MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem8 Structured version   Visualization version   GIF version

Theorem vdwlem8 15909
Description: Lemma for vdw 15915. (Contributed by Mario Carneiro, 18-Aug-2014.)
Hypotheses
Ref Expression
vdwlem8.r (𝜑𝑅 ∈ Fin)
vdwlem8.k (𝜑𝐾 ∈ (ℤ‘2))
vdwlem8.w (𝜑𝑊 ∈ ℕ)
vdwlem8.f (𝜑𝐹:(1...(2 · 𝑊))⟶𝑅)
vdwlem8.c 𝐶 ∈ V
vdwlem8.a (𝜑𝐴 ∈ ℕ)
vdwlem8.d (𝜑𝐷 ∈ ℕ)
vdwlem8.s (𝜑 → (𝐴(AP‘𝐾)𝐷) ⊆ (𝐺 “ {𝐶}))
vdwlem8.g 𝐺 = (𝑥 ∈ (1...𝑊) ↦ (𝐹‘(𝑥 + 𝑊)))
Assertion
Ref Expression
vdwlem8 (𝜑 → ⟨1, 𝐾⟩ PolyAP 𝐹)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷   𝑥,𝐹   𝜑,𝑥   𝑥,𝐶   𝑥,𝐾   𝑥,𝑊
Allowed substitution hints:   𝑅(𝑥)   𝐺(𝑥)

Proof of Theorem vdwlem8
Dummy variables 𝑎 𝑑 𝑖 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vdwlem8.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℕ)
21nncnd 11321 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
3 vdwlem8.d . . . . . . . . . 10 (𝜑𝐷 ∈ ℕ)
43nncnd 11321 . . . . . . . . 9 (𝜑𝐷 ∈ ℂ)
52, 4addcomd 10523 . . . . . . . 8 (𝜑 → (𝐴 + 𝐷) = (𝐷 + 𝐴))
65oveq2d 6890 . . . . . . 7 (𝜑 → (𝑊 − (𝐴 + 𝐷)) = (𝑊 − (𝐷 + 𝐴)))
7 vdwlem8.w . . . . . . . . 9 (𝜑𝑊 ∈ ℕ)
87nncnd 11321 . . . . . . . 8 (𝜑𝑊 ∈ ℂ)
98, 4, 2subsub4d 10708 . . . . . . 7 (𝜑 → ((𝑊𝐷) − 𝐴) = (𝑊 − (𝐷 + 𝐴)))
106, 9eqtr4d 2843 . . . . . 6 (𝜑 → (𝑊 − (𝐴 + 𝐷)) = ((𝑊𝐷) − 𝐴))
1110oveq2d 6890 . . . . 5 (𝜑 → ((𝐴 + 𝐴) + (𝑊 − (𝐴 + 𝐷))) = ((𝐴 + 𝐴) + ((𝑊𝐷) − 𝐴)))
128, 4subcld 10677 . . . . . 6 (𝜑 → (𝑊𝐷) ∈ ℂ)
132, 2, 12ppncand 10717 . . . . 5 (𝜑 → ((𝐴 + 𝐴) + ((𝑊𝐷) − 𝐴)) = (𝐴 + (𝑊𝐷)))
1411, 13eqtrd 2840 . . . 4 (𝜑 → ((𝐴 + 𝐴) + (𝑊 − (𝐴 + 𝐷))) = (𝐴 + (𝑊𝐷)))
151, 1nnaddcld 11353 . . . . 5 (𝜑 → (𝐴 + 𝐴) ∈ ℕ)
16 vdwlem8.s . . . . . . . 8 (𝜑 → (𝐴(AP‘𝐾)𝐷) ⊆ (𝐺 “ {𝐶}))
17 cnvimass 5695 . . . . . . . . 9 (𝐺 “ {𝐶}) ⊆ dom 𝐺
18 fvex 6421 . . . . . . . . . 10 (𝐹‘(𝑥 + 𝑊)) ∈ V
19 vdwlem8.g . . . . . . . . . 10 𝐺 = (𝑥 ∈ (1...𝑊) ↦ (𝐹‘(𝑥 + 𝑊)))
2018, 19dmmpti 6234 . . . . . . . . 9 dom 𝐺 = (1...𝑊)
2117, 20sseqtri 3834 . . . . . . . 8 (𝐺 “ {𝐶}) ⊆ (1...𝑊)
2216, 21syl6ss 3810 . . . . . . 7 (𝜑 → (𝐴(AP‘𝐾)𝐷) ⊆ (1...𝑊))
23 ssun2 3976 . . . . . . . . 9 ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷) ⊆ ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷))
24 vdwlem8.k . . . . . . . . . . 11 (𝜑𝐾 ∈ (ℤ‘2))
25 uz2m1nn 11982 . . . . . . . . . . 11 (𝐾 ∈ (ℤ‘2) → (𝐾 − 1) ∈ ℕ)
2624, 25syl 17 . . . . . . . . . 10 (𝜑 → (𝐾 − 1) ∈ ℕ)
271, 3nnaddcld 11353 . . . . . . . . . 10 (𝜑 → (𝐴 + 𝐷) ∈ ℕ)
28 vdwapid1 15896 . . . . . . . . . 10 (((𝐾 − 1) ∈ ℕ ∧ (𝐴 + 𝐷) ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴 + 𝐷) ∈ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷))
2926, 27, 3, 28syl3anc 1483 . . . . . . . . 9 (𝜑 → (𝐴 + 𝐷) ∈ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷))
3023, 29sseldi 3796 . . . . . . . 8 (𝜑 → (𝐴 + 𝐷) ∈ ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷)))
31 eluz2nn 11944 . . . . . . . . . . . . . 14 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℕ)
