![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > restid2 | Structured version Visualization version GIF version |
Description: The subspace topology over a subset of the base set is the original topology. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
restid2 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → (𝐽 ↾t 𝐴) = 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexg 5378 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
2 | 1 | adantr 479 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → 𝒫 𝐴 ∈ V) |
3 | simpr 483 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → 𝐽 ⊆ 𝒫 𝐴) | |
4 | 2, 3 | ssexd 5325 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → 𝐽 ∈ V) |
5 | simpl 481 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → 𝐴 ∈ 𝑉) | |
6 | restval 17416 | . . 3 ⊢ ((𝐽 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) | |
7 | 4, 5, 6 | syl2anc 582 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → (𝐽 ↾t 𝐴) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) |
8 | 3 | sselda 3976 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) ∧ 𝑥 ∈ 𝐽) → 𝑥 ∈ 𝒫 𝐴) |
9 | 8 | elpwid 4613 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) ∧ 𝑥 ∈ 𝐽) → 𝑥 ⊆ 𝐴) |
10 | dfss2 3962 | . . . . . . 7 ⊢ (𝑥 ⊆ 𝐴 ↔ (𝑥 ∩ 𝐴) = 𝑥) | |
11 | 9, 10 | sylib 217 | . . . . . 6 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) ∧ 𝑥 ∈ 𝐽) → (𝑥 ∩ 𝐴) = 𝑥) |
12 | 11 | mpteq2dva 5249 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) = (𝑥 ∈ 𝐽 ↦ 𝑥)) |
13 | mptresid 6055 | . . . . 5 ⊢ ( I ↾ 𝐽) = (𝑥 ∈ 𝐽 ↦ 𝑥) | |
14 | 12, 13 | eqtr4di 2783 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) = ( I ↾ 𝐽)) |
15 | 14 | rneqd 5940 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) = ran ( I ↾ 𝐽)) |
16 | rnresi 6079 | . . 3 ⊢ ran ( I ↾ 𝐽) = 𝐽 | |
17 | 15, 16 | eqtrdi 2781 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) = 𝐽) |
18 | 7, 17 | eqtrd 2765 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → (𝐽 ↾t 𝐴) = 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3461 ∩ cin 3943 ⊆ wss 3944 𝒫 cpw 4604 ↦ cmpt 5232 I cid 5575 ran crn 5679 ↾ cres 5680 (class class class)co 7419 ↾t crest 17410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-ov 7422 df-oprab 7423 df-mpo 7424 df-rest 17412 |
This theorem is referenced by: restid 17423 topnid 17425 ssufl 23871 |
Copyright terms: Public domain | W3C validator |