MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sectfval Structured version   Visualization version   GIF version

Theorem sectfval 17799
Description: Value of the section relation. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
issect.b 𝐵 = (Base‘𝐶)
issect.h 𝐻 = (Hom ‘𝐶)
issect.o · = (comp‘𝐶)
issect.i 1 = (Id‘𝐶)
issect.s 𝑆 = (Sect‘𝐶)
issect.c (𝜑𝐶 ∈ Cat)
issect.x (𝜑𝑋𝐵)
issect.y (𝜑𝑌𝐵)
Assertion
Ref Expression
sectfval (𝜑 → (𝑋𝑆𝑌) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = ( 1𝑋))})
Distinct variable groups:   𝑓,𝑔, 1   𝐶,𝑓,𝑔   𝜑,𝑓,𝑔   𝑓,𝐻,𝑔   · ,𝑓,𝑔   𝑓,𝑋,𝑔   𝑓,𝑌,𝑔
Allowed substitution hints:   𝐵(𝑓,𝑔)   𝑆(𝑓,𝑔)

Proof of Theorem sectfval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issect.b . . 3 𝐵 = (Base‘𝐶)
2 issect.h . . 3 𝐻 = (Hom ‘𝐶)
3 issect.o . . 3 · = (comp‘𝐶)
4 issect.i . . 3 1 = (Id‘𝐶)
5 issect.s . . 3 𝑆 = (Sect‘𝐶)
6 issect.c . . 3 (𝜑𝐶 ∈ Cat)
7 issect.x . . 3 (𝜑𝑋𝐵)
81, 2, 3, 4, 5, 6, 7, 7sectffval 17798 . 2 (𝜑𝑆 = (𝑥𝐵, 𝑦𝐵 ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(⟨𝑥, 𝑦· 𝑥)𝑓) = ( 1𝑥))}))
9 simprl 771 . . . . . . 7 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑥 = 𝑋)
10 simprr 773 . . . . . . 7 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑦 = 𝑌)
119, 10oveq12d 7449 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌))
1211eleq2d 2825 . . . . 5 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑓 ∈ (𝑥𝐻𝑦) ↔ 𝑓 ∈ (𝑋𝐻𝑌)))
1310, 9oveq12d 7449 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑦𝐻𝑥) = (𝑌𝐻𝑋))
1413eleq2d 2825 . . . . 5 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑔 ∈ (𝑦𝐻𝑥) ↔ 𝑔 ∈ (𝑌𝐻𝑋)))
1512, 14anbi12d 632 . . . 4 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ↔ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋))))
169, 10opeq12d 4886 . . . . . . 7 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ⟨𝑥, 𝑦⟩ = ⟨𝑋, 𝑌⟩)
1716, 9oveq12d 7449 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (⟨𝑥, 𝑦· 𝑥) = (⟨𝑋, 𝑌· 𝑋))
1817oveqd 7448 . . . . 5 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑔(⟨𝑥, 𝑦· 𝑥)𝑓) = (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓))
199fveq2d 6911 . . . . 5 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ( 1𝑥) = ( 1𝑋))
2018, 19eqeq12d 2751 . . . 4 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ((𝑔(⟨𝑥, 𝑦· 𝑥)𝑓) = ( 1𝑥) ↔ (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = ( 1𝑋)))
2115, 20anbi12d 632 . . 3 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(⟨𝑥, 𝑦· 𝑥)𝑓) = ( 1𝑥)) ↔ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = ( 1𝑋))))
2221opabbidv 5214 . 2 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(⟨𝑥, 𝑦· 𝑥)𝑓) = ( 1𝑥))} = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = ( 1𝑋))})
23 issect.y . 2 (𝜑𝑌𝐵)
24 ovex 7464 . . . . 5 (𝑋𝐻𝑌) ∈ V
25 ovex 7464 . . . . 5 (𝑌𝐻𝑋) ∈ V
2624, 25xpex 7772 . . . 4 ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)) ∈ V
27 opabssxp 5781 . . . 4 {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = ( 1𝑋))} ⊆ ((𝑋𝐻𝑌) × (𝑌𝐻𝑋))
2826, 27ssexi 5328 . . 3 {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = ( 1𝑋))} ∈ V
2928a1i 11 . 2 (𝜑 → {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = ( 1𝑋))} ∈ V)
308, 22, 7, 23, 29ovmpod 7585 1 (𝜑 → (𝑋𝑆𝑌) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = ( 1𝑋))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  cop 4637  {copab 5210   × cxp 5687  cfv 6563  (class class class)co 7431  Basecbs 17245  Hom chom 17309  compcco 17310  Catccat 17709  Idccid 17710  Sectcsect 17792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-sect 17795
This theorem is referenced by:  sectss  17800  issect  17801  dfiso2  17820
  Copyright terms: Public domain W3C validator