3224, 31syl 17 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ ℕ)
3332nncnd 11321 . . . . . . . . . . . 12 (𝜑𝐾 ∈ ℂ)
34 ax-1cn 10279 . . . . . . . . . . . 12 1 ∈ ℂ
35 npcan 10575 . . . . . . . . . . . 12 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 − 1) + 1) = 𝐾)
3633, 34, 35sylancl 576 . . . . . . . . . . 11 (𝜑 → ((𝐾 − 1) + 1) = 𝐾)
3736fveq2d 6412 . . . . . . . . . 10 (𝜑 → (AP‘((𝐾 − 1) + 1)) = (AP‘𝐾))
3837oveqd 6891 . . . . . . . . 9 (𝜑 → (𝐴(AP‘((𝐾 − 1) + 1))𝐷) = (𝐴(AP‘𝐾)𝐷))
3926nnnn0d 11617 . . . . . . . . . 10 (𝜑 → (𝐾 − 1) ∈ ℕ0)
40 vdwapun 15895 . . . . . . . . . 10 (((𝐾 − 1) ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(AP‘((𝐾 − 1) + 1))𝐷) = ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷)))
4139, 1, 3, 40syl3anc 1483 . . . . . . . . 9 (𝜑 → (𝐴(AP‘((𝐾 − 1) + 1))𝐷) = ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷)))
4238, 41eqtr3d 2842 . . . . . . . 8 (𝜑 → (𝐴(AP‘𝐾)𝐷) = ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷)))
4330, 42eleqtrrd 2888 . . . . . . 7 (𝜑 → (𝐴 + 𝐷) ∈ (𝐴(AP‘𝐾)𝐷))
4422, 43sseldd 3799 . . . . . 6 (𝜑 → (𝐴 + 𝐷) ∈ (1...𝑊))
45 elfzuz3 12562 . . . . . 6 ((𝐴 + 𝐷) ∈ (1...𝑊) → 𝑊 ∈ (ℤ‘(𝐴 + 𝐷)))
46 uznn0sub 11937 . . . . . 6 (𝑊 ∈ (ℤ‘(𝐴 + 𝐷)) → (𝑊 − (𝐴 + 𝐷)) ∈ ℕ0)
4744, 45, 463syl 18 . . . . 5 (𝜑 → (𝑊 − (𝐴 + 𝐷)) ∈ ℕ0)
48 nnnn0addcl 11589 . . . . 5 (((𝐴 + 𝐴) ∈ ℕ ∧ (𝑊 − (𝐴 + 𝐷)) ∈ ℕ0) → ((𝐴 + 𝐴) + (𝑊 − (𝐴 + 𝐷))) ∈ ℕ)
4915, 47, 48syl2anc 575 . . . 4 (𝜑 → ((𝐴 + 𝐴) + (𝑊 − (𝐴 + 𝐷))) ∈ ℕ)
5014, 49eqeltrrd 2886 . . 3 (𝜑 → (𝐴 + (𝑊𝐷)) ∈ ℕ)
51 1nn 11316 . . . . . . . 8 1 ∈ ℕ
52 f1osng 6393 . . . . . . . 8 ((1 ∈ ℕ ∧ 𝐷 ∈ ℕ) → {⟨1, 𝐷⟩}:{1}–1-1-onto→{𝐷})
5351, 3, 52sylancr 577 . . . . . . 7 (𝜑 → {⟨1, 𝐷⟩}:{1}–1-1-onto→{𝐷})
54 f1of 6353 . . . . . . 7 ({⟨1, 𝐷⟩}:{1}–1-1-onto→{𝐷} → {⟨1, 𝐷⟩}:{1}⟶{𝐷})
5553, 54syl 17 . . . . . 6 (𝜑 → {⟨1, 𝐷⟩}:{1}⟶{𝐷})
563snssd 4530 . . . . . 6 (𝜑 → {𝐷} ⊆ ℕ)
5755, 56fssd 6270 . . . . 5 (𝜑 → {⟨1, 𝐷⟩}:{1}⟶ℕ)
58 1z 11673 . . . . . . 7 1 ∈ ℤ
59 fzsn 12606 . . . . . . 7 (1 ∈ ℤ → (1...1) = {1})
6058, 59ax-mp 5 . . . . . 6 (1...1) = {1}
6160feq2i 6248 . . . . 5 ({⟨1, 𝐷⟩}:(1...1)⟶ℕ ↔ {⟨1, 𝐷⟩}:{1}⟶ℕ)
6257, 61sylibr 225 . . . 4 (𝜑 → {⟨1, 𝐷⟩}:(1...1)⟶ℕ)
63 nnex 11311 . . . . 5 ℕ ∈ V
64 ovex 6906 . . . . 5 (1...1) ∈ V
6563, 64elmap 8121 . . . 4 ({⟨1, 𝐷⟩} ∈ (ℕ ↑𝑚 (1...1)) ↔ {⟨1, 𝐷⟩}:(1...1)⟶ℕ)
6662, 65sylibr 225 . . 3 (𝜑 → {⟨1, 𝐷⟩} ∈ (ℕ ↑𝑚 (1...1)))
671, 7nnaddcld 11353 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 + 𝑊) ∈ ℕ)
6867adantr 468 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐴 + 𝑊) ∈ ℕ)
69 elfznn0 12656 . . . . . . . . . . . . . 14 (𝑚 ∈ (0...(𝐾 − 1)) → 𝑚 ∈ ℕ0)
703nnnn0d 11617 . . . . . . . . . . . . . 14 (𝜑𝐷 ∈ ℕ0)
71 nn0mulcl 11595 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ0𝐷 ∈ ℕ0) → (𝑚 · 𝐷) ∈ ℕ0)
7269, 70, 71syl2anr 586 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · 𝐷) ∈ ℕ0)
73 nnnn0addcl 11589 . . . . . . . . . . . . 13 (((𝐴 + 𝑊) ∈ ℕ ∧ (𝑚 · 𝐷) ∈ ℕ0) → ((𝐴 + 𝑊) + (𝑚 · 𝐷)) ∈ ℕ)
