MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sectfval Structured version   Visualization version   GIF version

Theorem sectfval 17713
Description: Value of the section relation. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
issect.b 𝐵 = (Base‘𝐶)
issect.h 𝐻 = (Hom ‘𝐶)
issect.o · = (comp‘𝐶)
issect.i 1 = (Id‘𝐶)
issect.s 𝑆 = (Sect‘𝐶)
issect.c (𝜑𝐶 ∈ Cat)
issect.x (𝜑𝑋𝐵)
issect.y (𝜑𝑌𝐵)
Assertion
Ref Expression
sectfval (𝜑 → (𝑋𝑆𝑌) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = ( 1𝑋))})
Distinct variable groups:   𝑓,𝑔, 1   𝐶,𝑓,𝑔   𝜑,𝑓,𝑔   𝑓,𝐻,𝑔   · ,𝑓,𝑔   𝑓,𝑋,𝑔   𝑓,𝑌,𝑔
Allowed substitution hints:   𝐵(𝑓,𝑔)   𝑆(𝑓,𝑔)

Proof of Theorem sectfval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issect.b . . 3 𝐵 = (Base‘𝐶)
2 issect.h . . 3 𝐻 = (Hom ‘𝐶)
3 issect.o . . 3 · = (comp‘𝐶)
4 issect.i . . 3 1 = (Id‘𝐶)
5 issect.s . . 3 𝑆 = (Sect‘𝐶)
6 issect.c . . 3 (𝜑𝐶 ∈ Cat)
71, 2, 3, 4, 5, 6sectffval 17712 . 2 (𝜑𝑆 = (𝑥𝐵, 𝑦𝐵 ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(⟨𝑥, 𝑦· 𝑥)𝑓) = ( 1𝑥))}))
8 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑥 = 𝑋)
9 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑦 = 𝑌)
108, 9oveq12d 7405 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌))
1110eleq2d 2814 . . . . 5 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑓 ∈ (𝑥𝐻𝑦) ↔ 𝑓 ∈ (𝑋𝐻𝑌)))
129, 8oveq12d 7405 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑦𝐻𝑥) = (𝑌𝐻𝑋))
1312eleq2d 2814 . . . . 5 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑔 ∈ (𝑦𝐻𝑥) ↔ 𝑔 ∈ (𝑌𝐻𝑋)))
1411, 13anbi12d 632 . . . 4 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ↔ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋))))
158, 9opeq12d 4845 . . . . . . 7 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ⟨𝑥, 𝑦⟩ = ⟨𝑋, 𝑌⟩)
1615, 8oveq12d 7405 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (⟨𝑥, 𝑦· 𝑥) = (⟨𝑋, 𝑌· 𝑋))
1716oveqd 7404 . . . . 5 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑔(⟨𝑥, 𝑦· 𝑥)𝑓) = (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓))
188fveq2d 6862 . . . . 5 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ( 1𝑥) = ( 1𝑋))
1917, 18eqeq12d 2745 . . . 4 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ((𝑔(⟨𝑥, 𝑦· 𝑥)𝑓) = ( 1𝑥) ↔ (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = ( 1𝑋)))
2014, 19anbi12d 632 . . 3 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(⟨𝑥, 𝑦· 𝑥)𝑓) = ( 1𝑥)) ↔ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = ( 1𝑋))))
2120opabbidv 5173 . 2 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(⟨𝑥, 𝑦· 𝑥)𝑓) = ( 1𝑥))} = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = ( 1𝑋))})
22 issect.x . 2 (𝜑𝑋𝐵)
23 issect.y . 2 (𝜑𝑌𝐵)
24 ovex 7420 . . . . 5 (𝑋𝐻𝑌) ∈ V
25 ovex 7420 . . . . 5 (𝑌𝐻𝑋) ∈ V
2624, 25xpex 7729 . . . 4 ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)) ∈ V
27 opabssxp 5731 . . . 4 {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = ( 1𝑋))} ⊆ ((𝑋𝐻𝑌) × (𝑌𝐻𝑋))
2826, 27ssexi 5277 . . 3 {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = ( 1𝑋))} ∈ V
2928a1i 11 . 2 (𝜑 → {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = ( 1𝑋))} ∈ V)
307, 21, 22, 23, 29ovmpod 7541 1 (𝜑 → (𝑋𝑆𝑌) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = ( 1𝑋))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  cop 4595  {copab 5169   × cxp 5636  cfv 6511  (class class class)co 7387  Basecbs 17179  Hom chom 17231  compcco 17232  Catccat 17625  Idccid 17626  Sectcsect 17706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-sect 17709
This theorem is referenced by:  sectss  17714  issect  17715  dfiso2  17734  sectpropdlem  49025
  Copyright terms: Public domain W3C validator