MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem8 Structured version   Visualization version   GIF version

Theorem vdwlem8 16617
Description: Lemma for vdw 16623. (Contributed by Mario Carneiro, 18-Aug-2014.)
Hypotheses
Ref Expression
vdwlem8.r (𝜑𝑅 ∈ Fin)
vdwlem8.k (𝜑𝐾 ∈ (ℤ‘2))
vdwlem8.w (𝜑𝑊 ∈ ℕ)
vdwlem8.f (𝜑𝐹:(1...(2 · 𝑊))⟶𝑅)
vdwlem8.c 𝐶 ∈ V
vdwlem8.a (𝜑𝐴 ∈ ℕ)
vdwlem8.d (𝜑𝐷 ∈ ℕ)
vdwlem8.s (𝜑 → (𝐴(AP‘𝐾)𝐷) ⊆ (𝐺 “ {𝐶}))
vdwlem8.g 𝐺 = (𝑥 ∈ (1...𝑊) ↦ (𝐹‘(𝑥 + 𝑊)))
Assertion
Ref Expression
vdwlem8 (𝜑 → ⟨1, 𝐾⟩ PolyAP 𝐹)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷   𝑥,𝐹   𝜑,𝑥   𝑥,𝐶   𝑥,𝐾   𝑥,𝑊
Allowed substitution hints:   𝑅(𝑥)   𝐺(𝑥)

Proof of Theorem vdwlem8
Dummy variables 𝑎 𝑑 𝑖 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vdwlem8.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℕ)
21nncnd 11919 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
3 vdwlem8.d . . . . . . . . . 10 (𝜑𝐷 ∈ ℕ)
43nncnd 11919 . . . . . . . . 9 (𝜑𝐷 ∈ ℂ)
52, 4addcomd 11107 . . . . . . . 8 (𝜑 → (𝐴 + 𝐷) = (𝐷 + 𝐴))
65oveq2d 7271 . . . . . . 7 (𝜑 → (𝑊 − (𝐴 + 𝐷)) = (𝑊 − (𝐷 + 𝐴)))
7 vdwlem8.w . . . . . . . . 9 (𝜑𝑊 ∈ ℕ)
87nncnd 11919 . . . . . . . 8 (𝜑𝑊 ∈ ℂ)
98, 4, 2subsub4d 11293 . . . . . . 7 (𝜑 → ((𝑊𝐷) − 𝐴) = (𝑊 − (𝐷 + 𝐴)))
106, 9eqtr4d 2781 . . . . . 6 (𝜑 → (𝑊 − (𝐴 + 𝐷)) = ((𝑊𝐷) − 𝐴))
1110oveq2d 7271 . . . . 5 (𝜑 → ((𝐴 + 𝐴) + (𝑊 − (𝐴 + 𝐷))) = ((𝐴 + 𝐴) + ((𝑊𝐷) − 𝐴)))
128, 4subcld 11262 . . . . . 6 (𝜑 → (𝑊𝐷) ∈ ℂ)
132, 2, 12ppncand 11302 . . . . 5 (𝜑 → ((𝐴 + 𝐴) + ((𝑊𝐷) − 𝐴)) = (𝐴 + (𝑊𝐷)))
1411, 13eqtrd 2778 . . . 4 (𝜑 → ((𝐴 + 𝐴) + (𝑊 − (𝐴 + 𝐷))) = (𝐴 + (𝑊𝐷)))
151, 1nnaddcld 11955 . . . . 5 (𝜑 → (𝐴 + 𝐴) ∈ ℕ)
16 vdwlem8.s . . . . . . . 8 (𝜑 → (𝐴(AP‘𝐾)𝐷) ⊆ (𝐺 “ {𝐶}))
17 cnvimass 5978 . . . . . . . . 9 (𝐺 “ {𝐶}) ⊆ dom 𝐺
18 fvex 6769 . . . . . . . . . 10 (𝐹‘(𝑥 + 𝑊)) ∈ V
19 vdwlem8.g . . . . . . . . . 10 𝐺 = (𝑥 ∈ (1...𝑊) ↦ (𝐹‘(𝑥 + 𝑊)))
2018, 19dmmpti 6561 . . . . . . . . 9 dom 𝐺 = (1...𝑊)
2117, 20sseqtri 3953 . . . . . . . 8 (𝐺 “ {𝐶}) ⊆ (1...𝑊)
2216, 21sstrdi 3929 . . . . . . 7 (𝜑 → (𝐴(AP‘𝐾)𝐷) ⊆ (1...𝑊))
23 ssun2 4103 . . . . . . . . 9 ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷) ⊆ ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷))
24 vdwlem8.k . . . . . . . . . . 11 (𝜑𝐾 ∈ (ℤ‘2))
25 uz2m1nn 12592 . . . . . . . . . . 11 (𝐾 ∈ (ℤ‘2) → (𝐾 − 1) ∈ ℕ)
2624, 25syl 17 . . . . . . . . . 10 (𝜑 → (𝐾 − 1) ∈ ℕ)
271, 3nnaddcld 11955 . . . . . . . . . 10 (𝜑 → (𝐴 + 𝐷) ∈ ℕ)
28 vdwapid1 16604 . . . . . . . . . 10 (((𝐾 − 1) ∈ ℕ ∧ (𝐴 + 𝐷) ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴 + 𝐷) ∈ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷))
2926, 27, 3, 28syl3anc 1369 . . . . . . . . 9 (𝜑 → (𝐴 + 𝐷) ∈ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷))
3023, 29sselid 3915 . . . . . . . 8 (𝜑 → (𝐴 + 𝐷) ∈ ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷)))