7468, 72, 73syl2anc 575 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝐴 + 𝑊) + (𝑚 · 𝐷)) ∈ ℕ)
75 nnuz 11941 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
7674, 75syl6eleq 2895 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝐴 + 𝑊) + (𝑚 · 𝐷)) ∈ (ℤ‘1))
7716adantr 468 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐴(AP‘𝐾)𝐷) ⊆ (𝐺 “ {𝐶}))
78 eqid 2806 . . . . . . . . . . . . . . . . . 18 (𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑚 · 𝐷))
79 oveq1 6881 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑚 → (𝑛 · 𝐷) = (𝑚 · 𝐷))
8079oveq2d 6890 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑚 → (𝐴 + (𝑛 · 𝐷)) = (𝐴 + (𝑚 · 𝐷)))
8180rspceeqv 3520 . . . . . . . . . . . . . . . . . 18 ((𝑚 ∈ (0...(𝐾 − 1)) ∧ (𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑚 · 𝐷))) → ∃𝑛 ∈ (0...(𝐾 − 1))(𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷)))
8278, 81mpan2 674 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (0...(𝐾 − 1)) → ∃𝑛 ∈ (0...(𝐾 − 1))(𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷)))
8332nnnn0d 11617 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 ∈ ℕ0)
84 vdwapval 15894 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → ((𝐴 + (𝑚 · 𝐷)) ∈ (𝐴(AP‘𝐾)𝐷) ↔ ∃𝑛 ∈ (0...(𝐾 − 1))(𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷))))
8583, 1, 3, 84syl3anc 1483 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐴 + (𝑚 · 𝐷)) ∈ (𝐴(AP‘𝐾)𝐷) ↔ ∃𝑛 ∈ (0...(𝐾 − 1))(𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷))))
8685biimpar 465 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ∃𝑛 ∈ (0...(𝐾 − 1))(𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷))) → (𝐴 + (𝑚 · 𝐷)) ∈ (𝐴(AP‘𝐾)𝐷))
8782, 86sylan2 582 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐴 + (𝑚 · 𝐷)) ∈ (𝐴(AP‘𝐾)𝐷))
8877, 87sseldd 3799 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐴 + (𝑚 · 𝐷)) ∈ (𝐺 “ {𝐶}))
8918, 19fnmpti 6233 . . . . . . . . . . . . . . . 16 𝐺 Fn (1...𝑊)
90 fniniseg 6560 . . . . . . . . . . . . . . . 16 (𝐺 Fn (1...𝑊) → ((𝐴 + (𝑚 · 𝐷)) ∈ (𝐺 “ {𝐶}) ↔ ((𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑊) ∧ (𝐺‘(𝐴 + (𝑚 · 𝐷))) = 𝐶)))
9189, 90ax-mp 5 . . . . . . . . . . . . . . 15 ((𝐴 + (𝑚 · 𝐷)) ∈ (𝐺 “ {𝐶}) ↔ ((𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑊) ∧ (𝐺‘(𝐴 + (𝑚 · 𝐷))) = 𝐶))
9288, 91sylib 209 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑊) ∧ (𝐺‘(𝐴 + (𝑚 · 𝐷))) = 𝐶))
9392simpld 484 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑊))
94 elfzuz3 12562 . . . . . . . . . . . . 13 ((𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑊) → 𝑊 ∈ (ℤ‘(𝐴 + (𝑚 · 𝐷))))
95 eluzelz 11914 . . . . . . . . . . . . . 14 (𝑊 ∈ (ℤ‘(𝐴 + (𝑚 · 𝐷))) → 𝑊 ∈ ℤ)
96 eluzadd 11933 . . . . . . . . . . . . . 14 ((𝑊 ∈ (ℤ‘(𝐴 + (𝑚 · 𝐷))) ∧ 𝑊 ∈ ℤ) → (𝑊 + 𝑊) ∈ (ℤ‘((𝐴 + (𝑚 · 𝐷)) + 𝑊)))
9795, 96mpdan 670 . . . . . . . . . . . . 13 (𝑊 ∈ (ℤ‘(𝐴 + (𝑚 · 𝐷))) → (𝑊 + 𝑊) ∈ (ℤ‘((𝐴 + (𝑚 · 𝐷)) + 𝑊)))
