| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > restid2 | Structured version Visualization version GIF version | ||
| Description: The subspace topology over a subset of the base set is the original topology. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| restid2 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → (𝐽 ↾t 𝐴) = 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwexg 5345 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
| 2 | 1 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → 𝒫 𝐴 ∈ V) |
| 3 | simpr 484 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → 𝐽 ⊆ 𝒫 𝐴) | |
| 4 | 2, 3 | ssexd 5291 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → 𝐽 ∈ V) |
| 5 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → 𝐴 ∈ 𝑉) | |
| 6 | restval 17425 | . . 3 ⊢ ((𝐽 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) | |
| 7 | 4, 5, 6 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → (𝐽 ↾t 𝐴) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) |
| 8 | 3 | sselda 3956 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) ∧ 𝑥 ∈ 𝐽) → 𝑥 ∈ 𝒫 𝐴) |
| 9 | 8 | elpwid 4582 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) ∧ 𝑥 ∈ 𝐽) → 𝑥 ⊆ 𝐴) |
| 10 | dfss2 3942 | . . . . . . 7 ⊢ (𝑥 ⊆ 𝐴 ↔ (𝑥 ∩ 𝐴) = 𝑥) | |
| 11 | 9, 10 | sylib 218 | . . . . . 6 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) ∧ 𝑥 ∈ 𝐽) → (𝑥 ∩ 𝐴) = 𝑥) |
| 12 | 11 | mpteq2dva 5211 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) = (𝑥 ∈ 𝐽 ↦ 𝑥)) |
| 13 | mptresid 6035 | . . . . 5 ⊢ ( I ↾ 𝐽) = (𝑥 ∈ 𝐽 ↦ 𝑥) | |
| 14 | 12, 13 | eqtr4di 2787 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) = ( I ↾ 𝐽)) |
| 15 | 14 | rneqd 5915 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) = ran ( I ↾ 𝐽)) |
| 16 | rnresi 6059 | . . 3 ⊢ ran ( I ↾ 𝐽) = 𝐽 | |
| 17 | 15, 16 | eqtrdi 2785 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) = 𝐽) |
| 18 | 7, 17 | eqtrd 2769 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → (𝐽 ↾t 𝐴) = 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3457 ∩ cin 3923 ⊆ wss 3924 𝒫 cpw 4573 ↦ cmpt 5198 I cid 5544 ran crn 5652 ↾ cres 5653 (class class class)co 7399 ↾t crest 17419 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-ov 7402 df-oprab 7403 df-mpo 7404 df-rest 17421 |
| This theorem is referenced by: restid 17432 topnid 17434 ssufl 23841 |
| Copyright terms: Public domain | W3C validator |