐻)) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (((𝑁‘(GId‘𝐻))𝐻𝐴)𝐻𝐵) = ((𝑁‘(GId‘𝐻))𝐻(𝐴𝐻𝐵))) |
12 | 11 | 3exp2 1354 | . . . 4 ⊢ (𝑅 ∈ RingOps → ((𝑁‘(GId‘𝐻)) ∈ 𝑋 → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (((𝑁‘(GId‘𝐻))𝐻𝐴)𝐻𝐵) = ((𝑁‘(GId‘𝐻))𝐻(𝐴𝐻𝐵)))))) |
13 | 10, 12 | mpd 15 | . . 3 ⊢ (𝑅 ∈ RingOps → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (((𝑁‘(GId‘𝐻))𝐻𝐴)𝐻𝐵) = ((𝑁‘(GId‘𝐻))𝐻(𝐴𝐻𝐵))))) |
14 | 13 | 3imp 1111 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝑁‘(GId‘𝐻))𝐻𝐴)𝐻𝐵) = ((𝑁‘(GId‘𝐻))𝐻(𝐴𝐻𝐵))) |
15 | 2, 5, 1, 8, 6 | rngonegmn1l 36143 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = ((𝑁‘(GId‘𝐻))𝐻𝐴)) |
16 | 15 | 3adant3 1132 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘𝐴) = ((𝑁‘(GId‘𝐻))𝐻𝐴)) |
17 | 16 | oveq1d 7322 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘𝐴)𝐻𝐵) = (((𝑁‘(GId‘𝐻))𝐻𝐴)𝐻𝐵)) |
18 | 2, 5, 1 | rngocl 36103 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐻𝐵) ∈ 𝑋) |
19 | 18 | 3expb 1120 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐻𝐵) ∈ 𝑋) |
20 | 2, 5, 1, 8, 6 | rngonegmn1l 36143 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ (𝐴𝐻𝐵) ∈ 𝑋) → (𝑁‘(𝐴𝐻𝐵)) = ((𝑁‘(GId‘𝐻))𝐻(𝐴𝐻𝐵))) |
21 | 19, 20 | syldan 592 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑁‘(𝐴𝐻𝐵)) = ((𝑁‘(GId‘𝐻))𝐻(𝐴𝐻𝐵))) |
22 | 21 | 3impb 1115 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝐻𝐵)) = ((𝑁‘(GId‘𝐻))𝐻(𝐴𝐻𝐵))) |
23 | 14, 17, 22 | 3eqtr4rd 2787 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝐻𝐵)) = ((𝑁‘𝐴)𝐻𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ran crn 5601 ‘cfv 6458 (class class class)co 7307 1st c1st 7861 2nd c2nd 7862 GIdcgi 28897 invcgn 28898 RingOpscrngo 36096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-1st 7863 df-2nd 7864 df-grpo 28900 df-gid 28901 df-ginv 28902 df-ablo 28952 df-ass 36045 df-exid 36047 df-mgmOLD 36051 df-sgrOLD 36063 df-mndo 36069 df-rngo 36097 |
This theorem is referenced by: rngosubdir 36148 |
Copyright terms: Public domain | W3C validator |