9893, 94, 973syl 18 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑊 + 𝑊) ∈ (ℤ‘((𝐴 + (𝑚 · 𝐷)) + 𝑊)))
9982timesd 11542 . . . . . . . . . . . . 13 (𝜑 → (2 · 𝑊) = (𝑊 + 𝑊))
10099adantr 468 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (2 · 𝑊) = (𝑊 + 𝑊))
1012adantr 468 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝐴 ∈ ℂ)
1028adantr 468 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝑊 ∈ ℂ)
10372nn0cnd 11619 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · 𝐷) ∈ ℂ)
104101, 102, 103add32d 10548 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝐴 + 𝑊) + (𝑚 · 𝐷)) = ((𝐴 + (𝑚 · 𝐷)) + 𝑊))
105104fveq2d 6412 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (ℤ‘((𝐴 + 𝑊) + (𝑚 · 𝐷))) = (ℤ‘((𝐴 + (𝑚 · 𝐷)) + 𝑊)))
10698, 100, 1053eltr4d 2900 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (2 · 𝑊) ∈ (ℤ‘((𝐴 + 𝑊) + (𝑚 · 𝐷))))
107 elfzuzb 12559 . . . . . . . . . . 11 (((𝐴 + 𝑊) + (𝑚 · 𝐷)) ∈ (1...(2 · 𝑊)) ↔ (((𝐴 + 𝑊) + (𝑚 · 𝐷)) ∈ (ℤ‘1) ∧ (2 · 𝑊) ∈ (ℤ‘((𝐴 + 𝑊) + (𝑚 · 𝐷)))))
10876, 106, 107sylanbrc 574 . . . . . . . . . 10 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝐴 + 𝑊) + (𝑚 · 𝐷)) ∈ (1...(2 · 𝑊)))
109104fveq2d 6412 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐹‘((𝐴 + 𝑊) + (𝑚 · 𝐷))) = (𝐹‘((𝐴 + (𝑚 · 𝐷)) + 𝑊)))
110 fvoveq1 6897 . . . . . . . . . . . . 13 (𝑥 = (𝐴 + (𝑚 · 𝐷)) → (𝐹‘(𝑥 + 𝑊)) = (𝐹‘((𝐴 + (𝑚 · 𝐷)) + 𝑊)))
111 fvex 6421 . . . . . . . . . . . . 13 (𝐹‘((𝐴 + (𝑚 · 𝐷)) + 𝑊)) ∈ V
112110, 19, 111fvmpt 6503 . . . . . . . . . . . 12 ((𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑊) → (𝐺‘(𝐴 + (𝑚 · 𝐷))) = (𝐹‘((𝐴 + (𝑚 · 𝐷)) + 𝑊)))
11393, 112syl 17 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐺‘(𝐴 + (𝑚 · 𝐷))) = (𝐹‘((𝐴 + (𝑚 · 𝐷)) + 𝑊)))
11492simprd 485 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐺‘(𝐴 + (𝑚 · 𝐷))) = 𝐶)
115109, 113, 1143eqtr2d 2846 . . . . . . . . . 10 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐹‘((𝐴 + 𝑊) + (𝑚 · 𝐷))) = 𝐶)
116108, 115jca 503 . . . . . . . . 9 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (((𝐴 + 𝑊) + (𝑚 · 𝐷)) ∈ (1...(2 · 𝑊)) ∧ (𝐹‘((𝐴 + 𝑊) + (𝑚 · 𝐷))) = 𝐶))
117 eleq1 2873 . . . . . . . . . 10 (𝑥 = ((𝐴 + 𝑊) + (𝑚 · 𝐷)) → (𝑥 ∈ (1...(2 · 𝑊)) ↔ ((𝐴 + 𝑊) + (𝑚 · 𝐷)) ∈ (1...(2 · 𝑊))))
118 fveqeq2 6417 . . . . . . . . . 10 (𝑥 = ((𝐴 + 𝑊) + (𝑚 · 𝐷)) → ((𝐹𝑥) = 𝐶 ↔ (𝐹‘((𝐴 + 𝑊) + (𝑚 · 𝐷))) = 𝐶))
119117, 118anbi12d 618 . . . . . . . . 9 (𝑥 = ((𝐴 + 𝑊) + (𝑚 · 𝐷)) → ((𝑥 ∈ (1...(2 · 𝑊)) ∧ (𝐹𝑥) = 𝐶) ↔ (((𝐴 + 𝑊) + (𝑚 · 𝐷)) ∈ (1...(2 · 𝑊)) ∧ (𝐹‘((𝐴 + 𝑊) + (𝑚 · 𝐷))) = 𝐶)))
120116, 119syl5ibrcom 238 . . . . . . . 8 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑥 = ((𝐴 + 𝑊) + (𝑚 · 𝐷)) → (𝑥 ∈ (1...(2 · 𝑊)) ∧ (𝐹𝑥) = 𝐶)))
121120rexlimdva 3219 . . . . . . 7 (𝜑 → (∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝑊) + (𝑚 · 𝐷)) → (𝑥 ∈ (1...(2 · 𝑊)) ∧ (𝐹𝑥) = 𝐶)))
122 vdwapval 15894 . . . . . . . 8 ((𝐾 ∈ ℕ0 ∧ (𝐴 + 𝑊) ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑥 ∈ ((𝐴 + 𝑊)(AP‘𝐾)𝐷) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝑊) + (𝑚 · 𝐷))))
