| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sectss | Structured version Visualization version GIF version | ||
| Description: The section relation is a relation between morphisms from 𝑋 to 𝑌 and morphisms from 𝑌 to 𝑋. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| issect.b | ⊢ 𝐵 = (Base‘𝐶) |
| issect.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| issect.o | ⊢ · = (comp‘𝐶) |
| issect.i | ⊢ 1 = (Id‘𝐶) |
| issect.s | ⊢ 𝑆 = (Sect‘𝐶) |
| issect.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| issect.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| issect.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| sectss | ⊢ (𝜑 → (𝑋𝑆𝑌) ⊆ ((𝑋𝐻𝑌) × (𝑌𝐻𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issect.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | issect.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 3 | issect.o | . . 3 ⊢ · = (comp‘𝐶) | |
| 4 | issect.i | . . 3 ⊢ 1 = (Id‘𝐶) | |
| 5 | issect.s | . . 3 ⊢ 𝑆 = (Sect‘𝐶) | |
| 6 | issect.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 7 | issect.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 8 | issect.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | sectfval 17660 | . 2 ⊢ (𝜑 → (𝑋𝑆𝑌) = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(〈𝑋, 𝑌〉 · 𝑋)𝑓) = ( 1 ‘𝑋))}) |
| 10 | opabssxp 5711 | . 2 ⊢ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(〈𝑋, 𝑌〉 · 𝑋)𝑓) = ( 1 ‘𝑋))} ⊆ ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)) | |
| 11 | 9, 10 | eqsstrdi 3975 | 1 ⊢ (𝜑 → (𝑋𝑆𝑌) ⊆ ((𝑋𝐻𝑌) × (𝑌𝐻𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 〈cop 4581 {copab 5155 × cxp 5617 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 Hom chom 17174 compcco 17175 Catccat 17572 Idccid 17573 Sectcsect 17653 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-sect 17656 |
| This theorem is referenced by: isinv 17669 invss 17670 oppcsect2 17688 oppcinv 17689 |
| Copyright terms: Public domain | W3C validator |