| Step | Hyp | Ref
| Expression |
| 1 | | vdwlem8.a |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ ℕ) |
| 2 | 1 | nncnd 12282 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 3 | | vdwlem8.d |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 ∈ ℕ) |
| 4 | 3 | nncnd 12282 |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ∈ ℂ) |
| 5 | 2, 4 | addcomd 11463 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 + 𝐷) = (𝐷 + 𝐴)) |
| 6 | 5 | oveq2d 7447 |
. . . . . . 7
⊢ (𝜑 → (𝑊 − (𝐴 + 𝐷)) = (𝑊 − (𝐷 + 𝐴))) |
| 7 | | vdwlem8.w |
. . . . . . . . 9
⊢ (𝜑 → 𝑊 ∈ ℕ) |
| 8 | 7 | nncnd 12282 |
. . . . . . . 8
⊢ (𝜑 → 𝑊 ∈ ℂ) |
| 9 | 8, 4, 2 | subsub4d 11651 |
. . . . . . 7
⊢ (𝜑 → ((𝑊 − 𝐷) − 𝐴) = (𝑊 − (𝐷 + 𝐴))) |
| 10 | 6, 9 | eqtr4d 2780 |
. . . . . 6
⊢ (𝜑 → (𝑊 − (𝐴 + 𝐷)) = ((𝑊 − 𝐷) − 𝐴)) |
| 11 | 10 | oveq2d 7447 |
. . . . 5
⊢ (𝜑 → ((𝐴 + 𝐴) + (𝑊 − (𝐴 + 𝐷))) = ((𝐴 + 𝐴) + ((𝑊 − 𝐷) − 𝐴))) |
| 12 | 8, 4 | subcld 11620 |
. . . . . 6
⊢ (𝜑 → (𝑊 − 𝐷) ∈ ℂ) |
| 13 | 2, 2, 12 | ppncand 11660 |
. . . . 5
⊢ (𝜑 → ((𝐴 + 𝐴) + ((𝑊 − 𝐷) − 𝐴)) = (𝐴 + (𝑊 − 𝐷))) |
| 14 | 11, 13 | eqtrd 2777 |
. . . 4
⊢ (𝜑 → ((𝐴 + 𝐴) + (𝑊 − (𝐴 + 𝐷))) = (𝐴 + (𝑊 − 𝐷))) |
| 15 | 1, 1 | nnaddcld 12318 |
. . . . 5
⊢ (𝜑 → (𝐴 + 𝐴) ∈ ℕ) |
| 16 | | vdwlem8.s |
. . . . . . . 8
⊢ (𝜑 → (𝐴(AP‘𝐾)𝐷) ⊆ (◡𝐺 “ {𝐶})) |
| 17 | | cnvimass 6100 |
. . . . . . . . 9
⊢ (◡𝐺 “ {𝐶}) ⊆ dom 𝐺 |
| 18 | | fvex 6919 |
. . . . . . . . . 10
⊢ (𝐹‘(𝑥 + 𝑊)) ∈ V |
| 19 | | vdwlem8.g |
. . . . . . . . . 10
⊢ 𝐺 = (𝑥 ∈ (1...𝑊) ↦ (𝐹‘(𝑥 + 𝑊))) |
| 20 | 18, 19 | dmmpti 6712 |
. . . . . . . . 9
⊢ dom 𝐺 = (1...𝑊) |
| 21 | 17, 20 | sseqtri 4032 |
. . . . . . . 8
⊢ (◡𝐺 “ {𝐶}) ⊆ (1...𝑊) |
| 22 | 16, 21 | sstrdi 3996 |
. . . . . . 7
⊢ (𝜑 → (𝐴(AP‘𝐾)𝐷) ⊆ (1...𝑊)) |
| 23 | | ssun2 4179 |
. . . . . . . . 9
⊢ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷) ⊆ ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷)) |
| 24 | | vdwlem8.k |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐾 ∈
(ℤ≥‘2)) |
| 25 | | uz2m1nn 12965 |
. . . . . . . . . . 11
⊢ (𝐾 ∈
(ℤ≥‘2) → (𝐾 − 1) ∈ ℕ) |
| 26 | 24, 25 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐾 − 1) ∈ ℕ) |
| 27 | 1, 3 | nnaddcld 12318 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 + 𝐷) ∈ ℕ) |
| 28 | | vdwapid1 17013 |
. . . . . . . . . 10
⊢ (((𝐾 − 1) ∈ ℕ ∧
(𝐴 + 𝐷) ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴 + 𝐷) ∈ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷)) |
| 29 | 26, 27, 3, 28 | syl3anc 1373 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 + 𝐷) ∈ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷)) |
| 30 | 23, 29 | sselid 3981 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 + 𝐷) ∈ ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷))) |
| 31 | | eluz2nn 12924 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈
(ℤ≥‘2) → 𝐾 ∈ ℕ) |
| 32 | 24, 31 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐾 ∈ ℕ) |
| 33 | 32 | nncnd 12282 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐾 ∈ ℂ) |
| 34 | | ax-1cn 11213 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℂ |
| 35 | | npcan 11517 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝐾 −
1) + 1) = 𝐾) |
| 36 | 33, 34, 35 | sylancl 586 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐾 − 1) + 1) = 𝐾) |
| 37 | 36 | fveq2d 6910 |
. . . . . . . . . 10
⊢ (𝜑 → (AP‘((𝐾 − 1) + 1)) =
(AP‘𝐾)) |
| 38 | 37 | oveqd 7448 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴(AP‘((𝐾 − 1) + 1))𝐷) = (𝐴(AP‘𝐾)𝐷)) |
| 39 | 26 | nnnn0d 12587 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐾 − 1) ∈
ℕ0) |
| 40 | | vdwapun 17012 |
. . . . . . . . . 10
⊢ (((𝐾 − 1) ∈
ℕ0 ∧ 𝐴
∈ ℕ ∧ 𝐷
∈ ℕ) → (𝐴(AP‘((𝐾 − 1) + 1))𝐷) = ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷))) |
| 41 | 39, 1, 3, 40 | syl3anc 1373 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴(AP‘((𝐾 − 1) + 1))𝐷) = ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷))) |
| 42 | 38, 41 | eqtr3d 2779 |
. . . . . . . 8
⊢ (𝜑 → (𝐴(AP‘𝐾)𝐷) = ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷))) |
| 43 | 30, 42 | eleqtrrd 2844 |
. . . . . . 7
⊢ (𝜑 → (𝐴 + 𝐷) ∈ (𝐴(AP‘𝐾)𝐷)) |
| 44 | 22, 43 | sseldd 3984 |
. . . . . 6
⊢ (𝜑 → (𝐴 + 𝐷) ∈ (1...𝑊)) |
| 45 | | elfzuz3 13561 |
. . . . . 6
⊢ ((𝐴 + 𝐷) ∈ (1...𝑊) → 𝑊 ∈ (ℤ≥‘(𝐴 + 𝐷))) |
| 46 | | uznn0sub 12917 |
. . . . . 6
⊢ (𝑊 ∈
(ℤ≥‘(𝐴 + 𝐷)) → (𝑊 − (𝐴 + 𝐷)) ∈
ℕ0) |
| 47 | 44, 45, 46 | 3syl 18 |
. . . . 5
⊢ (𝜑 → (𝑊 − (𝐴 + 𝐷)) ∈
ℕ0) |
| 48 | | nnnn0addcl 12556 |
. . . . 5
⊢ (((𝐴 + 𝐴) ∈ ℕ ∧ (𝑊 − (𝐴 + 𝐷)) ∈ ℕ0) →
((𝐴 + 𝐴) + (𝑊 − (𝐴 + 𝐷))) ∈ ℕ) |
| 49 | 15, 47, 48 | syl2anc 584 |
. . . 4
⊢ (𝜑 → ((𝐴 + 𝐴) + (𝑊 − (𝐴 + 𝐷))) ∈ ℕ) |
| 50 | 14, 49 | eqeltrrd 2842 |
. . 3
⊢ (𝜑 → (𝐴 + (𝑊 − 𝐷)) ∈ ℕ) |
| 51 | | 1nn 12277 |
. . . . . . . 8
⊢ 1 ∈
ℕ |
| 52 | | f1osng 6889 |
. . . . . . . 8
⊢ ((1
∈ ℕ ∧ 𝐷
∈ ℕ) → {〈1, 𝐷〉}:{1}–1-1-onto→{𝐷}) |
| 53 | 51, 3, 52 | sylancr 587 |
. . . . . . 7
⊢ (𝜑 → {〈1, 𝐷〉}:{1}–1-1-onto→{𝐷}) |
| 54 | | f1of 6848 |
. . . . . . 7
⊢
({〈1, 𝐷〉}:{1}–1-1-onto→{𝐷} → {〈1, 𝐷〉}:{1}⟶{𝐷}) |
| 55 | 53, 54 | syl 17 |
. . . . . 6
⊢ (𝜑 → {〈1, 𝐷〉}:{1}⟶{𝐷}) |
| 56 | 3 | snssd 4809 |
. . . . . 6
⊢ (𝜑 → {𝐷} ⊆ ℕ) |
| 57 | 55, 56 | fssd 6753 |
. . . . 5
⊢ (𝜑 → {〈1, 𝐷〉}:{1}⟶ℕ) |
| 58 | | 1z 12647 |
. . . . . . 7
⊢ 1 ∈
ℤ |
| 59 | | fzsn 13606 |
. . . . . . 7
⊢ (1 ∈
ℤ → (1...1) = {1}) |
| 60 | 58, 59 | ax-mp 5 |
. . . . . 6
⊢ (1...1) =
{1} |
| 61 | 60 | feq2i 6728 |
. . . . 5
⊢
({〈1, 𝐷〉}:(1...1)⟶ℕ ↔
{〈1, 𝐷〉}:{1}⟶ℕ) |
| 62 | 57, 61 | sylibr 234 |
. . . 4
⊢ (𝜑 → {〈1, 𝐷〉}:(1...1)⟶ℕ) |
| 63 | | nnex 12272 |
. . . . 5
⊢ ℕ
∈ V |
| 64 | | ovex 7464 |
. . . . 5
⊢ (1...1)
∈ V |
| 65 | 63, 64 | elmap 8911 |
. . . 4
⊢
({〈1, 𝐷〉}
∈ (ℕ ↑m (1...1)) ↔ {〈1, 𝐷〉}:(1...1)⟶ℕ) |
| 66 | 62, 65 | sylibr 234 |
. . 3
⊢ (𝜑 → {〈1, 𝐷〉} ∈ (ℕ
↑m (1...1))) |
| 67 | 1, 7 | nnaddcld 12318 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐴 + 𝑊) ∈ ℕ) |
| 68 | 67 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐴 + 𝑊) ∈ ℕ) |
| 69 | | elfznn0 13660 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ (0...(𝐾 − 1)) → 𝑚 ∈ ℕ0) |
| 70 | 3 | nnnn0d 12587 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐷 ∈
ℕ0) |
| 71 | | nn0mulcl 12562 |
. . . . . . . . . . . . . 14
⊢ ((𝑚 ∈ ℕ0
∧ 𝐷 ∈
ℕ0) → (𝑚 · 𝐷) ∈
ℕ0) |
| 72 | 69, 70, 71 | syl2anr 597 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · 𝐷) ∈
ℕ0) |
| 73 | | nnnn0addcl 12556 |
. . . . . . . . . . . . 13
⊢ (((𝐴 + 𝑊) ∈ ℕ ∧ (𝑚 · 𝐷) ∈ ℕ0) → ((𝐴 + 𝑊) + (𝑚 · 𝐷)) ∈ ℕ) |
| 74 | 68, 72, 73 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝐴 + 𝑊) + (𝑚 · 𝐷)) ∈ ℕ) |
| 75 | | nnuz 12921 |
. . . . . . . . . . . 12
⊢ ℕ =
(ℤ≥‘1) |
| 76 | 74, 75 | eleqtrdi 2851 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝐴 + 𝑊) + (𝑚 · 𝐷)) ∈
(ℤ≥‘1)) |
| 77 | 16 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐴(AP‘𝐾)𝐷) ⊆ (◡𝐺 “ {𝐶})) |
| 78 | | eqid 2737 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑚 · 𝐷)) |
| 79 | | oveq1 7438 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 𝑚 → (𝑛 · 𝐷) = (𝑚 · 𝐷)) |
| 80 | 79 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑚 → (𝐴 + (𝑛 · 𝐷)) = (𝐴 + (𝑚 · 𝐷))) |
| 81 | 80 | rspceeqv 3645 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑚 ∈ (0...(𝐾 − 1)) ∧ (𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑚 · 𝐷))) → ∃𝑛 ∈ (0...(𝐾 − 1))(𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷))) |
| 82 | 78, 81 | mpan2 691 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈ (0...(𝐾 − 1)) → ∃𝑛 ∈ (0...(𝐾 − 1))(𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷))) |
| 83 | 32 | nnnn0d 12587 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
| 84 | | vdwapval 17011 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ ((𝐴 + (𝑚 · 𝐷)) ∈ (𝐴(AP‘𝐾)𝐷) ↔ ∃𝑛 ∈ (0...(𝐾 − 1))(𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷)))) |
| 85 | 83, 1, 3, 84 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝐴 + (𝑚 · 𝐷)) ∈ (𝐴(AP‘𝐾)𝐷) ↔ ∃𝑛 ∈ (0...(𝐾 − 1))(𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷)))) |
| 86 | 85 | biimpar 477 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ∃𝑛 ∈ (0...(𝐾 − 1))(𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷))) → (𝐴 + (𝑚 · 𝐷)) ∈ (𝐴(AP‘𝐾)𝐷)) |
| 87 | 82, 86 | sylan2 593 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐴 + (𝑚 · 𝐷)) ∈ (𝐴(AP‘𝐾)𝐷)) |
| 88 | 77, 87 | sseldd 3984 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐴 + (𝑚 · 𝐷)) ∈ (◡𝐺 “ {𝐶})) |
| 89 | 18, 19 | fnmpti 6711 |
. . . . . . . . . . . . . . . 16
⊢ 𝐺 Fn (1...𝑊) |
| 90 | | fniniseg 7080 |
. . . . . . . . . . . . . . . 16
⊢ (𝐺 Fn (1...𝑊) → ((𝐴 + (𝑚 · 𝐷)) ∈ (◡𝐺 “ {𝐶}) ↔ ((𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑊) ∧ (𝐺‘(𝐴 + (𝑚 · 𝐷))) = 𝐶))) |
| 91 | 89, 90 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 + (𝑚 · 𝐷)) ∈ (◡𝐺 “ {𝐶}) ↔ ((𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑊) ∧ (𝐺‘(𝐴 + (𝑚 · 𝐷))) = 𝐶)) |
| 92 | 88, 91 | sylib 218 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑊) ∧ (𝐺‘(𝐴 + (𝑚 · 𝐷))) = 𝐶)) |
| 93 | 92 | simpld 494 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑊)) |
| 94 | | elfzuz3 13561 |
. . . . . . . . . . . . 13
