MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sectfval Structured version   Visualization version   GIF version

Theorem sectfval 17764
Description: Value of the section relation. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
issect.b 𝐵 = (Base‘𝐶)
issect.h 𝐻 = (Hom ‘𝐶)
issect.o · = (comp‘𝐶)
issect.i 1 = (Id‘𝐶)
issect.s 𝑆 = (Sect‘𝐶)
issect.c (𝜑𝐶 ∈ Cat)
issect.x (𝜑𝑋𝐵)
issect.y (𝜑𝑌𝐵)
Assertion
Ref Expression
sectfval (𝜑 → (𝑋𝑆𝑌) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = ( 1𝑋))})
Distinct variable groups:   𝑓,𝑔, 1   𝐶,𝑓,𝑔   𝜑,𝑓,𝑔   𝑓,𝐻,𝑔   · ,𝑓,𝑔   𝑓,𝑋,𝑔   𝑓,𝑌,𝑔
Allowed substitution hints:   𝐵(𝑓,𝑔)   𝑆(𝑓,𝑔)

Proof of Theorem sectfval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issect.b . . 3 𝐵 = (Base‘𝐶)
2 issect.h . . 3 𝐻 = (Hom ‘𝐶)
3 issect.o . . 3 · = (comp‘𝐶)
4 issect.i . . 3 1 = (Id‘𝐶)
5 issect.s . . 3 𝑆 = (Sect‘𝐶)
6 issect.c . . 3 (𝜑𝐶 ∈ Cat)
71, 2, 3, 4, 5, 6sectffval 17763 . 2 (𝜑𝑆 = (𝑥𝐵, 𝑦𝐵 ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(⟨𝑥, 𝑦· 𝑥)𝑓) = ( 1𝑥))}))
8 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑥 = 𝑋)
9 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑦 = 𝑌)
108, 9oveq12d 7423 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌))
1110eleq2d 2820 . . . . 5 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑓 ∈ (𝑥𝐻𝑦) ↔ 𝑓 ∈ (𝑋𝐻𝑌)))
129, 8oveq12d 7423 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑦𝐻𝑥) = (𝑌𝐻𝑋))
1312eleq2d 2820 . . . . 5 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑔 ∈ (𝑦𝐻𝑥) ↔ 𝑔 ∈ (𝑌𝐻𝑋)))
1411, 13anbi12d 632 . . . 4 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ↔ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋))))
158, 9opeq12d 4857 . . . . . . 7 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ⟨𝑥, 𝑦⟩ = ⟨𝑋, 𝑌⟩)
1615, 8oveq12d 7423 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (⟨𝑥, 𝑦· 𝑥) = (⟨𝑋, 𝑌· 𝑋))
1716oveqd 7422 . . . . 5 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑔(⟨𝑥, 𝑦· 𝑥)𝑓) = (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓))
188fveq2d 6880 . . . . 5 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ( 1𝑥) = ( 1𝑋))
1917, 18eqeq12d 2751 . . . 4 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ((𝑔(⟨𝑥, 𝑦· 𝑥)𝑓) = ( 1𝑥) ↔ (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = ( 1𝑋)))
2014, 19anbi12d 632 . . 3 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(⟨𝑥, 𝑦· 𝑥)𝑓) = ( 1𝑥)) ↔ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = ( 1𝑋))))
2120opabbidv 5185 . 2 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(⟨𝑥, 𝑦· 𝑥)𝑓) = ( 1𝑥))} = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = ( 1𝑋))})
22 issect.x . 2 (𝜑𝑋𝐵)
23 issect.y . 2 (𝜑𝑌𝐵)
24 ovex 7438 . . . . 5 (𝑋𝐻𝑌) ∈ V
25 ovex 7438 . . . . 5 (𝑌𝐻𝑋) ∈ V
2624, 25xpex 7747 . . . 4 ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)) ∈ V
27 opabssxp 5747 . . . 4 {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = ( 1𝑋))} ⊆ ((𝑋𝐻𝑌) × (𝑌𝐻𝑋))
2826, 27ssexi 5292 . . 3 {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = ( 1𝑋))} ∈ V
2928a1i 11 . 2 (𝜑 → {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = ( 1𝑋))} ∈ V)
307, 21, 22, 23, 29ovmpod 7559 1 (𝜑 → (𝑋𝑆𝑌) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = ( 1𝑋))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  cop 4607  {copab 5181   × cxp 5652  cfv 6531  (class class class)co 7405  Basecbs 17228  Hom chom 17282  compcco 17283  Catccat 17676  Idccid 17677  Sectcsect 17757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-sect 17760
This theorem is referenced by:  sectss  17765  issect  17766  dfiso2  17785  sectpropdlem  49003
  Copyright terms: Public domain W3C validator