![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sectss | Structured version Visualization version GIF version |
Description: The section relation is a relation between morphisms from ๐ to ๐ and morphisms from ๐ to ๐. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
issect.b | โข ๐ต = (Baseโ๐ถ) |
issect.h | โข ๐ป = (Hom โ๐ถ) |
issect.o | โข ยท = (compโ๐ถ) |
issect.i | โข 1 = (Idโ๐ถ) |
issect.s | โข ๐ = (Sectโ๐ถ) |
issect.c | โข (๐ โ ๐ถ โ Cat) |
issect.x | โข (๐ โ ๐ โ ๐ต) |
issect.y | โข (๐ โ ๐ โ ๐ต) |
Ref | Expression |
---|---|
sectss | โข (๐ โ (๐๐๐) โ ((๐๐ป๐) ร (๐๐ป๐))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issect.b | . . 3 โข ๐ต = (Baseโ๐ถ) | |
2 | issect.h | . . 3 โข ๐ป = (Hom โ๐ถ) | |
3 | issect.o | . . 3 โข ยท = (compโ๐ถ) | |
4 | issect.i | . . 3 โข 1 = (Idโ๐ถ) | |
5 | issect.s | . . 3 โข ๐ = (Sectโ๐ถ) | |
6 | issect.c | . . 3 โข (๐ โ ๐ถ โ Cat) | |
7 | issect.x | . . 3 โข (๐ โ ๐ โ ๐ต) | |
8 | issect.y | . . 3 โข (๐ โ ๐ โ ๐ต) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | sectfval 17697 | . 2 โข (๐ โ (๐๐๐) = {โจ๐, ๐โฉ โฃ ((๐ โ (๐๐ป๐) โง ๐ โ (๐๐ป๐)) โง (๐(โจ๐, ๐โฉ ยท ๐)๐) = ( 1 โ๐))}) |
10 | opabssxp 5768 | . 2 โข {โจ๐, ๐โฉ โฃ ((๐ โ (๐๐ป๐) โง ๐ โ (๐๐ป๐)) โง (๐(โจ๐, ๐โฉ ยท ๐)๐) = ( 1 โ๐))} โ ((๐๐ป๐) ร (๐๐ป๐)) | |
11 | 9, 10 | eqsstrdi 4036 | 1 โข (๐ โ (๐๐๐) โ ((๐๐ป๐) ร (๐๐ป๐))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 396 = wceq 1541 โ wcel 2106 โ wss 3948 โจcop 4634 {copab 5210 ร cxp 5674 โcfv 6543 (class class class)co 7408 Basecbs 17143 Hom chom 17207 compcco 17208 Catccat 17607 Idccid 17608 Sectcsect 17690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 df-sect 17693 |
This theorem is referenced by: isinv 17706 invss 17707 oppcsect2 17725 oppcinv 17726 |
Copyright terms: Public domain | W3C validator |