⊢ ((𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑊) → 𝑊 ∈ (ℤ≥‘(𝐴 + (𝑚 · 𝐷)))) |
| 95 | | eluzelz 12888 |
. . . . . . . . . . . . . 14
⊢ (𝑊 ∈
(ℤ≥‘(𝐴 + (𝑚 · 𝐷))) → 𝑊 ∈ ℤ) |
| 96 | | eluzadd 12907 |
. . . . . . . . . . . . . 14
⊢ ((𝑊 ∈
(ℤ≥‘(𝐴 + (𝑚 · 𝐷))) ∧ 𝑊 ∈ ℤ) → (𝑊 + 𝑊) ∈
(ℤ≥‘((𝐴 + (𝑚 · 𝐷)) + 𝑊))) |
| 97 | 95, 96 | mpdan 687 |
. . . . . . . . . . . . 13
⊢ (𝑊 ∈
(ℤ≥‘(𝐴 + (𝑚 · 𝐷))) → (𝑊 + 𝑊) ∈
(ℤ≥‘((𝐴 + (𝑚 · 𝐷)) + 𝑊))) |
| 98 | 93, 94, 97 | 3syl 18 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑊 + 𝑊) ∈
(ℤ≥‘((𝐴 + (𝑚 · 𝐷)) + 𝑊))) |
| 99 | 8 | 2timesd 12509 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (2 · 𝑊) = (𝑊 + 𝑊)) |
| 100 | 99 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (2 · 𝑊) = (𝑊 + 𝑊)) |
| 101 | 2 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐴 ∈ ℂ) |
| 102 | 8 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑊 ∈ ℂ) |
| 103 | 72 | nn0cnd 12589 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · 𝐷) ∈ ℂ) |
| 104 | 101, 102,
103 | add32d 11489 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝐴 + 𝑊) + (𝑚 · 𝐷)) = ((𝐴 + (𝑚 · 𝐷)) + 𝑊)) |
| 105 | 104 | fveq2d 6910 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝐾 − 1))) →
(ℤ≥‘((𝐴 + 𝑊) + (𝑚 · 𝐷))) = (ℤ≥‘((𝐴 + (𝑚 · 𝐷)) + 𝑊))) |
| 106 | 98, 100, 105 | 3eltr4d 2856 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (2 · 𝑊) ∈
(ℤ≥‘((𝐴 + 𝑊) + (𝑚 · 𝐷)))) |
| 107 | | elfzuzb 13558 |
. . . . . . . . . . 11
⊢ (((𝐴 + 𝑊) + (𝑚 · 𝐷)) ∈ (1...(2 · 𝑊)) ↔ (((𝐴 + 𝑊) + (𝑚 · 𝐷)) ∈ (ℤ≥‘1)
∧ (2 · 𝑊) ∈
(ℤ≥‘((𝐴 + 𝑊) + (𝑚 · 𝐷))))) |
| 108 | 76, 106, 107 | sylanbrc 583 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝐴 + 𝑊) + (𝑚 · 𝐷)) ∈ (1...(2 · 𝑊))) |
| 109 | 104 | fveq2d 6910 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐹‘((𝐴 + 𝑊) + (𝑚 · 𝐷))) = (𝐹‘((𝐴 + (𝑚 · 𝐷)) + 𝑊))) |
| 110 | | fvoveq1 7454 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝐴 + (𝑚 · 𝐷)) → (𝐹‘(𝑥 + 𝑊)) = (𝐹‘((𝐴 + (𝑚 · 𝐷)) + 𝑊))) |
| 111 | | fvex 6919 |
. . . . . . . . . . . . 13
⊢ (𝐹‘((𝐴 + (𝑚 · 𝐷)) + 𝑊)) ∈ V |
| 112 | 110, 19, 111 | fvmpt 7016 |
. . . . . . . . . . . 12
⊢ ((𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑊) → (𝐺‘(𝐴 + (𝑚 · 𝐷))) = (𝐹‘((𝐴 + (𝑚 · 𝐷)) + 𝑊))) |
| 113 | 93, 112 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐺‘(𝐴 + (𝑚 · 𝐷))) = (𝐹‘((𝐴 + (𝑚 · 𝐷)) + 𝑊))) |
| 114 | 92 | simprd 495 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐺‘(𝐴 + (𝑚 · 𝐷))) = 𝐶) |
| 115 | 109, 113,
114 | 3eqtr2d 2783 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐹‘((𝐴 + 𝑊) + (𝑚 · 𝐷))) = 𝐶) |
| 116 | 108, 115 | jca 511 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (((𝐴 + 𝑊) + (𝑚 · 𝐷)) ∈ (1...(2 · 𝑊)) ∧ (𝐹‘((𝐴 + 𝑊) + (𝑚 · 𝐷))) = 𝐶)) |
| 117 | | eleq1 2829 |
. . . . . . . . . 10
⊢ (𝑥 = ((𝐴 + 𝑊) + (𝑚 · 𝐷)) → (𝑥 ∈ (1...(2 · 𝑊)) ↔ ((𝐴 + 𝑊) + (𝑚 · 𝐷)) ∈ (1...(2 · 𝑊)))) |
| 118 | | fveqeq2 6915 |
. . . . . . . . . 10
⊢ (𝑥 = ((𝐴 + 𝑊) + (𝑚 · 𝐷)) → ((𝐹‘𝑥) = 𝐶 ↔ (𝐹‘((𝐴 + 𝑊) + (𝑚 · 𝐷))) = 𝐶)) |
| 119 | 117, 118 | anbi12d 632 |
. . . . . . . . 9
