MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invss Structured version   Visualization version   GIF version

Theorem invss 17822
Description: The inverse relation is a relation between morphisms 𝐹:𝑋𝑌 and their inverses 𝐺:𝑌𝑋. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
invfval.b 𝐵 = (Base‘𝐶)
invfval.n 𝑁 = (Inv‘𝐶)
invfval.c (𝜑𝐶 ∈ Cat)
invfval.x (𝜑𝑋𝐵)
invfval.y (𝜑𝑌𝐵)
invss.h 𝐻 = (Hom ‘𝐶)
Assertion
Ref Expression
invss (𝜑 → (𝑋𝑁𝑌) ⊆ ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)))

Proof of Theorem invss
StepHypRef Expression
1 invfval.b . . . 4 𝐵 = (Base‘𝐶)
2 invfval.n . . . 4 𝑁 = (Inv‘𝐶)
3 invfval.c . . . 4 (𝜑𝐶 ∈ Cat)
4 invfval.x . . . 4 (𝜑𝑋𝐵)
5 invfval.y . . . 4 (𝜑𝑌𝐵)
6 eqid 2740 . . . 4 (Sect‘𝐶) = (Sect‘𝐶)
71, 2, 3, 4, 5, 6invfval 17820 . . 3 (𝜑 → (𝑋𝑁𝑌) = ((𝑋(Sect‘𝐶)𝑌) ∩ (𝑌(Sect‘𝐶)𝑋)))
8 inss1 4258 . . 3 ((𝑋(Sect‘𝐶)𝑌) ∩ (𝑌(Sect‘𝐶)𝑋)) ⊆ (𝑋(Sect‘𝐶)𝑌)
97, 8eqsstrdi 4063 . 2 (𝜑 → (𝑋𝑁𝑌) ⊆ (𝑋(Sect‘𝐶)𝑌))
10 invss.h . . 3 𝐻 = (Hom ‘𝐶)
11 eqid 2740 . . 3 (comp‘𝐶) = (comp‘𝐶)
12 eqid 2740 . . 3 (Id‘𝐶) = (Id‘𝐶)
131, 10, 11, 12, 6, 3, 4, 5sectss 17813 . 2 (𝜑 → (𝑋(Sect‘𝐶)𝑌) ⊆ ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)))
149, 13sstrd 4019 1 (𝜑 → (𝑋𝑁𝑌) ⊆ ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cin 3975  wss 3976   × cxp 5698  ccnv 5699  cfv 6573  (class class class)co 7448  Basecbs 17258  Hom chom 17322  compcco 17323  Catccat 17722  Idccid 17723  Sectcsect 17805  Invcinv 17806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-sect 17808  df-inv 17809
This theorem is referenced by:  invsym2  17824  invfun  17825  isohom  17837  invfuc  18044
  Copyright terms: Public domain W3C validator