Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > invss | Structured version Visualization version GIF version |
Description: The inverse relation is a relation between morphisms 𝐹:𝑋⟶𝑌 and their inverses 𝐺:𝑌⟶𝑋. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
invfval.b | ⊢ 𝐵 = (Base‘𝐶) |
invfval.n | ⊢ 𝑁 = (Inv‘𝐶) |
invfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
invfval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
invfval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
invss.h | ⊢ 𝐻 = (Hom ‘𝐶) |
Ref | Expression |
---|---|
invss | ⊢ (𝜑 → (𝑋𝑁𝑌) ⊆ ((𝑋𝐻𝑌) × (𝑌𝐻𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
2 | invfval.n | . . . 4 ⊢ 𝑁 = (Inv‘𝐶) | |
3 | invfval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | invfval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | invfval.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | eqid 2739 | . . . 4 ⊢ (Sect‘𝐶) = (Sect‘𝐶) | |
7 | 1, 2, 3, 4, 5, 6 | invfval 17452 | . . 3 ⊢ (𝜑 → (𝑋𝑁𝑌) = ((𝑋(Sect‘𝐶)𝑌) ∩ ◡(𝑌(Sect‘𝐶)𝑋))) |
8 | inss1 4167 | . . 3 ⊢ ((𝑋(Sect‘𝐶)𝑌) ∩ ◡(𝑌(Sect‘𝐶)𝑋)) ⊆ (𝑋(Sect‘𝐶)𝑌) | |
9 | 7, 8 | eqsstrdi 3979 | . 2 ⊢ (𝜑 → (𝑋𝑁𝑌) ⊆ (𝑋(Sect‘𝐶)𝑌)) |
10 | invss.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
11 | eqid 2739 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
12 | eqid 2739 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
13 | 1, 10, 11, 12, 6, 3, 4, 5 | sectss 17445 | . 2 ⊢ (𝜑 → (𝑋(Sect‘𝐶)𝑌) ⊆ ((𝑋𝐻𝑌) × (𝑌𝐻𝑋))) |
14 | 9, 13 | sstrd 3935 | 1 ⊢ (𝜑 → (𝑋𝑁𝑌) ⊆ ((𝑋𝐻𝑌) × (𝑌𝐻𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 ∩ cin 3890 ⊆ wss 3891 × cxp 5586 ◡ccnv 5587 ‘cfv 6430 (class class class)co 7268 Basecbs 16893 Hom chom 16954 compcco 16955 Catccat 17354 Idccid 17355 Sectcsect 17437 Invcinv 17438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-1st 7817 df-2nd 7818 df-sect 17440 df-inv 17441 |
This theorem is referenced by: invsym2 17456 invfun 17457 isohom 17469 invfuc 17673 |
Copyright terms: Public domain | W3C validator |