31 eluz2nn 12553 . . . . . . . . . . . . . 14 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℕ)
3224, 31syl 17 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ ℕ)
3332nncnd 11919 . . . . . . . . . . . 12 (𝜑𝐾 ∈ ℂ)
34 ax-1cn 10860 . . . . . . . . . . . 12 1 ∈ ℂ
35 npcan 11160 . . . . . . . . . . . 12 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 − 1) + 1) = 𝐾)
3633, 34, 35sylancl 585 . . . . . . . . . . 11 (𝜑 → ((𝐾 − 1) + 1) = 𝐾)
3736fveq2d 6760 . . . . . . . . . 10 (𝜑 → (AP‘((𝐾 − 1) + 1)) = (AP‘𝐾))
3837oveqd 7272 . . . . . . . . 9 (𝜑 → (𝐴(AP‘((𝐾 − 1) + 1))𝐷) = (𝐴(AP‘𝐾)𝐷))
3926nnnn0d 12223 . . . . . . . . . 10 (𝜑 → (𝐾 − 1) ∈ ℕ0)
40 vdwapun 16603 . . . . . . . . . 10 (((𝐾 − 1) ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(AP‘((𝐾 − 1) + 1))𝐷) = ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷)))
4139, 1, 3, 40syl3anc 1369 . . . . . . . . 9 (𝜑 → (𝐴(AP‘((𝐾 − 1) + 1))𝐷) = ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷)))
4238, 41eqtr3d 2780 . . . . . . . 8 (𝜑 → (𝐴(AP‘𝐾)𝐷) = ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷)))
4330, 42eleqtrrd 2842 . . . . . . 7 (𝜑 → (𝐴 + 𝐷) ∈ (𝐴(AP‘𝐾)𝐷))
4422, 43sseldd 3918 . . . . . 6 (𝜑 → (𝐴 + 𝐷) ∈ (1...𝑊))
45 elfzuz3 13182 . . . . . 6 ((𝐴 + 𝐷) ∈ (1...𝑊) → 𝑊 ∈ (ℤ‘(𝐴 + 𝐷)))
46 uznn0sub 12546 . . . . . 6 (𝑊 ∈ (ℤ‘(𝐴 + 𝐷)) → (𝑊 − (𝐴 + 𝐷)) ∈ ℕ0)
4744, 45, 463syl 18 . . . . 5 (𝜑 → (𝑊 − (𝐴 + 𝐷)) ∈ ℕ0)
48 nnnn0addcl 12193 . . . . 5 (((𝐴 + 𝐴) ∈ ℕ ∧ (𝑊 − (𝐴 + 𝐷)) ∈ ℕ0) → ((𝐴 + 𝐴) + (𝑊 − (𝐴 + 𝐷))) ∈ ℕ)
4915, 47, 48syl2anc 583 . . . 4 (𝜑 → ((𝐴 + 𝐴) + (𝑊 − (𝐴 + 𝐷))) ∈ ℕ)
5014, 49eqeltrrd 2840 . . 3 (𝜑 → (𝐴 + (𝑊𝐷)) ∈ ℕ)
51 1nn 11914 . . . . . . . 8 1 ∈ ℕ
52 f1osng 6740 . . . . . . . 8 ((1 ∈ ℕ ∧ 𝐷 ∈ ℕ) → {⟨1, 𝐷⟩}:{1}–1-1-onto→{𝐷})
5351, 3, 52sylancr 586 . . . . . . 7 (𝜑 → {⟨1, 𝐷⟩}:{1}–1-1-onto→{𝐷})
54 f1of 6700 . . . . . . 7 ({⟨1, 𝐷⟩}:{1}–1-1-onto→{𝐷} → {⟨1, 𝐷⟩}:{1}⟶{𝐷})
5553, 54syl 17 . . . . . 6 (𝜑 → {⟨1, 𝐷⟩}:{1}⟶{𝐷})
563snssd 4739 . . . . . 6 (𝜑 → {𝐷} ⊆ ℕ)
5755, 56fssd 6602 . . . . 5 (𝜑 → {⟨1, 𝐷⟩}:{1}⟶ℕ)
58 1z 12280 . . . . . . 7 1 ∈ ℤ
59 fzsn 13227 . . . . . . 7 (1 ∈ ℤ → (1...1) = {1})
6058, 59ax-mp 5 . . . . . 6 (1...1) = {1}
6160feq2i 6576 . . . . 5 ({⟨1, 𝐷⟩}:(1...1)⟶ℕ ↔ {⟨1, 𝐷⟩}:{1}⟶ℕ)
6257, 61sylibr 233 . . . 4 (𝜑 → {⟨1, 𝐷⟩}:(1...1)⟶ℕ)
63 nnex 11909 . . . . 5 ℕ ∈ V
64 ovex 7288 . . . . 5 (1...1) ∈ V
6563, 64elmap 8617 . . . 4 ({⟨1, 𝐷⟩} ∈ (ℕ ↑m (1...1)) ↔ {⟨1, 𝐷⟩}:(1...1)⟶ℕ)
6662, 65sylibr 233 . . 3 (𝜑 → {⟨1, 𝐷⟩} ∈ (ℕ ↑m (1...1)))
671, 7nnaddcld 11955 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 + 𝑊) ∈ ℕ)
6867adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐴 + 𝑊) ∈ ℕ)
69 elfznn0 13278 . . . . . . . . . . . . . 14 (𝑚 ∈ (0...(𝐾 − 1)) → 𝑚 ∈ ℕ0)
703nnnn0d 12223 . . . . . . . . . . . . . 14 (𝜑𝐷 ∈ ℕ0)