12383, 67, 3, 122syl3anc 1483 . . . . . . 7 (𝜑 → (𝑥 ∈ ((𝐴 + 𝑊)(AP‘𝐾)𝐷) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝑊) + (𝑚 · 𝐷))))
124 vdwlem8.f . . . . . . . 8 (𝜑𝐹:(1...(2 · 𝑊))⟶𝑅)
125 ffn 6256 . . . . . . . 8 (𝐹:(1...(2 · 𝑊))⟶𝑅𝐹 Fn (1...(2 · 𝑊)))
126 fniniseg 6560 . . . . . . . 8 (𝐹 Fn (1...(2 · 𝑊)) → (𝑥 ∈ (𝐹 “ {𝐶}) ↔ (𝑥 ∈ (1...(2 · 𝑊)) ∧ (𝐹𝑥) = 𝐶)))
127124, 125, 1263syl 18 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐹 “ {𝐶}) ↔ (𝑥 ∈ (1...(2 · 𝑊)) ∧ (𝐹𝑥) = 𝐶)))
128121, 123, 1273imtr4d 285 . . . . . 6 (𝜑 → (𝑥 ∈ ((𝐴 + 𝑊)(AP‘𝐾)𝐷) → 𝑥 ∈ (𝐹 “ {𝐶})))
129128ssrdv 3804 . . . . 5 (𝜑 → ((𝐴 + 𝑊)(AP‘𝐾)𝐷) ⊆ (𝐹 “ {𝐶}))
130 fvsng 6672 . . . . . . . . 9 ((1 ∈ ℕ ∧ 𝐷 ∈ ℕ) → ({⟨1, 𝐷⟩}‘1) = 𝐷)
13151, 3, 130sylancr 577 . . . . . . . 8 (𝜑 → ({⟨1, 𝐷⟩}‘1) = 𝐷)
132131oveq2d 6890 . . . . . . 7 (𝜑 → ((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1)) = ((𝐴 + (𝑊𝐷)) + 𝐷))
1332, 12, 4addassd 10347 . . . . . . 7 (𝜑 → ((𝐴 + (𝑊𝐷)) + 𝐷) = (𝐴 + ((𝑊𝐷) + 𝐷)))
1348, 4npcand 10681 . . . . . . . 8 (𝜑 → ((𝑊𝐷) + 𝐷) = 𝑊)
135134oveq2d 6890 . . . . . . 7 (𝜑 → (𝐴 + ((𝑊𝐷) + 𝐷)) = (𝐴 + 𝑊))
136132, 133, 1353eqtrd 2844 . . . . . 6 (𝜑 → ((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1)) = (𝐴 + 𝑊))
137136, 131oveq12d 6892 . . . . 5 (𝜑 → (((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1))(AP‘𝐾)({⟨1, 𝐷⟩}‘1)) = ((𝐴 + 𝑊)(AP‘𝐾)𝐷))
138136fveq2d 6412 . . . . . . . 8 (𝜑 → (𝐹‘((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1))) = (𝐹‘(𝐴 + 𝑊)))
139 vdwapid1 15896 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → 𝐴 ∈ (𝐴(AP‘𝐾)𝐷))
14032, 1, 3, 139syl3anc 1483 . . . . . . . . . . . 12 (𝜑𝐴 ∈ (𝐴(AP‘𝐾)𝐷))
14116, 140sseldd 3799 . . . . . . . . . . 11 (𝜑𝐴 ∈ (𝐺 “ {𝐶}))
142 fniniseg 6560 . . . . . . . . . . . 12 (𝐺 Fn (1...𝑊) → (𝐴 ∈ (𝐺 “ {𝐶}) ↔ (𝐴 ∈ (1...𝑊) ∧ (𝐺𝐴) = 𝐶)))
14389, 142ax-mp 5 . . . . . . . . . . 11 (𝐴 ∈ (𝐺 “ {𝐶}) ↔ (𝐴 ∈ (1...𝑊) ∧ (𝐺𝐴) = 𝐶))
144141, 143sylib 209 . . . . . . . . . 10 (𝜑 → (𝐴 ∈ (1...𝑊) ∧ (𝐺𝐴) = 𝐶))
145144simpld 484 . . . . . . . . 9 (𝜑𝐴 ∈ (1...𝑊))
146 fvoveq1 6897 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝐹‘(𝑥 + 𝑊)) = (𝐹‘(𝐴 + 𝑊)))
147 fvex 6421 . . . . . . . . . 10 (𝐹‘(𝐴 + 𝑊)) ∈ V
148146, 19, 147fvmpt 6503 . . . . . . . . 9 (𝐴 ∈ (1...𝑊) → (𝐺𝐴) = (𝐹‘(𝐴 + 𝑊)))
149145, 148syl 17 . . . . . . . 8 (𝜑 → (𝐺𝐴) = (𝐹‘(𝐴 + 𝑊)))
150144simprd 485 . . . . . . . 8 (𝜑 → (𝐺𝐴) = 𝐶)
151138, 149, 1503eqtr2d 2846 . . . . . . 7 (𝜑 → (𝐹‘((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1))) = 𝐶)
152151sneqd 4382 . . . . . 6 (𝜑 → {(𝐹‘((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1)))} = {𝐶})
153152imaeq2d 5676 . . . . 5 (𝜑 → (𝐹 “ {(𝐹‘((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1)))}) = (𝐹 “ {𝐶}))
154129, 137, 1533sstr4d 3845 . . . 4 (𝜑 → (((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1))(AP‘𝐾)({⟨1, 𝐷⟩}‘1)) ⊆ (𝐹 “ {(𝐹‘((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1)))}))
155154ralrimivw 3155 . . 3 (𝜑 → ∀𝑖 ∈ (1...1)(((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1))(AP‘𝐾)({⟨1, 𝐷⟩}‘1)) ⊆ (𝐹 “ {(𝐹‘((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1)))}))
156151mpteq2dv 4939 . . . . . . . 8 (𝜑 → (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1)))) = (𝑖 ∈ (1...1) ↦ 𝐶))
157 fconstmpt 5363 . . . . . . . 8 ((1...1) × {𝐶}) = (𝑖 ∈ (1...1) ↦ 𝐶)
158156, 157syl6eqr 2858 . . . . . . 7 (𝜑 → (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1)))) = ((1...1) × {𝐶}))
159158rneqd 5554 . . . . . 6 (𝜑 → ran (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1)))) = ran ((1...1) × {𝐶}))
160 elfz3 12574 . . . . . . . 8 (1 ∈ ℤ → 1 ∈ (1...1))
161 ne0i 4122 . . . . . . . 8 (1 ∈ (1...1) → (1...1) ≠ ∅)
16258, 160, 161mp2b 10 . . . . . . 7 (1...1) ≠ ∅
163 rnxp 5775 . . . . . . 7 ((1...1) ≠ ∅ → ran ((1...1) × {𝐶}) = {𝐶})
164162, 163ax-mp 5 . . . . . 6 ran ((1...1) × {𝐶}) = {𝐶}
165159, 164syl6eq 2856 . . . . 5 (𝜑 → ran (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1)))) = {𝐶})
166165fveq2d 6412 . . . 4 (𝜑 → (♯‘ran (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1))))) = (♯‘{𝐶}))
167 vdwlem8.c . . . . 5 𝐶 ∈ V
168 hashsng 13377 . . . . 5 (𝐶 ∈ V → (♯‘{𝐶}) = 1)
169167, 168ax-mp 5 . . . 4 (♯‘{𝐶}) = 1
170166, 169syl6eq 2856 . . 3 (𝜑 → (♯‘ran (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1))))) = 1)
171 oveq1 6881 . . . . . . . 8 (𝑎 = (𝐴 + (𝑊𝐷)) → (𝑎 + (𝑑𝑖)) = ((𝐴 + (𝑊𝐷)) + (𝑑𝑖)))
172171oveq1d 6889 . . . . . . 7 (𝑎 = (𝐴 + (𝑊𝐷)) → ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) = (((𝐴 + (𝑊𝐷)) + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)))
173 fvoveq1 6897 . . . . . . . . 9 (𝑎 = (𝐴 + (𝑊𝐷)) → (𝐹‘(𝑎 + (𝑑𝑖))) = (𝐹‘((𝐴 + (𝑊𝐷)) + (𝑑𝑖))))
174173sneqd 4382 . . . . . . . 8 (𝑎 = (𝐴 + (𝑊𝐷)) → {(𝐹‘(𝑎 + (𝑑𝑖)))} = {(𝐹‘((𝐴 + (𝑊𝐷)) + (𝑑𝑖)))})
175174imaeq2d 5676 . . . . . . 7 (𝑎 = (𝐴 + (𝑊𝐷)) → (𝐹 “ {(𝐹‘(𝑎 + (𝑑𝑖)))}) = (𝐹 “ {(𝐹‘((𝐴 + (𝑊𝐷)) + (𝑑𝑖)))}))
176172, 175sseq12d 3831 . . . . . 6 (𝑎 = (𝐴 + (𝑊𝐷)) → (((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝑎 + (𝑑𝑖)))}) ↔ (((𝐴 + (𝑊𝐷)) + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘((𝐴 + (𝑊𝐷)) + (𝑑𝑖)))})))
177176ralbidv 3174 . . . . 5 (𝑎 = (𝐴 + (𝑊𝐷)) → (∀𝑖 ∈ (1...1)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝑎 + (𝑑𝑖)))}) ↔ ∀𝑖 ∈ (1...1)(((𝐴 + (𝑊𝐷)) + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘((𝐴 + (𝑊𝐷)) + (𝑑𝑖)))})))
178173mpteq2dv 4939 . . . . . . 7 (𝑎 = (𝐴 + (𝑊𝐷)) → (𝑖 ∈ (1...1) ↦ (𝐹‘(𝑎 + (𝑑𝑖)))) = (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊𝐷)) + (𝑑𝑖)))))
179178rneqd 5554 . . . . . 6 (𝑎 = (𝐴 + (𝑊𝐷)) → ran (𝑖 ∈ (1...1) ↦ (𝐹‘(𝑎 + (𝑑𝑖)))) = ran (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊𝐷)) + (𝑑𝑖)))))
180179fveqeq2d 6416 . . . . 5 (𝑎 = (𝐴 + (𝑊𝐷)) → ((♯‘ran (𝑖 ∈ (1...1) ↦ (𝐹‘(𝑎 + (𝑑𝑖))))) = 1 ↔ (♯‘ran (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊𝐷)) + (𝑑𝑖))))) = 1))
