MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexprng Structured version   Visualization version   GIF version

Theorem relexprng 14861
Description: The range of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020.)
Assertion
Ref Expression
relexprng ((𝑁 ∈ ℕ0𝑅𝑉) → ran (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))

Proof of Theorem relexprng
StepHypRef Expression
1 elnn0 12345 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 relexpnnrn 14860 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑅𝑉) → ran (𝑅𝑟𝑁) ⊆ ran 𝑅)
3 ssun2 4128 . . . . . 6 ran 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅)
42, 3sstrdi 3951 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑅𝑉) → ran (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))
54ex 414 . . . 4 (𝑁 ∈ ℕ → (𝑅𝑉 → ran (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅)))
6 simpl 484 . . . . . . . . . 10 ((𝑁 = 0 ∧ 𝑅𝑉) → 𝑁 = 0)
76oveq2d 7362 . . . . . . . . 9 ((𝑁 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟0))
8 relexp0g 14837 . . . . . . . . . 10 (𝑅𝑉 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
98adantl 483 . . . . . . . . 9 ((𝑁 = 0 ∧ 𝑅𝑉) → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
107, 9eqtrd 2777 . . . . . . . 8 ((𝑁 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
1110rneqd 5886 . . . . . . 7 ((𝑁 = 0 ∧ 𝑅𝑉) → ran (𝑅𝑟𝑁) = ran ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
12 rnresi 6020 . . . . . . 7 ran ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅)
1311, 12eqtrdi 2793 . . . . . 6 ((𝑁 = 0 ∧ 𝑅𝑉) → ran (𝑅𝑟𝑁) = (dom 𝑅 ∪ ran 𝑅))
14 eqimss 3995 . . . . . 6 (ran (𝑅𝑟𝑁) = (dom 𝑅 ∪ ran 𝑅) → ran (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))
1513, 14syl 17 . . . . 5 ((𝑁 = 0 ∧ 𝑅𝑉) → ran (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))
1615ex 414 . . . 4 (𝑁 = 0 → (𝑅𝑉 → ran (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅)))
175, 16jaoi 855 . . 3 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑅𝑉 → ran (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅)))
181, 17sylbi 216 . 2 (𝑁 ∈ ℕ0 → (𝑅𝑉 → ran (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅)))
1918imp 408 1 ((𝑁 ∈ ℕ0𝑅𝑉) → ran (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wo 845   = wceq 1541  wcel 2106  cun 3903  wss 3905   I cid 5524  dom cdm 5627  ran crn 5628  cres 5629  (class class class)co 7346  0cc0 10981  cn 12083  0cn0 12343  𝑟crelexp 14834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5251  ax-nul 5258  ax-pow 5315  ax-pr 5379  ax-un 7659  ax-cnex 11037  ax-resscn 11038  ax-1cn 11039  ax-icn 11040  ax-addcl 11041  ax-addrcl 11042  ax-mulcl 11043  ax-mulrcl 11044  ax-mulcom 11045  ax-addass 11046  ax-mulass 11047  ax-distr 11048  ax-i2m1 11049  ax-1ne0 11050  ax-1rid 11051  ax-rnegex 11052  ax-rrecex 11053  ax-cnre 11054  ax-pre-lttri 11055  ax-pre-lttrn 11056  ax-pre-ltadd 11057  ax-pre-mulgt0 11058
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3735  df-csb 3851  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3924  df-nul 4278  df-if 4482  df-pw 4557  df-sn 4582  df-pr 4584  df-op 4588  df-uni 4861  df-iun 4951  df-br 5101  df-opab 5163  df-mpt 5184  df-tr 5218  df-id 5525  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5582  df-we 5584  df-xp 5633  df-rel 5634  df-cnv 5635  df-co 5636  df-dm 5637  df-rn 5638  df-res 5639  df-ima 5640  df-pred 6246  df-ord 6313  df-on 6314  df-lim 6315  df-suc 6316  df-iota 6440  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7302  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7790  df-2nd 7909  df-frecs 8176  df-wrecs 8207  df-recs 8281  df-rdg 8320  df-er 8578  df-en 8814  df-dom 8815  df-sdom 8816  df-pnf 11121  df-mnf 11122  df-xr 11123  df-ltxr 11124  df-le 11125  df-sub 11317  df-neg 11318  df-nn 12084  df-n0 12344  df-z 12430  df-uz 12693  df-seq 13832  df-relexp 14835
This theorem is referenced by:  relexprn  14862  iunrelexp0  41683
  Copyright terms: Public domain W3C validator