MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invss Structured version   Visualization version   GIF version

Theorem invss 17723
Description: The inverse relation is a relation between morphisms 𝐹:𝑋𝑌 and their inverses 𝐺:𝑌𝑋. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
invfval.b 𝐵 = (Base‘𝐶)
invfval.n 𝑁 = (Inv‘𝐶)
invfval.c (𝜑𝐶 ∈ Cat)
invss.x (𝜑𝑋𝐵)
invss.y (𝜑𝑌𝐵)
invss.h 𝐻 = (Hom ‘𝐶)
Assertion
Ref Expression
invss (𝜑 → (𝑋𝑁𝑌) ⊆ ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)))

Proof of Theorem invss
StepHypRef Expression
1 invfval.b . . . 4 𝐵 = (Base‘𝐶)
2 invfval.n . . . 4 𝑁 = (Inv‘𝐶)
3 invfval.c . . . 4 (𝜑𝐶 ∈ Cat)
4 invss.x . . . 4 (𝜑𝑋𝐵)
5 invss.y . . . 4 (𝜑𝑌𝐵)
6 eqid 2729 . . . 4 (Sect‘𝐶) = (Sect‘𝐶)
71, 2, 3, 4, 5, 6invfval 17721 . . 3 (𝜑 → (𝑋𝑁𝑌) = ((𝑋(Sect‘𝐶)𝑌) ∩ (𝑌(Sect‘𝐶)𝑋)))
8 inss1 4200 . . 3 ((𝑋(Sect‘𝐶)𝑌) ∩ (𝑌(Sect‘𝐶)𝑋)) ⊆ (𝑋(Sect‘𝐶)𝑌)
97, 8eqsstrdi 3991 . 2 (𝜑 → (𝑋𝑁𝑌) ⊆ (𝑋(Sect‘𝐶)𝑌))
10 invss.h . . 3 𝐻 = (Hom ‘𝐶)
11 eqid 2729 . . 3 (comp‘𝐶) = (comp‘𝐶)
12 eqid 2729 . . 3 (Id‘𝐶) = (Id‘𝐶)
131, 10, 11, 12, 6, 3, 4, 5sectss 17714 . 2 (𝜑 → (𝑋(Sect‘𝐶)𝑌) ⊆ ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)))
149, 13sstrd 3957 1 (𝜑 → (𝑋𝑁𝑌) ⊆ ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cin 3913  wss 3914   × cxp 5636  ccnv 5637  cfv 6511  (class class class)co 7387  Basecbs 17179  Hom chom 17231  compcco 17232  Catccat 17625  Idccid 17626  Sectcsect 17706  Invcinv 17707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-sect 17709  df-inv 17710
This theorem is referenced by:  invsym2  17725  invfun  17726  isohom  17738  invfuc  17939
  Copyright terms: Public domain W3C validator