MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restid2 Structured version   Visualization version   GIF version

Theorem restid2 16707
Description: The subspace topology over a subset of the base set is the original topology. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
restid2 ((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) → (𝐽t 𝐴) = 𝐽)

Proof of Theorem restid2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pwexg 5282 . . . . 5 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
21adantr 483 . . . 4 ((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) → 𝒫 𝐴 ∈ V)
3 simpr 487 . . . 4 ((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) → 𝐽 ⊆ 𝒫 𝐴)
42, 3ssexd 5231 . . 3 ((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) → 𝐽 ∈ V)
5 simpl 485 . . 3 ((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) → 𝐴𝑉)
6 restval 16703 . . 3 ((𝐽 ∈ V ∧ 𝐴𝑉) → (𝐽t 𝐴) = ran (𝑥𝐽 ↦ (𝑥𝐴)))
74, 5, 6syl2anc 586 . 2 ((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) → (𝐽t 𝐴) = ran (𝑥𝐽 ↦ (𝑥𝐴)))
83sselda 3970 . . . . . . . 8 (((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) ∧ 𝑥𝐽) → 𝑥 ∈ 𝒫 𝐴)
98elpwid 4553 . . . . . . 7 (((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) ∧ 𝑥𝐽) → 𝑥𝐴)
10 df-ss 3955 . . . . . . 7 (𝑥𝐴 ↔ (𝑥𝐴) = 𝑥)
119, 10sylib 220 . . . . . 6 (((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) ∧ 𝑥𝐽) → (𝑥𝐴) = 𝑥)
1211mpteq2dva 5164 . . . . 5 ((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) → (𝑥𝐽 ↦ (𝑥𝐴)) = (𝑥𝐽𝑥))
13 mptresid 5921 . . . . 5 ( I ↾ 𝐽) = (𝑥𝐽𝑥)
1412, 13syl6eqr 2877 . . . 4 ((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) → (𝑥𝐽 ↦ (𝑥𝐴)) = ( I ↾ 𝐽))
1514rneqd 5811 . . 3 ((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) → ran (𝑥𝐽 ↦ (𝑥𝐴)) = ran ( I ↾ 𝐽))
16 rnresi 5946 . . 3 ran ( I ↾ 𝐽) = 𝐽
1715, 16syl6eq 2875 . 2 ((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) → ran (𝑥𝐽 ↦ (𝑥𝐴)) = 𝐽)
187, 17eqtrd 2859 1 ((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) → (𝐽t 𝐴) = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  Vcvv 3497  cin 3938  wss 3939  𝒫 cpw 4542  cmpt 5149   I cid 5462  ran crn 5559  cres 5560  (class class class)co 7159  t crest 16697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-rest 16699
This theorem is referenced by:  restid  16710  topnid  16712  ssufl  22529
  Copyright terms: Public domain W3C validator