181177, 180anbi12d 618 . . . 4 (𝑎 = (𝐴 + (𝑊𝐷)) → ((∀𝑖 ∈ (1...1)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...1) ↦ (𝐹‘(𝑎 + (𝑑𝑖))))) = 1) ↔ (∀𝑖 ∈ (1...1)(((𝐴 + (𝑊𝐷)) + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘((𝐴 + (𝑊𝐷)) + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊𝐷)) + (𝑑𝑖))))) = 1)))
182 fveq1 6407 . . . . . . . . . 10 (𝑑 = {⟨1, 𝐷⟩} → (𝑑𝑖) = ({⟨1, 𝐷⟩}‘𝑖))
183 elfz1eq 12575 . . . . . . . . . . 11 (𝑖 ∈ (1...1) → 𝑖 = 1)
184183fveq2d 6412 . . . . . . . . . 10 (𝑖 ∈ (1...1) → ({⟨1, 𝐷⟩}‘𝑖) = ({⟨1, 𝐷⟩}‘1))
185182, 184sylan9eq 2860 . . . . . . . . 9 ((𝑑 = {⟨1, 𝐷⟩} ∧ 𝑖 ∈ (1...1)) → (𝑑𝑖) = ({⟨1, 𝐷⟩}‘1))
186185oveq2d 6890 . . . . . . . 8 ((𝑑 = {⟨1, 𝐷⟩} ∧ 𝑖 ∈ (1...1)) → ((𝐴 + (𝑊𝐷)) + (𝑑𝑖)) = ((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1)))
187186, 185oveq12d 6892 . . . . . . 7 ((𝑑 = {⟨1, 𝐷⟩} ∧ 𝑖 ∈ (1...1)) → (((𝐴 + (𝑊𝐷)) + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) = (((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1))(AP‘𝐾)({⟨1, 𝐷⟩}‘1)))
188186fveq2d 6412 . . . . . . . . 9 ((𝑑 = {⟨1, 𝐷⟩} ∧ 𝑖 ∈ (1...1)) → (𝐹‘((𝐴 + (𝑊𝐷)) + (𝑑𝑖))) = (𝐹‘((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1))))
189188sneqd 4382 . . . . . . . 8 ((𝑑 = {⟨1, 𝐷⟩} ∧ 𝑖 ∈ (1...1)) → {(𝐹‘((𝐴 + (𝑊𝐷)) + (𝑑𝑖)))} = {(𝐹‘((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1)))})
190189imaeq2d 5676 . . . . . . 7 ((𝑑 = {⟨1, 𝐷⟩} ∧ 𝑖 ∈ (1...1)) → (𝐹 “ {(𝐹‘((𝐴 + (𝑊𝐷)) + (𝑑𝑖)))}) = (𝐹 “ {(𝐹‘((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1)))}))
191187, 190sseq12d 3831 . . . . . 6 ((𝑑 = {⟨1, 𝐷⟩} ∧ 𝑖 ∈ (1...1)) → ((((𝐴 + (𝑊𝐷)) + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘((𝐴 + (𝑊𝐷)) + (𝑑𝑖)))}) ↔ (((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1))(AP‘𝐾)({⟨1, 𝐷⟩}‘1)) ⊆ (𝐹 “ {(𝐹‘((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1)))})))
192191ralbidva 3173 . . . . 5 (𝑑 = {⟨1, 𝐷⟩} → (∀𝑖 ∈ (1...1)(((𝐴 + (𝑊𝐷)) + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘((𝐴 + (𝑊𝐷)) + (𝑑𝑖)))}) ↔ ∀𝑖 ∈ (1...1)(((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1))(AP‘𝐾)({⟨1, 𝐷⟩}‘1)) ⊆ (𝐹 “ {(𝐹‘((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1)))})))
193188mpteq2dva 4938 . . . . . . 7 (𝑑 = {⟨1, 𝐷⟩} → (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊𝐷)) + (𝑑𝑖)))) = (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1)))))
194193rneqd 5554 . . . . . 6 (𝑑 = {⟨1, 𝐷⟩} → ran (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊𝐷)) + (𝑑𝑖)))) = ran (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1)))))
195194fveqeq2d 6416 . . . . 5 (𝑑 = {⟨1, 𝐷⟩} → ((♯‘ran (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊𝐷)) + (𝑑𝑖))))) = 1 ↔ (♯‘ran (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1))))) = 1))
196192, 195anbi12d 618 . . . 4 (𝑑 = {⟨1, 𝐷⟩} → ((∀𝑖 ∈ (1...1)(((𝐴 + (𝑊𝐷)) + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘((𝐴 + (𝑊𝐷)) + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊𝐷)) + (𝑑𝑖))))) = 1) ↔ (∀𝑖 ∈ (1...1)(((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1))(AP‘𝐾)({⟨1, 𝐷⟩}‘1)) ⊆ (𝐹 “ {(𝐹‘((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1)))}) ∧ (♯‘ran (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1))))) = 1)))