71 nn0mulcl 12199 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ0𝐷 ∈ ℕ0) → (𝑚 · 𝐷) ∈ ℕ0)
7269, 70, 71syl2anr 596 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · 𝐷) ∈ ℕ0)
73 nnnn0addcl 12193 . . . . . . . . . . . . 13 (((𝐴 + 𝑊) ∈ ℕ ∧ (𝑚 · 𝐷) ∈ ℕ0) → ((𝐴 + 𝑊) + (𝑚 · 𝐷)) ∈ ℕ)
7468, 72, 73syl2anc 583 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝐴 + 𝑊) + (𝑚 · 𝐷)) ∈ ℕ)
75 nnuz 12550 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
7674, 75eleqtrdi 2849 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝐴 + 𝑊) + (𝑚 · 𝐷)) ∈ (ℤ‘1))
7716adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐴(AP‘𝐾)𝐷) ⊆ (𝐺 “ {𝐶}))
78 eqid 2738 . . . . . . . . . . . . . . . . . 18 (𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑚 · 𝐷))
79 oveq1 7262 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑚 → (𝑛 · 𝐷) = (𝑚 · 𝐷))
8079oveq2d 7271 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑚 → (𝐴 + (𝑛 · 𝐷)) = (𝐴 + (𝑚 · 𝐷)))
8180rspceeqv 3567 . . . . . . . . . . . . . . . . . 18 ((𝑚 ∈ (0...(𝐾 − 1)) ∧ (𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑚 · 𝐷))) → ∃𝑛 ∈ (0...(𝐾 − 1))(𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷)))
8278, 81mpan2 687 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (0...(𝐾 − 1)) → ∃𝑛 ∈ (0...(𝐾 − 1))(𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷)))
8332nnnn0d 12223 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 ∈ ℕ0)
84 vdwapval 16602 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → ((𝐴 + (𝑚 · 𝐷)) ∈ (𝐴(AP‘𝐾)𝐷) ↔ ∃𝑛 ∈ (0...(𝐾 − 1))(𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷))))
8583, 1, 3, 84syl3anc 1369 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐴 + (𝑚 · 𝐷)) ∈ (𝐴(AP‘𝐾)𝐷) ↔ ∃𝑛 ∈ (0...(𝐾 − 1))(𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷))))
8685biimpar 477 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ∃𝑛 ∈ (0...(𝐾 − 1))(𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷))) → (𝐴 + (𝑚 · 𝐷)) ∈ (𝐴(AP‘𝐾)𝐷))
8782, 86sylan2 592 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐴 + (𝑚 · 𝐷)) ∈ (𝐴(AP‘𝐾)𝐷))
8877, 87sseldd 3918 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐴 + (𝑚 · 𝐷)) ∈ (𝐺 “ {𝐶}))
8918, 19fnmpti 6560 . . . . . . . . . . . . . . . 16 𝐺 Fn (1...𝑊)
90 fniniseg 6919 . . . . . . . . . . . . . . . 16 (𝐺 Fn (1...𝑊) → ((𝐴 + (𝑚 · 𝐷)) ∈ (𝐺 “ {𝐶}) ↔ ((𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑊) ∧ (𝐺‘(𝐴 + (𝑚 · 𝐷))) = 𝐶)))
9189, 90ax-mp 5 . . . . . . . . . . . . . . 15 ((𝐴 + (𝑚 · 𝐷)) ∈ (𝐺 “ {𝐶}) ↔ ((𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑊) ∧ (𝐺‘(𝐴 + (𝑚 · 𝐷))) = 𝐶))
9288, 91sylib 217 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑊) ∧ (𝐺‘(𝐴 + (𝑚 · 𝐷))) = 𝐶))
9392simpld 494 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑊))
94 elfzuz3 13182 . . . . . . . . . . . . 13 ((𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑊) → 𝑊 ∈ (ℤ‘(𝐴 + (𝑚 · 𝐷))))
