![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ringen1zr | Structured version Visualization version GIF version |
Description: The only unital ring with one element is the zero ring (at least if its operations are internal binary operations). Note: The assumption 𝑅 ∈ Ring could be weakened if a definition of a non-unital ring ("Rng") was available (it would be sufficient that the multiplication is closed). (Contributed by FL, 15-Feb-2010.) (Revised by AV, 25-Jan-2020.) |
Ref | Expression |
---|---|
ring1zr.b | ⊢ 𝐵 = (Base‘𝑅) |
ring1zr.p | ⊢ + = (+g‘𝑅) |
ring1zr.t | ⊢ ∗ = (.r‘𝑅) |
ringen1zr.0 | ⊢ 𝑍 = (0g‘𝑅) |
Ref | Expression |
---|---|
ringen1zr | ⊢ ((𝑅 ∈ Ring ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) → (𝐵 ≈ 1o ↔ ( + = {〈〈𝑍, 𝑍〉, 𝑍〉} ∧ ∗ = {〈〈𝑍, 𝑍〉, 𝑍〉}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ring1zr.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
2 | ringen1zr.0 | . . . 4 ⊢ 𝑍 = (0g‘𝑅) | |
3 | 1, 2 | ring0cl 18923 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑍 ∈ 𝐵) |
4 | 3 | 3ad2ant1 1167 | . 2 ⊢ ((𝑅 ∈ Ring ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) → 𝑍 ∈ 𝐵) |
5 | ring1zr.p | . . 3 ⊢ + = (+g‘𝑅) | |
6 | ring1zr.t | . . 3 ⊢ ∗ = (.r‘𝑅) | |
7 | 1, 5, 6 | rngen1zr 19637 | . 2 ⊢ (((𝑅 ∈ Ring ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → (𝐵 ≈ 1o ↔ ( + = {〈〈𝑍, 𝑍〉, 𝑍〉} ∧ ∗ = {〈〈𝑍, 𝑍〉, 𝑍〉}))) |
8 | 4, 7 | mpdan 678 | 1 ⊢ ((𝑅 ∈ Ring ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) → (𝐵 ≈ 1o ↔ ( + = {〈〈𝑍, 𝑍〉, 𝑍〉} ∧ ∗ = {〈〈𝑍, 𝑍〉, 𝑍〉}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1111 = wceq 1656 ∈ wcel 2164 {csn 4397 〈cop 4403 class class class wbr 4873 × cxp 5340 Fn wfn 6118 ‘cfv 6123 1oc1o 7819 ≈ cen 8219 Basecbs 16222 +gcplusg 16305 .rcmulr 16306 0gc0g 16453 Ringcrg 18901 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-om 7327 df-1st 7428 df-2nd 7429 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-1o 7826 df-er 8009 df-en 8223 df-dom 8224 df-sdom 8225 df-fin 8226 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-nn 11351 df-2 11414 df-ndx 16225 df-slot 16226 df-base 16228 df-sets 16229 df-plusg 16318 df-0g 16455 df-plusf 17594 df-mgm 17595 df-sgrp 17637 df-mnd 17648 df-grp 17779 df-minusg 17780 df-cmn 18548 df-abl 18549 df-mgp 18844 df-ur 18856 df-srg 18860 df-ring 18903 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |