MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restid2 Structured version   Visualization version   GIF version

Theorem restid2 17317
Description: The subspace topology over a subset of the base set is the original topology. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
restid2 ((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) → (𝐽t 𝐴) = 𝐽)

Proof of Theorem restid2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pwexg 5334 . . . . 5 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
21adantr 482 . . . 4 ((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) → 𝒫 𝐴 ∈ V)
3 simpr 486 . . . 4 ((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) → 𝐽 ⊆ 𝒫 𝐴)
42, 3ssexd 5282 . . 3 ((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) → 𝐽 ∈ V)
5 simpl 484 . . 3 ((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) → 𝐴𝑉)
6 restval 17313 . . 3 ((𝐽 ∈ V ∧ 𝐴𝑉) → (𝐽t 𝐴) = ran (𝑥𝐽 ↦ (𝑥𝐴)))
74, 5, 6syl2anc 585 . 2 ((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) → (𝐽t 𝐴) = ran (𝑥𝐽 ↦ (𝑥𝐴)))
83sselda 3945 . . . . . . . 8 (((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) ∧ 𝑥𝐽) → 𝑥 ∈ 𝒫 𝐴)
98elpwid 4570 . . . . . . 7 (((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) ∧ 𝑥𝐽) → 𝑥𝐴)
10 df-ss 3928 . . . . . . 7 (𝑥𝐴 ↔ (𝑥𝐴) = 𝑥)
119, 10sylib 217 . . . . . 6 (((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) ∧ 𝑥𝐽) → (𝑥𝐴) = 𝑥)
1211mpteq2dva 5206 . . . . 5 ((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) → (𝑥𝐽 ↦ (𝑥𝐴)) = (𝑥𝐽𝑥))
13 mptresid 6005 . . . . 5 ( I ↾ 𝐽) = (𝑥𝐽𝑥)
1412, 13eqtr4di 2791 . . . 4 ((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) → (𝑥𝐽 ↦ (𝑥𝐴)) = ( I ↾ 𝐽))
1514rneqd 5894 . . 3 ((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) → ran (𝑥𝐽 ↦ (𝑥𝐴)) = ran ( I ↾ 𝐽))
16 rnresi 6028 . . 3 ran ( I ↾ 𝐽) = 𝐽
1715, 16eqtrdi 2789 . 2 ((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) → ran (𝑥𝐽 ↦ (𝑥𝐴)) = 𝐽)
187, 17eqtrd 2773 1 ((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) → (𝐽t 𝐴) = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  Vcvv 3444  cin 3910  wss 3911  𝒫 cpw 4561  cmpt 5189   I cid 5531  ran crn 5635  cres 5636  (class class class)co 7358  t crest 17307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-ov 7361  df-oprab 7362  df-mpo 7363  df-rest 17309
This theorem is referenced by:  restid  17320  topnid  17322  ssufl  23285
  Copyright terms: Public domain W3C validator