95 eluzelz 12521 . . . . . . . . . . . . . 14 (𝑊 ∈ (ℤ‘(𝐴 + (𝑚 · 𝐷))) → 𝑊 ∈ ℤ)
96 eluzadd 12542 . . . . . . . . . . . . . 14 ((𝑊 ∈ (ℤ‘(𝐴 + (𝑚 · 𝐷))) ∧ 𝑊 ∈ ℤ) → (𝑊 + 𝑊) ∈ (ℤ‘((𝐴 + (𝑚 · 𝐷)) + 𝑊)))
9795, 96mpdan 683 . . . . . . . . . . . . 13 (𝑊 ∈ (ℤ‘(𝐴 + (𝑚 · 𝐷))) → (𝑊 + 𝑊) ∈ (ℤ‘((𝐴 + (𝑚 · 𝐷)) + 𝑊)))
9893, 94, 973syl 18 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑊 + 𝑊) ∈ (ℤ‘((𝐴 + (𝑚 · 𝐷)) + 𝑊)))
9982timesd 12146 . . . . . . . . . . . . 13 (𝜑 → (2 · 𝑊) = (𝑊 + 𝑊))
10099adantr 480 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (2 · 𝑊) = (𝑊 + 𝑊))
1012adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝐴 ∈ ℂ)
1028adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝑊 ∈ ℂ)
10372nn0cnd 12225 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · 𝐷) ∈ ℂ)
104101, 102, 103add32d 11132 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝐴 + 𝑊) + (𝑚 · 𝐷)) = ((𝐴 + (𝑚 · 𝐷)) + 𝑊))
105104fveq2d 6760 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (ℤ‘((𝐴 + 𝑊) + (𝑚 · 𝐷))) = (ℤ‘((𝐴 + (𝑚 · 𝐷)) + 𝑊)))
10698, 100, 1053eltr4d 2854 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (2 · 𝑊) ∈ (ℤ‘((𝐴 + 𝑊) + (𝑚 · 𝐷))))
107 elfzuzb 13179 . . . . . . . . . . 11 (((𝐴 + 𝑊) + (𝑚 · 𝐷)) ∈ (1...(2 · 𝑊)) ↔ (((𝐴 + 𝑊) + (𝑚 · 𝐷)) ∈ (ℤ‘1) ∧ (2 · 𝑊) ∈ (ℤ‘((𝐴 + 𝑊) + (𝑚 · 𝐷)))))
10876, 106, 107sylanbrc 582 . . . . . . . . . 10 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝐴 + 𝑊) + (𝑚 · 𝐷)) ∈ (1...(2 · 𝑊)))
109104fveq2d 6760 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐹‘((𝐴 + 𝑊) + (𝑚 · 𝐷))) = (𝐹‘((𝐴 + (𝑚 · 𝐷)) + 𝑊)))
110 fvoveq1 7278 . . . . . . . . . . . . 13 (𝑥 = (𝐴 + (𝑚 · 𝐷)) → (𝐹‘(𝑥 + 𝑊)) = (𝐹‘((𝐴 + (𝑚 · 𝐷)) + 𝑊)))
111 fvex 6769 . . . . . . . . . . . . 13 (𝐹‘((𝐴 + (𝑚 · 𝐷)) + 𝑊)) ∈ V
112110, 19, 111fvmpt 6857 . . . . . . . . . . . 12 ((𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑊) → (𝐺‘(𝐴 + (𝑚 · 𝐷))) = (𝐹‘((𝐴 + (𝑚 · 𝐷)) + 𝑊)))
11393, 112syl 17 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐺‘(𝐴 + (𝑚 · 𝐷))) = (𝐹‘((𝐴 + (𝑚 · 𝐷)) + 𝑊)))
11492simprd 495 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐺‘(𝐴 + (𝑚 · 𝐷))) = 𝐶)
115109, 113, 1143eqtr2d 2784 . . . . . . . . . 10 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐹‘((𝐴 + 𝑊) + (𝑚 · 𝐷))) = 𝐶)
116108, 115jca 511 . . . . . . . . 9 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (((𝐴 + 𝑊) + (𝑚 · 𝐷)) ∈ (1...(2 · 𝑊)) ∧ (𝐹‘((𝐴 + 𝑊) + (𝑚 · 𝐷))) = 𝐶))
117 eleq1 2826 . . . . . . . . . 10 (𝑥 = ((𝐴 + 𝑊) + (𝑚 · 𝐷)) → (𝑥 ∈ (1...(2 · 𝑊)) ↔ ((𝐴 + 𝑊) + (𝑚 · 𝐷)) ∈ (1...(2 · 𝑊))))
118 fveqeq2 6765 . . . . . . . . . 10 (𝑥 = ((𝐴 + 𝑊) + (𝑚 · 𝐷)) → ((𝐹𝑥) = 𝐶 ↔ (𝐹‘((𝐴 + 𝑊) + (𝑚 · 𝐷))) = 𝐶))
119117, 118anbi12d 630 . . . . . . . . 9 (𝑥 = ((𝐴 + 𝑊) + (𝑚 · 𝐷)) → ((𝑥 ∈ (1...(2 · 𝑊)) ∧ (𝐹𝑥) = 𝐶) ↔ (((𝐴 + 𝑊) + (𝑚 · 𝐷)) ∈ (1...(2 · 𝑊)) ∧ (𝐹‘((𝐴 + 𝑊) + (𝑚 · 𝐷))) = 𝐶)))
