| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > invss | Structured version Visualization version GIF version | ||
| Description: The inverse relation is a relation between morphisms 𝐹:𝑋⟶𝑌 and their inverses 𝐺:𝑌⟶𝑋. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| invfval.b | ⊢ 𝐵 = (Base‘𝐶) |
| invfval.n | ⊢ 𝑁 = (Inv‘𝐶) |
| invfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| invss.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| invss.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| invss.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| Ref | Expression |
|---|---|
| invss | ⊢ (𝜑 → (𝑋𝑁𝑌) ⊆ ((𝑋𝐻𝑌) × (𝑌𝐻𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | invfval.n | . . . 4 ⊢ 𝑁 = (Inv‘𝐶) | |
| 3 | invfval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | invss.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | invss.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | eqid 2729 | . . . 4 ⊢ (Sect‘𝐶) = (Sect‘𝐶) | |
| 7 | 1, 2, 3, 4, 5, 6 | invfval 17684 | . . 3 ⊢ (𝜑 → (𝑋𝑁𝑌) = ((𝑋(Sect‘𝐶)𝑌) ∩ ◡(𝑌(Sect‘𝐶)𝑋))) |
| 8 | inss1 4190 | . . 3 ⊢ ((𝑋(Sect‘𝐶)𝑌) ∩ ◡(𝑌(Sect‘𝐶)𝑋)) ⊆ (𝑋(Sect‘𝐶)𝑌) | |
| 9 | 7, 8 | eqsstrdi 3982 | . 2 ⊢ (𝜑 → (𝑋𝑁𝑌) ⊆ (𝑋(Sect‘𝐶)𝑌)) |
| 10 | invss.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 11 | eqid 2729 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 12 | eqid 2729 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 13 | 1, 10, 11, 12, 6, 3, 4, 5 | sectss 17677 | . 2 ⊢ (𝜑 → (𝑋(Sect‘𝐶)𝑌) ⊆ ((𝑋𝐻𝑌) × (𝑌𝐻𝑋))) |
| 14 | 9, 13 | sstrd 3948 | 1 ⊢ (𝜑 → (𝑋𝑁𝑌) ⊆ ((𝑋𝐻𝑌) × (𝑌𝐻𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∩ cin 3904 ⊆ wss 3905 × cxp 5621 ◡ccnv 5622 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 Hom chom 17190 compcco 17191 Catccat 17588 Idccid 17589 Sectcsect 17669 Invcinv 17670 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-sect 17672 df-inv 17673 |
| This theorem is referenced by: invsym2 17688 invfun 17689 isohom 17701 invfuc 17902 |
| Copyright terms: Public domain | W3C validator |