Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relexprng | Structured version Visualization version GIF version |
Description: The range of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020.) |
Ref | Expression |
---|---|
relexprng | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉) → ran (𝑅↑𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 12345 | . . 3 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
2 | relexpnnrn 14860 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → ran (𝑅↑𝑟𝑁) ⊆ ran 𝑅) | |
3 | ssun2 4128 | . . . . . 6 ⊢ ran 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅) | |
4 | 2, 3 | sstrdi 3951 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → ran (𝑅↑𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
5 | 4 | ex 414 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑅 ∈ 𝑉 → ran (𝑅↑𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))) |
6 | simpl 484 | . . . . . . . . . 10 ⊢ ((𝑁 = 0 ∧ 𝑅 ∈ 𝑉) → 𝑁 = 0) | |
7 | 6 | oveq2d 7362 | . . . . . . . . 9 ⊢ ((𝑁 = 0 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟𝑁) = (𝑅↑𝑟0)) |
8 | relexp0g 14837 | . . . . . . . . . 10 ⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) | |
9 | 8 | adantl 483 | . . . . . . . . 9 ⊢ ((𝑁 = 0 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) |
10 | 7, 9 | eqtrd 2777 | . . . . . . . 8 ⊢ ((𝑁 = 0 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟𝑁) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) |
11 | 10 | rneqd 5886 | . . . . . . 7 ⊢ ((𝑁 = 0 ∧ 𝑅 ∈ 𝑉) → ran (𝑅↑𝑟𝑁) = ran ( I ↾ (dom 𝑅 ∪ ran 𝑅))) |
12 | rnresi 6020 | . . . . . . 7 ⊢ ran ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅) | |
13 | 11, 12 | eqtrdi 2793 | . . . . . 6 ⊢ ((𝑁 = 0 ∧ 𝑅 ∈ 𝑉) → ran (𝑅↑𝑟𝑁) = (dom 𝑅 ∪ ran 𝑅)) |
14 | eqimss 3995 | . . . . . 6 ⊢ (ran (𝑅↑𝑟𝑁) = (dom 𝑅 ∪ ran 𝑅) → ran (𝑅↑𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅)) | |
15 | 13, 14 | syl 17 | . . . . 5 ⊢ ((𝑁 = 0 ∧ 𝑅 ∈ 𝑉) → ran (𝑅↑𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
16 | 15 | ex 414 | . . . 4 ⊢ (𝑁 = 0 → (𝑅 ∈ 𝑉 → ran (𝑅↑𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))) |
17 | 5, 16 | jaoi 855 | . . 3 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑅 ∈ 𝑉 → ran (𝑅↑𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))) |
18 | 1, 17 | sylbi 216 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑅 ∈ 𝑉 → ran (𝑅↑𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))) |
19 | 18 | imp 408 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉) → ran (𝑅↑𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∨ wo 845 = wceq 1541 ∈ wcel 2106 ∪ cun 3903 ⊆ wss 3905 I cid 5524 dom cdm 5627 ran crn 5628 ↾ cres 5629 (class class class)co 7346 0cc0 10981 ℕcn 12083 ℕ0cn0 12343 ↑𝑟crelexp 14834 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5251 ax-nul 5258 ax-pow 5315 ax-pr 5379 ax-un 7659 ax-cnex 11037 ax-resscn 11038 ax-1cn 11039 ax-icn 11040 ax-addcl 11041 ax-addrcl 11042 ax-mulcl 11043 ax-mulrcl 11044 ax-mulcom 11045 ax-addass 11046 ax-mulass 11047 ax-distr 11048 ax-i2m1 11049 ax-1ne0 11050 ax-1rid 11051 ax-rnegex 11052 ax-rrecex 11053 ax-cnre 11054 ax-pre-lttri 11055 ax-pre-lttrn 11056 ax-pre-ltadd 11057 ax-pre-mulgt0 11058 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3735 df-csb 3851 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3924 df-nul 4278 df-if 4482 df-pw 4557 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-iun 4951 df-br 5101 df-opab 5163 df-mpt 5184 df-tr 5218 df-id 5525 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5582 df-we 5584 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-res 5639 df-ima 5640 df-pred 6246 df-ord 6313 df-on 6314 df-lim 6315 df-suc 6316 df-iota 6440 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7302 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7790 df-2nd 7909 df-frecs 8176 df-wrecs 8207 df-recs 8281 df-rdg 8320 df-er 8578 df-en 8814 df-dom 8815 df-sdom 8816 df-pnf 11121 df-mnf 11122 df-xr 11123 df-ltxr 11124 df-le 11125 df-sub 11317 df-neg 11318 df-nn 12084 df-n0 12344 df-z 12430 df-uz 12693 df-seq 13832 df-relexp 14835 |
This theorem is referenced by: relexprn 14862 iunrelexp0 41683 |
Copyright terms: Public domain | W3C validator |