120116, 119syl5ibrcom 246 . . . . . . . 8 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑥 = ((𝐴 + 𝑊) + (𝑚 · 𝐷)) → (𝑥 ∈ (1...(2 · 𝑊)) ∧ (𝐹𝑥) = 𝐶)))
121120rexlimdva 3212 . . . . . . 7 (𝜑 → (∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝑊) + (𝑚 · 𝐷)) → (𝑥 ∈ (1...(2 · 𝑊)) ∧ (𝐹𝑥) = 𝐶)))
122 vdwapval 16602 . . . . . . . 8 ((𝐾 ∈ ℕ0 ∧ (𝐴 + 𝑊) ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑥 ∈ ((𝐴 + 𝑊)(AP‘𝐾)𝐷) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝑊) + (𝑚 · 𝐷))))
12383, 67, 3, 122syl3anc 1369 . . . . . . 7 (𝜑 → (𝑥 ∈ ((𝐴 + 𝑊)(AP‘𝐾)𝐷) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝑊) + (𝑚 · 𝐷))))
124 vdwlem8.f . . . . . . . 8 (𝜑𝐹:(1...(2 · 𝑊))⟶𝑅)
125 ffn 6584 . . . . . . . 8 (𝐹:(1...(2 · 𝑊))⟶𝑅𝐹 Fn (1...(2 · 𝑊)))
126 fniniseg 6919 . . . . . . . 8 (𝐹 Fn (1...(2 · 𝑊)) → (𝑥 ∈ (𝐹 “ {𝐶}) ↔ (𝑥 ∈ (1...(2 · 𝑊)) ∧ (𝐹𝑥) = 𝐶)))
127124, 125, 1263syl 18 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐹 “ {𝐶}) ↔ (𝑥 ∈ (1...(2 · 𝑊)) ∧ (𝐹𝑥) = 𝐶)))
128121, 123, 1273imtr4d 293 . . . . . 6 (𝜑 → (𝑥 ∈ ((𝐴 + 𝑊)(AP‘𝐾)𝐷) → 𝑥 ∈ (𝐹 “ {𝐶})))
129128ssrdv 3923 . . . . 5 (𝜑 → ((𝐴 + 𝑊)(AP‘𝐾)𝐷) ⊆ (𝐹 “ {𝐶}))
130 fvsng 7034 . . . . . . . . 9 ((1 ∈ ℕ ∧ 𝐷 ∈ ℕ) → ({⟨1, 𝐷⟩}‘1) = 𝐷)
13151, 3, 130sylancr 586 . . . . . . . 8 (𝜑 → ({⟨1, 𝐷⟩}‘1) = 𝐷)
132131oveq2d 7271 . . . . . . 7 (𝜑 → ((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1)) = ((𝐴 + (𝑊𝐷)) + 𝐷))
1332, 12, 4addassd 10928 . . . . . . 7 (𝜑 → ((𝐴 + (𝑊𝐷)) + 𝐷) = (𝐴 + ((𝑊𝐷) + 𝐷)))
1348, 4npcand 11266 . . . . . . . 8 (𝜑 → ((𝑊𝐷) + 𝐷) = 𝑊)
135134oveq2d 7271 . . . . . . 7 (𝜑 → (𝐴 + ((𝑊𝐷) + 𝐷)) = (𝐴 + 𝑊))
136132, 133, 1353eqtrd 2782 . . . . . 6 (𝜑 → ((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1)) = (𝐴 + 𝑊))
137136, 131oveq12d 7273 . . . . 5 (𝜑 → (((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1))(AP‘𝐾)({⟨1, 𝐷⟩}‘1)) = ((𝐴 + 𝑊)(AP‘𝐾)𝐷))
138136fveq2d 6760 . . . . . . . 8 (𝜑 → (𝐹‘((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1))) = (𝐹‘(𝐴 + 𝑊)))
139 vdwapid1 16604 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → 𝐴 ∈ (𝐴(AP‘𝐾)𝐷))
14032, 1, 3, 139syl3anc 1369 . . . . . . . . . . . 12 (𝜑𝐴 ∈ (𝐴(AP‘𝐾)𝐷))
14116, 140sseldd 3918 . . . . . . . . . . 11 (𝜑𝐴 ∈ (𝐺 “ {𝐶}))
142 fniniseg 6919 . . . . . . . . . . . 12 (𝐺 Fn (1...𝑊) → (𝐴 ∈ (𝐺 “ {𝐶}) ↔ (𝐴 ∈ (1...𝑊) ∧ (𝐺𝐴) = 𝐶)))
14389, 142ax-mp 5 . . . . . . . . . . 11 (𝐴 ∈ (𝐺 “ {𝐶}) ↔ (𝐴 ∈ (1...𝑊) ∧ (𝐺𝐴) = 𝐶))
144141, 143sylib 217 . . . . . . . . . 10 (𝜑 → (𝐴 ∈ (1...𝑊) ∧ (𝐺𝐴) = 𝐶))
145144simpld 494 . . . . . . . . 9 (𝜑𝐴 ∈ (1...𝑊))
146 fvoveq1 7278 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝐹‘(𝑥 + 𝑊)) = (𝐹‘(𝐴 + 𝑊)))
147 fvex 6769 . . . . . . . . . 10 (𝐹‘(𝐴 + 𝑊)) ∈ V
148146, 19, 147fvmpt 6857 . . . . . . . . 9 (𝐴 ∈ (1...𝑊) → (𝐺𝐴) = (𝐹‘(𝐴 + 𝑊)))
149145, 148syl 17 . . . . . . . 8 (𝜑 → (𝐺𝐴) = (𝐹‘(𝐴 + 𝑊)))