⊢ (𝑥 = ((𝐴 + 𝑊) + (𝑚 · 𝐷)) → ((𝑥 ∈ (1...(2 · 𝑊)) ∧ (𝐹‘𝑥) = 𝐶) ↔ (((𝐴 + 𝑊) + (𝑚 · 𝐷)) ∈ (1...(2 · 𝑊)) ∧ (𝐹‘((𝐴 + 𝑊) + (𝑚 · 𝐷))) = 𝐶))) |
| 120 | 116, 119 | syl5ibrcom 247 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑥 = ((𝐴 + 𝑊) + (𝑚 · 𝐷)) → (𝑥 ∈ (1...(2 · 𝑊)) ∧ (𝐹‘𝑥) = 𝐶))) |
| 121 | 120 | rexlimdva 3155 |
. . . . . . 7
⊢ (𝜑 → (∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝑊) + (𝑚 · 𝐷)) → (𝑥 ∈ (1...(2 · 𝑊)) ∧ (𝐹‘𝑥) = 𝐶))) |
| 122 | | vdwapval 17011 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℕ0
∧ (𝐴 + 𝑊) ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑥 ∈ ((𝐴 + 𝑊)(AP‘𝐾)𝐷) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝑊) + (𝑚 · 𝐷)))) |
| 123 | 83, 67, 3, 122 | syl3anc 1373 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ ((𝐴 + 𝑊)(AP‘𝐾)𝐷) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝑊) + (𝑚 · 𝐷)))) |
| 124 | | vdwlem8.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹:(1...(2 · 𝑊))⟶𝑅) |
| 125 | | ffn 6736 |
. . . . . . . 8
⊢ (𝐹:(1...(2 · 𝑊))⟶𝑅 → 𝐹 Fn (1...(2 · 𝑊))) |
| 126 | | fniniseg 7080 |
. . . . . . . 8
⊢ (𝐹 Fn (1...(2 · 𝑊)) → (𝑥 ∈ (◡𝐹 “ {𝐶}) ↔ (𝑥 ∈ (1...(2 · 𝑊)) ∧ (𝐹‘𝑥) = 𝐶))) |
| 127 | 124, 125,
126 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (◡𝐹 “ {𝐶}) ↔ (𝑥 ∈ (1...(2 · 𝑊)) ∧ (𝐹‘𝑥) = 𝐶))) |
| 128 | 121, 123,
127 | 3imtr4d 294 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ((𝐴 + 𝑊)(AP‘𝐾)𝐷) → 𝑥 ∈ (◡𝐹 “ {𝐶}))) |
| 129 | 128 | ssrdv 3989 |
. . . . 5
⊢ (𝜑 → ((𝐴 + 𝑊)(AP‘𝐾)𝐷) ⊆ (◡𝐹 “ {𝐶})) |
| 130 | | fvsng 7200 |
. . . . . . . . 9
⊢ ((1
∈ ℕ ∧ 𝐷
∈ ℕ) → ({〈1, 𝐷〉}‘1) = 𝐷) |
| 131 | 51, 3, 130 | sylancr 587 |
. . . . . . . 8
⊢ (𝜑 → ({〈1, 𝐷〉}‘1) = 𝐷) |
| 132 | 131 | oveq2d 7447 |
. . . . . . 7
⊢ (𝜑 → ((𝐴 + (𝑊 − 𝐷)) + ({〈1, 𝐷〉}‘1)) = ((𝐴 + (𝑊 − 𝐷)) + 𝐷)) |
| 133 | 2, 12, 4 | addassd 11283 |
. . . . . . 7
⊢ (𝜑 → ((𝐴 + (𝑊 − 𝐷)) + 𝐷) = (𝐴 + ((𝑊 − 𝐷) + 𝐷))) |
| 134 | 8, 4 | npcand 11624 |
. . . . . . . 8
⊢ (𝜑 → ((𝑊 − 𝐷) + 𝐷) = 𝑊) |
| 135 | 134 | oveq2d 7447 |
. . . . . . 7
⊢ (𝜑 → (𝐴 + ((𝑊 − 𝐷) + 𝐷)) = (𝐴 + 𝑊)) |
| 136 | 132, 133,
135 | 3eqtrd 2781 |
. . . . . 6
⊢ (𝜑 → ((𝐴 + (𝑊 − 𝐷)) + ({〈1, 𝐷〉}‘1)) = (𝐴 + 𝑊)) |
| 137 | 136, 131 | oveq12d 7449 |
. . . . 5
⊢ (𝜑 → (((𝐴 + (𝑊 − 𝐷)) + ({〈1, 𝐷〉}‘1))(AP‘𝐾)({〈1, 𝐷〉}‘1)) = ((𝐴 + 𝑊)(AP‘𝐾)𝐷)) |
| 138 | 136 | fveq2d 6910 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘((𝐴 + (𝑊 − 𝐷)) + ({〈1, 𝐷〉}‘1))) = (𝐹‘(𝐴 + 𝑊))) |
| 139 | | vdwapid1 17013 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → 𝐴 ∈ (𝐴(AP‘𝐾)𝐷)) |
| 140 | 32, 1, 3, 139 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ (𝐴(AP‘𝐾)𝐷)) |
| 141 | 16, 140 | sseldd 3984 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ (◡𝐺 “ {𝐶})) |
| 142 | | fniniseg 7080 |
. . . . . . . . . . . 12
⊢ (𝐺 Fn (1...𝑊) → (𝐴 ∈ (◡𝐺 “ {𝐶}) ↔ (𝐴 ∈ (1...𝑊) ∧ (𝐺‘𝐴) = 𝐶))) |
| 143 | 89, 142 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ (◡𝐺 “ {𝐶}) ↔ (𝐴 ∈ (1...𝑊) ∧ (𝐺‘𝐴) = 𝐶)) |
| 144 | 141, 143 | sylib 218 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 ∈ (1...𝑊) ∧ (𝐺‘𝐴) = 𝐶)) |
| 145 | 144 | simpld 494 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ (1...𝑊)) |
