MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invss Structured version   Visualization version   GIF version

Theorem invss 17149
Description: The inverse relation is a relation between morphisms 𝐹:𝑋𝑌 and their inverses 𝐺:𝑌𝑋. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
invfval.b 𝐵 = (Base‘𝐶)
invfval.n 𝑁 = (Inv‘𝐶)
invfval.c (𝜑𝐶 ∈ Cat)
invfval.x (𝜑𝑋𝐵)
invfval.y (𝜑𝑌𝐵)
invss.h 𝐻 = (Hom ‘𝐶)
Assertion
Ref Expression
invss (𝜑 → (𝑋𝑁𝑌) ⊆ ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)))

Proof of Theorem invss
StepHypRef Expression
1 invfval.b . . . 4 𝐵 = (Base‘𝐶)
2 invfval.n . . . 4 𝑁 = (Inv‘𝐶)
3 invfval.c . . . 4 (𝜑𝐶 ∈ Cat)
4 invfval.x . . . 4 (𝜑𝑋𝐵)
5 invfval.y . . . 4 (𝜑𝑌𝐵)
6 eqid 2739 . . . 4 (Sect‘𝐶) = (Sect‘𝐶)
71, 2, 3, 4, 5, 6invfval 17147 . . 3 (𝜑 → (𝑋𝑁𝑌) = ((𝑋(Sect‘𝐶)𝑌) ∩ (𝑌(Sect‘𝐶)𝑋)))
8 inss1 4129 . . 3 ((𝑋(Sect‘𝐶)𝑌) ∩ (𝑌(Sect‘𝐶)𝑋)) ⊆ (𝑋(Sect‘𝐶)𝑌)
97, 8eqsstrdi 3941 . 2 (𝜑 → (𝑋𝑁𝑌) ⊆ (𝑋(Sect‘𝐶)𝑌))
10 invss.h . . 3 𝐻 = (Hom ‘𝐶)
11 eqid 2739 . . 3 (comp‘𝐶) = (comp‘𝐶)
12 eqid 2739 . . 3 (Id‘𝐶) = (Id‘𝐶)
131, 10, 11, 12, 6, 3, 4, 5sectss 17140 . 2 (𝜑 → (𝑋(Sect‘𝐶)𝑌) ⊆ ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)))
149, 13sstrd 3897 1 (𝜑 → (𝑋𝑁𝑌) ⊆ ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2114  cin 3852  wss 3853   × cxp 5533  ccnv 5534  cfv 6350  (class class class)co 7183  Basecbs 16599  Hom chom 16692  compcco 16693  Catccat 17051  Idccid 17052  Sectcsect 17132  Invcinv 17133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7492
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4807  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-id 5439  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-iota 6308  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-ov 7186  df-oprab 7187  df-mpo 7188  df-1st 7727  df-2nd 7728  df-sect 17135  df-inv 17136
This theorem is referenced by:  invsym2  17151  invfun  17152  isohom  17164  invfuc  17362
  Copyright terms: Public domain W3C validator