150144simprd 495 . . . . . . . 8 (𝜑 → (𝐺𝐴) = 𝐶)
151138, 149, 1503eqtr2d 2784 . . . . . . 7 (𝜑 → (𝐹‘((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1))) = 𝐶)
152151sneqd 4570 . . . . . 6 (𝜑 → {(𝐹‘((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1)))} = {𝐶})
153152imaeq2d 5958 . . . . 5 (𝜑 → (𝐹 “ {(𝐹‘((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1)))}) = (𝐹 “ {𝐶}))
154129, 137, 1533sstr4d 3964 . . . 4 (𝜑 → (((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1))(AP‘𝐾)({⟨1, 𝐷⟩}‘1)) ⊆ (𝐹 “ {(𝐹‘((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1)))}))
155154ralrimivw 3108 . . 3 (𝜑 → ∀𝑖 ∈ (1...1)(((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1))(AP‘𝐾)({⟨1, 𝐷⟩}‘1)) ⊆ (𝐹 “ {(𝐹‘((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1)))}))
156151mpteq2dv 5172 . . . . . . . 8 (𝜑 → (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1)))) = (𝑖 ∈ (1...1) ↦ 𝐶))
157 fconstmpt 5640 . . . . . . . 8 ((1...1) × {𝐶}) = (𝑖 ∈ (1...1) ↦ 𝐶)
158156, 157eqtr4di 2797 . . . . . . 7 (𝜑 → (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1)))) = ((1...1) × {𝐶}))
159158rneqd 5836 . . . . . 6 (𝜑 → ran (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1)))) = ran ((1...1) × {𝐶}))
160 elfz3 13195 . . . . . . . 8 (1 ∈ ℤ → 1 ∈ (1...1))
161 ne0i 4265 . . . . . . . 8 (1 ∈ (1...1) → (1...1) ≠ ∅)
16258, 160, 161mp2b 10 . . . . . . 7 (1...1) ≠ ∅
163 rnxp 6062 . . . . . . 7 ((1...1) ≠ ∅ → ran ((1...1) × {𝐶}) = {𝐶})
164162, 163ax-mp 5 . . . . . 6 ran ((1...1) × {𝐶}) = {𝐶}
165159, 164eqtrdi 2795 . . . . 5 (𝜑 → ran (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1)))) = {𝐶})
166165fveq2d 6760 . . . 4 (𝜑 → (♯‘ran (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1))))) = (♯‘{𝐶}))
167 vdwlem8.c . . . . 5 𝐶 ∈ V
168 hashsng 14012 . . . . 5 (𝐶 ∈ V → (♯‘{𝐶}) = 1)
169167, 168ax-mp 5 . . . 4 (♯‘{𝐶}) = 1
170166, 169eqtrdi 2795 . . 3 (𝜑 → (♯‘ran (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1))))) = 1)
171 oveq1 7262 . . . . . . . 8 (𝑎 = (𝐴 + (𝑊𝐷)) → (𝑎 + (𝑑𝑖)) = ((𝐴 + (𝑊𝐷)) + (𝑑𝑖)))
172171oveq1d 7270 . . . . . . 7 (𝑎 = (𝐴 + (𝑊𝐷)) → ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) = (((𝐴 + (𝑊𝐷)) + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)))
173 fvoveq1 7278 . . . . . . . . 9 (𝑎 = (𝐴 + (𝑊𝐷)) → (𝐹‘(𝑎 + (𝑑𝑖))) = (𝐹‘((𝐴 + (𝑊𝐷)) + (𝑑𝑖))))
174173sneqd 4570 . . . . . . . 8 (𝑎 = (𝐴 + (𝑊𝐷)) → {(𝐹‘(𝑎 + (𝑑𝑖)))} = {(𝐹‘((𝐴 + (𝑊𝐷)) + (𝑑𝑖)))})
175174imaeq2d 5958 . . . . . . 7 (𝑎 = (𝐴 + (𝑊𝐷)) → (𝐹 “ {(𝐹‘(𝑎 + (𝑑𝑖)))}) = (𝐹 “ {(𝐹‘((𝐴 + (𝑊𝐷)) + (𝑑𝑖)))}))
176172, 175sseq12d 3950 . . . . . 6 (𝑎 = (𝐴 + (𝑊𝐷)) → (((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝑎 + (𝑑𝑖)))}) ↔ (((𝐴 + (𝑊𝐷)) + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘((𝐴 + (𝑊𝐷)) + (𝑑𝑖)))})))