| 146 | | fvoveq1 7454 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐴 → (𝐹‘(𝑥 + 𝑊)) = (𝐹‘(𝐴 + 𝑊))) |
| 147 | | fvex 6919 |
. . . . . . . . . 10
⊢ (𝐹‘(𝐴 + 𝑊)) ∈ V |
| 148 | 146, 19, 147 | fvmpt 7016 |
. . . . . . . . 9
⊢ (𝐴 ∈ (1...𝑊) → (𝐺‘𝐴) = (𝐹‘(𝐴 + 𝑊))) |
| 149 | 145, 148 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝐺‘𝐴) = (𝐹‘(𝐴 + 𝑊))) |
| 150 | 144 | simprd 495 |
. . . . . . . 8
⊢ (𝜑 → (𝐺‘𝐴) = 𝐶) |
| 151 | 138, 149,
150 | 3eqtr2d 2783 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘((𝐴 + (𝑊 − 𝐷)) + ({〈1, 𝐷〉}‘1))) = 𝐶) |
| 152 | 151 | sneqd 4638 |
. . . . . 6
⊢ (𝜑 → {(𝐹‘((𝐴 + (𝑊 − 𝐷)) + ({〈1, 𝐷〉}‘1)))} = {𝐶}) |
| 153 | 152 | imaeq2d 6078 |
. . . . 5
⊢ (𝜑 → (◡𝐹 “ {(𝐹‘((𝐴 + (𝑊 − 𝐷)) + ({〈1, 𝐷〉}‘1)))}) = (◡𝐹 “ {𝐶})) |
| 154 | 129, 137,
153 | 3sstr4d 4039 |
. . . 4
⊢ (𝜑 → (((𝐴 + (𝑊 − 𝐷)) + ({〈1, 𝐷〉}‘1))(AP‘𝐾)({〈1, 𝐷〉}‘1)) ⊆ (◡𝐹 “ {(𝐹‘((𝐴 + (𝑊 − 𝐷)) + ({〈1, 𝐷〉}‘1)))})) |
| 155 | 154 | ralrimivw 3150 |
. . 3
⊢ (𝜑 → ∀𝑖 ∈ (1...1)(((𝐴 + (𝑊 − 𝐷)) + ({〈1, 𝐷〉}‘1))(AP‘𝐾)({〈1, 𝐷〉}‘1)) ⊆ (◡𝐹 “ {(𝐹‘((𝐴 + (𝑊 − 𝐷)) + ({〈1, 𝐷〉}‘1)))})) |
| 156 | 151 | mpteq2dv 5244 |
. . . . . . . 8
⊢ (𝜑 → (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊 − 𝐷)) + ({〈1, 𝐷〉}‘1)))) = (𝑖 ∈ (1...1) ↦ 𝐶)) |
| 157 | | fconstmpt 5747 |
. . . . . . . 8
⊢ ((1...1)
× {𝐶}) = (𝑖 ∈ (1...1) ↦ 𝐶) |
| 158 | 156, 157 | eqtr4di 2795 |
. . . . . . 7
⊢ (𝜑 → (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊 − 𝐷)) + ({〈1, 𝐷〉}‘1)))) = ((1...1) ×
{𝐶})) |
| 159 | 158 | rneqd 5949 |
. . . . . 6
⊢ (𝜑 → ran (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊 − 𝐷)) + ({〈1, 𝐷〉}‘1)))) = ran ((1...1) ×
{𝐶})) |
| 160 | | elfz3 13574 |
. . . . . . . 8
⊢ (1 ∈
ℤ → 1 ∈ (1...1)) |
| 161 | | ne0i 4341 |
. . . . . . . 8
⊢ (1 ∈
(1...1) → (1...1) ≠ ∅) |
| 162 | 58, 160, 161 | mp2b 10 |
. . . . . . 7
⊢ (1...1)
≠ ∅ |
| 163 | | rnxp 6190 |
. . . . . . 7
⊢ ((1...1)
≠ ∅ → ran ((1...1) × {𝐶}) = {𝐶}) |
| 164 | 162, 163 | ax-mp 5 |
. . . . . 6
⊢ ran
((1...1) × {𝐶}) =
{𝐶} |
| 165 | 159, 164 | eqtrdi 2793 |
. . . . 5
⊢ (𝜑 → ran (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊 − 𝐷)) + ({〈1, 𝐷〉}‘1)))) = {𝐶}) |
| 166 | 165 | fveq2d 6910 |
. . . 4
⊢ (𝜑 → (♯‘ran (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊 − 𝐷)) + ({〈1, 𝐷〉}‘1))))) = (♯‘{𝐶})) |
| 167 | | vdwlem8.c |
. . . . 5
⊢ 𝐶 ∈ V |
| 168 | | hashsng 14408 |
. . . . 5
⊢ (𝐶 ∈ V →
(♯‘{𝐶}) =
1) |
| 169 | 167, 168 | ax-mp 5 |
. . . 4
⊢
(♯‘{𝐶})
= 1 |
| 170 | 166, 169 | eqtrdi 2793 |
. . 3
⊢ (𝜑 → (♯‘ran (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊 − 𝐷)) + ({〈1, 𝐷〉}‘1))))) = 1) |
| 171 | | oveq1 7438 |
. . . . . . . 8
⊢ (𝑎 = (𝐴 + (𝑊 − 𝐷)) → (𝑎 + (𝑑‘𝑖)) = ((𝐴 + (𝑊 − 𝐷)) + (𝑑‘𝑖))) |
| 172 | 171 | oveq1d 7446 |
. . . . . . 7
⊢ (𝑎 = (𝐴 + (𝑊 − 𝐷)) → ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) = (((𝐴 + (𝑊 − 𝐷)) + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖))) |
| 173 | | fvoveq1 7454 |
. . . . . . . . 9
⊢ (𝑎 = (𝐴 + (𝑊 − 𝐷)) → (𝐹‘(𝑎 + (𝑑‘𝑖))) = (𝐹‘((𝐴 + (𝑊 − 𝐷)) + (𝑑‘𝑖)))) |
| 174 | 173 | sneqd 4638 |
. . . . . . . 8