197181, 196rspc2ev 3517 . . 3 (((𝐴 + (𝑊𝐷)) ∈ ℕ ∧ {⟨1, 𝐷⟩} ∈ (ℕ ↑𝑚 (1...1)) ∧ (∀𝑖 ∈ (1...1)(((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1))(AP‘𝐾)({⟨1, 𝐷⟩}‘1)) ⊆ (𝐹 “ {(𝐹‘((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1)))}) ∧ (♯‘ran (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1))))) = 1)) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑𝑚 (1...1))(∀𝑖 ∈ (1...1)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...1) ↦ (𝐹‘(𝑎 + (𝑑𝑖))))) = 1))
19850, 66, 155, 170, 197syl112anc 1486 . 2 (𝜑 → ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑𝑚 (1...1))(∀𝑖 ∈ (1...1)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...1) ↦ (𝐹‘(𝑎 + (𝑑𝑖))))) = 1))
199 ovex 6906 . . 3 (1...(2 · 𝑊)) ∈ V
20051a1i 11 . . 3 (𝜑 → 1 ∈ ℕ)
201 eqid 2806 . . 3 (1...1) = (1...1)
202199, 83, 124, 200, 201vdwpc 15901 . 2 (𝜑 → (⟨1, 𝐾⟩ PolyAP 𝐹 ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑𝑚 (1...1))(∀𝑖 ∈ (1...1)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...1) ↦ (𝐹‘(𝑎 + (𝑑𝑖))))) = 1)))
203198, 202mpbird 248 1 (𝜑 → ⟨1, 𝐾⟩ PolyAP 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1637  wcel 2156  wne 2978  wral 3096  wrex 3097  Vcvv 3391  cun 3767  wss 3769  c0 4116  {csn 4370  cop 4376   class class class wbr 4844  cmpt 4923   × cxp 5309  ccnv 5310  dom cdm 5311  ran crn 5312  cima 5314   Fn wfn 6096  wf 6097  1-1-ontowf1o 6100  cfv 6101  (class class class)co 6874  𝑚 cmap 8092  Fincfn 8192  cc 10219  0cc0 10221  1c1 10222   + caddc 10224   · cmul 10226  cmin 10551  cn 11305  2c2 11356  0cn0 11559  cz 11643  cuz 11904  ...cfz 12549  chash 13337  APcvdwa 15886   PolyAP cvdwp 15888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7179  ax-cnex 10277  ax-resscn 10278  ax-1cn 10279  ax-icn 10280  ax-addcl 10281  ax-addrcl 10282  ax-mulcl 10283  ax-mulrcl 10284  ax-mulcom 10285  ax-addass 10286  ax-mulass 10287  ax-distr 10288  ax-i2m1 10289  ax-1ne0 10290  ax-1rid 10291  ax-rnegex 10292  ax-rrecex 10293  ax-cnre 10294  ax-pre-lttri 10295  ax-pre-lttrn 10296  ax-pre-ltadd 10297  ax-pre-mulgt0 10298
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-int 4670  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6835  df-ov 6877  df-oprab 6878  df-mpt2 6879  df-om 7296  df-1st 7398  df-2nd 7399  df-wrecs 7642  df-recs 7704  df-rdg 7742  df-1o 7796  df-er 7979  df-map 8094  df-en 8193  df-dom 8194  df-sdom 8195  df-fin 8196  df-card 9048  df-pnf 10361  df-mnf 10362  df-xr 10363  df-ltxr 10364  df-le 10365  df-sub 10553  df-neg 10554  df-nn 11306  df-2 11364  df-n0 11560  df-z 11644  df-uz 11905  df-fz 12550  df-hash 13338  df-vdwap 15889  df-vdwpc 15891
This theorem is referenced by:  vdwlem10  15911
  Copyright terms: Public domain W3C validator