177176ralbidv 3120 . . . . 5 (𝑎 = (𝐴 + (𝑊𝐷)) → (∀𝑖 ∈ (1...1)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝑎 + (𝑑𝑖)))}) ↔ ∀𝑖 ∈ (1...1)(((𝐴 + (𝑊𝐷)) + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘((𝐴 + (𝑊𝐷)) + (𝑑𝑖)))})))
178173mpteq2dv 5172 . . . . . . 7 (𝑎 = (𝐴 + (𝑊𝐷)) → (𝑖 ∈ (1...1) ↦ (𝐹‘(𝑎 + (𝑑𝑖)))) = (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊𝐷)) + (𝑑𝑖)))))
179178rneqd 5836 . . . . . 6 (𝑎 = (𝐴 + (𝑊𝐷)) → ran (𝑖 ∈ (1...1) ↦ (𝐹‘(𝑎 + (𝑑𝑖)))) = ran (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊𝐷)) + (𝑑𝑖)))))
180179fveqeq2d 6764 . . . . 5 (𝑎 = (𝐴 + (𝑊𝐷)) → ((♯‘ran (𝑖 ∈ (1...1) ↦ (𝐹‘(𝑎 + (𝑑𝑖))))) = 1 ↔ (♯‘ran (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊𝐷)) + (𝑑𝑖))))) = 1))
181177, 180anbi12d 630 . . . 4 (𝑎 = (𝐴 + (𝑊𝐷)) → ((∀𝑖 ∈ (1...1)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...1) ↦ (𝐹‘(𝑎 + (𝑑𝑖))))) = 1) ↔ (∀𝑖 ∈ (1...1)(((𝐴 + (𝑊𝐷)) + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘((𝐴 + (𝑊𝐷)) + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊𝐷)) + (𝑑𝑖))))) = 1)))
182 fveq1 6755 . . . . . . . . . 10 (𝑑 = {⟨1, 𝐷⟩} → (𝑑𝑖) = ({⟨1, 𝐷⟩}‘𝑖))
183 elfz1eq 13196 . . . . . . . . . . 11 (𝑖 ∈ (1...1) → 𝑖 = 1)
184183fveq2d 6760 . . . . . . . . . 10 (𝑖 ∈ (1...1) → ({⟨1, 𝐷⟩}‘𝑖) = ({⟨1, 𝐷⟩}‘1))
185182, 184sylan9eq 2799 . . . . . . . . 9 ((𝑑 = {⟨1, 𝐷⟩} ∧ 𝑖 ∈ (1...1)) → (𝑑𝑖) = ({⟨1, 𝐷⟩}‘1))
186185oveq2d 7271 . . . . . . . 8 ((𝑑 = {⟨1, 𝐷⟩} ∧ 𝑖 ∈ (1...1)) → ((𝐴 + (𝑊𝐷)) + (𝑑𝑖)) = ((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1)))
187186, 185oveq12d 7273 . . . . . . 7 ((𝑑 = {⟨1, 𝐷⟩} ∧ 𝑖 ∈ (1...1)) → (((𝐴 + (𝑊𝐷)) + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) = (((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1))(AP‘𝐾)({⟨1, 𝐷⟩}‘1)))
188186fveq2d 6760 . . . . . . . . 9 ((𝑑 = {⟨1, 𝐷⟩} ∧ 𝑖 ∈ (1...1)) → (𝐹‘((𝐴 + (𝑊𝐷)) + (𝑑𝑖))) = (𝐹‘((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1))))
189188sneqd 4570 . . . . . . . 8 ((𝑑 = {⟨1, 𝐷⟩} ∧ 𝑖 ∈ (1...1)) → {(𝐹‘((𝐴 + (𝑊𝐷)) + (𝑑𝑖)))} = {(𝐹‘((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1)))})
190189imaeq2d 5958 . . . . . . 7 ((𝑑 = {⟨1, 𝐷⟩} ∧ 𝑖 ∈ (1...1)) → (𝐹 “ {(𝐹‘((𝐴 + (𝑊𝐷)) + (𝑑𝑖)))}) = (𝐹 “ {(𝐹‘((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1)))}))
191187, 190sseq12d 3950 . . . . . 6 ((𝑑 = {⟨1, 𝐷⟩} ∧ 𝑖 ∈ (1...1)) → ((((𝐴 + (𝑊𝐷)) + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘((𝐴 + (𝑊𝐷)) + (𝑑𝑖)))}) ↔ (((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1))(AP‘𝐾)({⟨1, 𝐷⟩}‘1)) ⊆ (𝐹 “ {(𝐹‘((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1)))})))
192191ralbidva 3119 . . . . 5 (𝑑 = {⟨1, 𝐷⟩} → (∀𝑖 ∈ (1...1)(((𝐴 + (𝑊𝐷)) + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘((𝐴 + (𝑊𝐷)) + (𝑑𝑖)))}) ↔ ∀𝑖 ∈ (1...1)(((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1))(AP‘𝐾)({⟨1, 𝐷⟩}‘1)) ⊆ (𝐹 “ {(𝐹‘((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1)))})))