⊢ (𝑎 = (𝐴 + (𝑊 − 𝐷)) → {(𝐹‘(𝑎 + (𝑑‘𝑖)))} = {(𝐹‘((𝐴 + (𝑊 − 𝐷)) + (𝑑‘𝑖)))}) |
| 175 | 174 | imaeq2d 6078 |
. . . . . . 7
⊢ (𝑎 = (𝐴 + (𝑊 − 𝐷)) → (◡𝐹 “ {(𝐹‘(𝑎 + (𝑑‘𝑖)))}) = (◡𝐹 “ {(𝐹‘((𝐴 + (𝑊 − 𝐷)) + (𝑑‘𝑖)))})) |
| 176 | 172, 175 | sseq12d 4017 |
. . . . . 6
⊢ (𝑎 = (𝐴 + (𝑊 − 𝐷)) → (((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝐹 “ {(𝐹‘(𝑎 + (𝑑‘𝑖)))}) ↔ (((𝐴 + (𝑊 − 𝐷)) + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝐹 “ {(𝐹‘((𝐴 + (𝑊 − 𝐷)) + (𝑑‘𝑖)))}))) |
| 177 | 176 | ralbidv 3178 |
. . . . 5
⊢ (𝑎 = (𝐴 + (𝑊 − 𝐷)) → (∀𝑖 ∈ (1...1)((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝐹 “ {(𝐹‘(𝑎 + (𝑑‘𝑖)))}) ↔ ∀𝑖 ∈ (1...1)(((𝐴 + (𝑊 − 𝐷)) + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝐹 “ {(𝐹‘((𝐴 + (𝑊 − 𝐷)) + (𝑑‘𝑖)))}))) |
| 178 | 173 | mpteq2dv 5244 |
. . . . . . 7
⊢ (𝑎 = (𝐴 + (𝑊 − 𝐷)) → (𝑖 ∈ (1...1) ↦ (𝐹‘(𝑎 + (𝑑‘𝑖)))) = (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊 − 𝐷)) + (𝑑‘𝑖))))) |
| 179 | 178 | rneqd 5949 |
. . . . . 6
⊢ (𝑎 = (𝐴 + (𝑊 − 𝐷)) → ran (𝑖 ∈ (1...1) ↦ (𝐹‘(𝑎 + (𝑑‘𝑖)))) = ran (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊 − 𝐷)) + (𝑑‘𝑖))))) |
| 180 | 179 | fveqeq2d 6914 |
. . . . 5
⊢ (𝑎 = (𝐴 + (𝑊 − 𝐷)) → ((♯‘ran (𝑖 ∈ (1...1) ↦ (𝐹‘(𝑎 + (𝑑‘𝑖))))) = 1 ↔ (♯‘ran (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊 − 𝐷)) + (𝑑‘𝑖))))) = 1)) |
| 181 | 177, 180 | anbi12d 632 |
. . . 4
⊢ (𝑎 = (𝐴 + (𝑊 − 𝐷)) → ((∀𝑖 ∈ (1...1)((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝐹 “ {(𝐹‘(𝑎 + (𝑑‘𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...1) ↦ (𝐹‘(𝑎 + (𝑑‘𝑖))))) = 1) ↔ (∀𝑖 ∈ (1...1)(((𝐴 + (𝑊 − 𝐷)) + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝐹 “ {(𝐹‘((𝐴 + (𝑊 − 𝐷)) + (𝑑‘𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊 − 𝐷)) + (𝑑‘𝑖))))) = 1))) |
| 182 | | fveq1 6905 |
. . . . . . . . . 10
⊢ (𝑑 = {〈1, 𝐷〉} → (𝑑‘𝑖) = ({〈1, 𝐷〉}‘𝑖)) |
| 183 | | elfz1eq 13575 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ (1...1) → 𝑖 = 1) |
| 184 | 183 | fveq2d 6910 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (1...1) →
({〈1, 𝐷〉}‘𝑖) = ({〈1, 𝐷〉}‘1)) |
| 185 | 182, 184 | sylan9eq 2797 |
. . . . . . . . 9
⊢ ((𝑑 = {〈1, 𝐷〉} ∧ 𝑖 ∈ (1...1)) → (𝑑‘𝑖) = ({〈1, 𝐷〉}‘1)) |
| 186 | 185 | oveq2d 7447 |
. . . . . . . 8
⊢ ((𝑑 = {〈1, 𝐷〉} ∧ 𝑖 ∈ (1...1)) → ((𝐴 + (𝑊 − 𝐷)) + (𝑑‘𝑖)) = ((𝐴 + (𝑊 − 𝐷)) + ({〈1, 𝐷〉}‘1))) |
| 187 | 186, 185 | oveq12d 7449 |
. . . . . . 7
⊢ ((𝑑 = {〈1, 𝐷〉} ∧ 𝑖 ∈ (1...1)) → (((𝐴 + (𝑊 − 𝐷)) + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) = (((𝐴 + (𝑊 − 𝐷)) + ({〈1, 𝐷〉}‘1))(AP‘𝐾)({〈1, 𝐷〉}‘1))) |
| 188 | 186 | fveq2d 6910 |
. . . . . . . . 9
⊢ ((𝑑 = {〈1, 𝐷〉} ∧ 𝑖 ∈ (1...1)) → (𝐹‘((𝐴 + (𝑊 − 𝐷)) + (𝑑‘𝑖))) = (𝐹‘((𝐴 + (𝑊 − 𝐷)) + ({〈1, 𝐷〉}‘1)))) |
| 189 | 188 | sneqd 4638 |
. . . . . . . 8
⊢ ((𝑑 = {〈1, 𝐷〉} ∧ 𝑖 ∈ (1...1)) → {(𝐹‘((𝐴 + (𝑊 − 𝐷)) + (𝑑‘𝑖)))} = {(𝐹‘((𝐴 + (𝑊 − 𝐷)) + ({〈1, 𝐷〉}‘1)))}) |
| 190 | 189 | imaeq2d 6078 |
. . . . . . 7
⊢ ((𝑑 = {〈1, 𝐷〉} ∧ 𝑖 ∈ (1...1)) → (◡𝐹 “ {(𝐹‘((𝐴 + (𝑊 − 𝐷)) + (𝑑‘𝑖)))}) = (◡𝐹 “ {(𝐹‘((𝐴 + (𝑊 − 𝐷)) + ({〈1, 𝐷〉}‘1)))})) |
| 191 | 187, 190 | sseq12d 4017 |
. . . . . 6
