![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relexprng | Structured version Visualization version GIF version |
Description: The range of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020.) |
Ref | Expression |
---|---|
relexprng | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉) → ran (𝑅↑𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 11627 | . . 3 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
2 | relexpnnrn 14169 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → ran (𝑅↑𝑟𝑁) ⊆ ran 𝑅) | |
3 | ssun2 4006 | . . . . . 6 ⊢ ran 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅) | |
4 | 2, 3 | syl6ss 3839 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → ran (𝑅↑𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
5 | 4 | ex 403 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑅 ∈ 𝑉 → ran (𝑅↑𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))) |
6 | simpl 476 | . . . . . . . . . 10 ⊢ ((𝑁 = 0 ∧ 𝑅 ∈ 𝑉) → 𝑁 = 0) | |
7 | 6 | oveq2d 6926 | . . . . . . . . 9 ⊢ ((𝑁 = 0 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟𝑁) = (𝑅↑𝑟0)) |
8 | relexp0g 14146 | . . . . . . . . . 10 ⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) | |
9 | 8 | adantl 475 | . . . . . . . . 9 ⊢ ((𝑁 = 0 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) |
10 | 7, 9 | eqtrd 2861 | . . . . . . . 8 ⊢ ((𝑁 = 0 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟𝑁) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) |
11 | 10 | rneqd 5589 | . . . . . . 7 ⊢ ((𝑁 = 0 ∧ 𝑅 ∈ 𝑉) → ran (𝑅↑𝑟𝑁) = ran ( I ↾ (dom 𝑅 ∪ ran 𝑅))) |
12 | rnresi 5724 | . . . . . . 7 ⊢ ran ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅) | |
13 | 11, 12 | syl6eq 2877 | . . . . . 6 ⊢ ((𝑁 = 0 ∧ 𝑅 ∈ 𝑉) → ran (𝑅↑𝑟𝑁) = (dom 𝑅 ∪ ran 𝑅)) |
14 | eqimss 3882 | . . . . . 6 ⊢ (ran (𝑅↑𝑟𝑁) = (dom 𝑅 ∪ ran 𝑅) → ran (𝑅↑𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅)) | |
15 | 13, 14 | syl 17 | . . . . 5 ⊢ ((𝑁 = 0 ∧ 𝑅 ∈ 𝑉) → ran (𝑅↑𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
16 | 15 | ex 403 | . . . 4 ⊢ (𝑁 = 0 → (𝑅 ∈ 𝑉 → ran (𝑅↑𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))) |
17 | 5, 16 | jaoi 888 | . . 3 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑅 ∈ 𝑉 → ran (𝑅↑𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))) |
18 | 1, 17 | sylbi 209 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑅 ∈ 𝑉 → ran (𝑅↑𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))) |
19 | 18 | imp 397 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉) → ran (𝑅↑𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∨ wo 878 = wceq 1656 ∈ wcel 2164 ∪ cun 3796 ⊆ wss 3798 I cid 5251 dom cdm 5346 ran crn 5347 ↾ cres 5348 (class class class)co 6910 0cc0 10259 ℕcn 11357 ℕ0cn0 11625 ↑𝑟crelexp 14144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-2nd 7434 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-er 8014 df-en 8229 df-dom 8230 df-sdom 8231 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-nn 11358 df-n0 11626 df-z 11712 df-uz 11976 df-seq 13103 df-relexp 14145 |
This theorem is referenced by: relexprn 14171 iunrelexp0 38834 |
Copyright terms: Public domain | W3C validator |