193188mpteq2dva 5170 . . . . . . 7 (𝑑 = {⟨1, 𝐷⟩} → (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊𝐷)) + (𝑑𝑖)))) = (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1)))))
194193rneqd 5836 . . . . . 6 (𝑑 = {⟨1, 𝐷⟩} → ran (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊𝐷)) + (𝑑𝑖)))) = ran (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1)))))
195194fveqeq2d 6764 . . . . 5 (𝑑 = {⟨1, 𝐷⟩} → ((♯‘ran (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊𝐷)) + (𝑑𝑖))))) = 1 ↔ (♯‘ran (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1))))) = 1))
196192, 195anbi12d 630 . . . 4 (𝑑 = {⟨1, 𝐷⟩} → ((∀𝑖 ∈ (1...1)(((𝐴 + (𝑊𝐷)) + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘((𝐴 + (𝑊𝐷)) + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊𝐷)) + (𝑑𝑖))))) = 1) ↔ (∀𝑖 ∈ (1...1)(((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1))(AP‘𝐾)({⟨1, 𝐷⟩}‘1)) ⊆ (𝐹 “ {(𝐹‘((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1)))}) ∧ (♯‘ran (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1))))) = 1)))
197181, 196rspc2ev 3564 . . 3 (((𝐴 + (𝑊𝐷)) ∈ ℕ ∧ {⟨1, 𝐷⟩} ∈ (ℕ ↑m (1...1)) ∧ (∀𝑖 ∈ (1...1)(((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1))(AP‘𝐾)({⟨1, 𝐷⟩}‘1)) ⊆ (𝐹 “ {(𝐹‘((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1)))}) ∧ (♯‘ran (𝑖 ∈ (1...1) ↦ (𝐹‘((𝐴 + (𝑊𝐷)) + ({⟨1, 𝐷⟩}‘1))))) = 1)) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m (1...1))(∀𝑖 ∈ (1...1)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...1) ↦ (𝐹‘(𝑎 + (𝑑𝑖))))) = 1))
19850, 66, 155, 170, 197syl112anc 1372 . 2 (𝜑 → ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m (1...1))(∀𝑖 ∈ (1...1)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...1) ↦ (𝐹‘(𝑎 + (𝑑𝑖))))) = 1))
199 ovex 7288 . . 3 (1...(2 · 𝑊)) ∈ V
20051a1i 11 . . 3 (𝜑 → 1 ∈ ℕ)
201 eqid 2738 . . 3 (1...1) = (1...1)
202199, 83, 124, 200, 201vdwpc 16609 . 2 (𝜑 → (⟨1, 𝐾⟩ PolyAP 𝐹 ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m (1...1))(∀𝑖 ∈ (1...1)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...1) ↦ (𝐹‘(𝑎 + (𝑑𝑖))))) = 1)))
203198, 202mpbird 256 1 (𝜑 → ⟨1, 𝐾⟩ PolyAP 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  Vcvv 3422  cun 3881  wss 3883  c0 4253  {csn 4558  cop 4564   class class class wbr 5070  cmpt 5153   × cxp 5578  ccnv 5579  dom cdm 5580  ran crn 5581  cima 5583   Fn wfn 6413  wf 6414  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  m cmap 8573  Fincfn 8691  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  cmin 11135  cn 11903  2c2 11958  0cn0 12163  cz 12249  cuz 12511  ...cfz 13168  chash 13972  APcvdwa 16594   PolyAP cvdwp 16596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-hash 13973  df-vdwap 16597  df-vdwpc 16599
This theorem is referenced by:  vdwlem10  16619
  Copyright terms: Public domain W3C validator