⊢ ((𝑑 = {〈1, 𝐷〉} ∧ 𝑖 ∈ (1...1)) → ((((𝐴 + (𝑊 − 𝐷)) + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝐹 “ {(𝐹‘((𝐴 + (𝑊 − 𝐷)) + (𝑑‘𝑖)))}) ↔ (((𝐴 + (𝑊 − 𝐷)) + ({〈1, 𝐷〉}‘1))(AP‘𝐾)({〈1, 𝐷〉}‘1)) ⊆ (◡𝐹 “ {(𝐹‘((𝐴 + (𝑊 − 𝐷)) + ({〈1, 𝐷〉}‘1)))}))) |
| 192 | 191 | ralbidva 3176 |
. . . . 5
⊢ (𝑑 = {〈1, 𝐷〉} → (∀𝑖 ∈ (1...1)(((𝐴 + (𝑊 − 𝐷)) + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝐹 “ {(𝐹‘((𝐴 + (𝑊 − 𝐷)) + (𝑑‘𝑖)))}) ↔ ∀𝑖 ∈ (1...1)(((𝐴 + (𝑊 − 𝐷)) + ({〈1, 𝐷〉}‘1))(AP‘𝐾)({〈1, 𝐷〉}‘1)) ⊆ (◡𝐹 “ {(𝐹‘((𝐴 + (𝑊 − 𝐷)) + ({〈1, 𝐷〉}‘1)))}))) |
| 193 | 188 | mpteq2dva 5242 |
. . . . . . 7
⊢ (𝑑 = {〈1, 𝐷〉} → (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊 − 𝐷)) + (𝑑‘𝑖)))) = (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊 − 𝐷)) + ({〈1, 𝐷〉}‘1))))) |
| 194 | 193 | rneqd 5949 |
. . . . . 6
⊢ (𝑑 = {〈1, 𝐷〉} → ran (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊 − 𝐷)) + (𝑑‘𝑖)))) = ran (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊 − 𝐷)) + ({〈1, 𝐷〉}‘1))))) |
| 195 | 194 | fveqeq2d 6914 |
. . . . 5
⊢ (𝑑 = {〈1, 𝐷〉} → ((♯‘ran (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊 − 𝐷)) + (𝑑‘𝑖))))) = 1 ↔ (♯‘ran (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊 − 𝐷)) + ({〈1, 𝐷〉}‘1))))) = 1)) |
| 196 | 192, 195 | anbi12d 632 |
. . . 4
⊢ (𝑑 = {〈1, 𝐷〉} → ((∀𝑖 ∈ (1...1)(((𝐴 + (𝑊 − 𝐷)) + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝐹 “ {(𝐹‘((𝐴 + (𝑊 − 𝐷)) + (𝑑‘𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊 − 𝐷)) + (𝑑‘𝑖))))) = 1) ↔ (∀𝑖 ∈ (1...1)(((𝐴 + (𝑊 − 𝐷)) + ({〈1, 𝐷〉}‘1))(AP‘𝐾)({〈1, 𝐷〉}‘1)) ⊆ (◡𝐹 “ {(𝐹‘((𝐴 + (𝑊 − 𝐷)) + ({〈1, 𝐷〉}‘1)))}) ∧
(♯‘ran (𝑖
∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊 − 𝐷)) + ({〈1, 𝐷〉}‘1))))) = 1))) |
| 197 | 181, 196 | rspc2ev 3635 |
. . 3
⊢ (((𝐴 + (𝑊 − 𝐷)) ∈ ℕ ∧ {〈1, 𝐷〉} ∈ (ℕ
↑m (1...1)) ∧ (∀𝑖 ∈ (1...1)(((𝐴 + (𝑊 − 𝐷)) + ({〈1, 𝐷〉}‘1))(AP‘𝐾)({〈1, 𝐷〉}‘1)) ⊆ (◡𝐹 “ {(𝐹‘((𝐴 + (𝑊 − 𝐷)) + ({〈1, 𝐷〉}‘1)))}) ∧
(♯‘ran (𝑖
∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊 − 𝐷)) + ({〈1, 𝐷〉}‘1))))) = 1)) →
∃𝑎 ∈ ℕ
∃𝑑 ∈ (ℕ
↑m (1...1))(∀𝑖 ∈ (1...1)((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝐹 “ {(𝐹‘(𝑎 + (𝑑‘𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...1) ↦ (𝐹‘(𝑎 + (𝑑‘𝑖))))) = 1)) |
| 198 | 50, 66, 155, 170, 197 | syl112anc 1376 |
. 2
⊢ (𝜑 → ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m
(1...1))(∀𝑖 ∈
(1...1)((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝐹 “ {(𝐹‘(𝑎 + (𝑑‘𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...1) ↦ (𝐹‘(𝑎 + (𝑑‘𝑖))))) = 1)) |
| 199 | | ovex 7464 |
. . 3
⊢ (1...(2
· 𝑊)) ∈
V |
| 200 | 51 | a1i 11 |
. . 3
⊢ (𝜑 → 1 ∈
ℕ) |
| 201 | | eqid 2737 |
. . 3
⊢ (1...1) =
(1...1) |
| 202 | 199, 83, 124, 200, 201 | vdwpc 17018 |
. 2
⊢ (𝜑 → (〈1, 𝐾〉 PolyAP 𝐹 ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m
(1...1))(∀𝑖 ∈
(1...1)((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝐹 “ {(𝐹‘(𝑎 + (𝑑‘𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...1) ↦ (𝐹‘(𝑎 + (𝑑‘𝑖))))) = 1))) |
| 203 | 198, 202 | mpbird 257 |
1
⊢ (𝜑 → 〈1, 𝐾〉 PolyAP 𝐹) |