| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oppcinv | Structured version Visualization version GIF version | ||
| Description: An inverse in the opposite category. (Contributed by Mario Carneiro, 3-Jan-2017.) |
| Ref | Expression |
|---|---|
| oppcsect.b | ⊢ 𝐵 = (Base‘𝐶) |
| oppcsect.o | ⊢ 𝑂 = (oppCat‘𝐶) |
| oppcsect.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| oppcsect.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| oppcsect.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| oppcinv.s | ⊢ 𝐼 = (Inv‘𝐶) |
| oppcinv.t | ⊢ 𝐽 = (Inv‘𝑂) |
| Ref | Expression |
|---|---|
| oppcinv | ⊢ (𝜑 → (𝑋𝐽𝑌) = (𝑌𝐼𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 4182 | . . 3 ⊢ ((𝑋(Sect‘𝑂)𝑌) ∩ ◡(𝑌(Sect‘𝑂)𝑋)) = (◡(𝑌(Sect‘𝑂)𝑋) ∩ (𝑋(Sect‘𝑂)𝑌)) | |
| 2 | oppcsect.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | oppcsect.o | . . . . . . 7 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 4 | oppcsect.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 5 | oppcsect.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | oppcsect.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 7 | eqid 2734 | . . . . . . 7 ⊢ (Sect‘𝐶) = (Sect‘𝐶) | |
| 8 | eqid 2734 | . . . . . . 7 ⊢ (Sect‘𝑂) = (Sect‘𝑂) | |
| 9 | 2, 3, 4, 5, 6, 7, 8 | oppcsect2 17779 | . . . . . 6 ⊢ (𝜑 → (𝑌(Sect‘𝑂)𝑋) = ◡(𝑌(Sect‘𝐶)𝑋)) |
| 10 | 9 | cnveqd 5853 | . . . . 5 ⊢ (𝜑 → ◡(𝑌(Sect‘𝑂)𝑋) = ◡◡(𝑌(Sect‘𝐶)𝑋)) |
| 11 | eqid 2734 | . . . . . . . 8 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 12 | eqid 2734 | . . . . . . . 8 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 13 | eqid 2734 | . . . . . . . 8 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 14 | 2, 11, 12, 13, 7, 4, 5, 6 | sectss 17752 | . . . . . . 7 ⊢ (𝜑 → (𝑌(Sect‘𝐶)𝑋) ⊆ ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌))) |
| 15 | relxp 5670 | . . . . . . 7 ⊢ Rel ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) | |
| 16 | relss 5758 | . . . . . . 7 ⊢ ((𝑌(Sect‘𝐶)𝑋) ⊆ ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) → (Rel ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) → Rel (𝑌(Sect‘𝐶)𝑋))) | |
| 17 | 14, 15, 16 | mpisyl 21 | . . . . . 6 ⊢ (𝜑 → Rel (𝑌(Sect‘𝐶)𝑋)) |
| 18 | dfrel2 6176 | . . . . . 6 ⊢ (Rel (𝑌(Sect‘𝐶)𝑋) ↔ ◡◡(𝑌(Sect‘𝐶)𝑋) = (𝑌(Sect‘𝐶)𝑋)) | |
| 19 | 17, 18 | sylib 218 | . . . . 5 ⊢ (𝜑 → ◡◡(𝑌(Sect‘𝐶)𝑋) = (𝑌(Sect‘𝐶)𝑋)) |
| 20 | 10, 19 | eqtrd 2769 | . . . 4 ⊢ (𝜑 → ◡(𝑌(Sect‘𝑂)𝑋) = (𝑌(Sect‘𝐶)𝑋)) |
| 21 | 2, 3, 4, 6, 5, 7, 8 | oppcsect2 17779 | . . . 4 ⊢ (𝜑 → (𝑋(Sect‘𝑂)𝑌) = ◡(𝑋(Sect‘𝐶)𝑌)) |
| 22 | 20, 21 | ineq12d 4194 | . . 3 ⊢ (𝜑 → (◡(𝑌(Sect‘𝑂)𝑋) ∩ (𝑋(Sect‘𝑂)𝑌)) = ((𝑌(Sect‘𝐶)𝑋) ∩ ◡(𝑋(Sect‘𝐶)𝑌))) |
| 23 | 1, 22 | eqtrid 2781 | . 2 ⊢ (𝜑 → ((𝑋(Sect‘𝑂)𝑌) ∩ ◡(𝑌(Sect‘𝑂)𝑋)) = ((𝑌(Sect‘𝐶)𝑋) ∩ ◡(𝑋(Sect‘𝐶)𝑌))) |
| 24 | 3, 2 | oppcbas 17717 | . . 3 ⊢ 𝐵 = (Base‘𝑂) |
| 25 | oppcinv.t | . . 3 ⊢ 𝐽 = (Inv‘𝑂) | |
| 26 | 3 | oppccat 17721 | . . . 4 ⊢ (𝐶 ∈ Cat → 𝑂 ∈ Cat) |
| 27 | 4, 26 | syl 17 | . . 3 ⊢ (𝜑 → 𝑂 ∈ Cat) |
| 28 | 24, 25, 27, 6, 5, 8 | invfval 17759 | . 2 ⊢ (𝜑 → (𝑋𝐽𝑌) = ((𝑋(Sect‘𝑂)𝑌) ∩ ◡(𝑌(Sect‘𝑂)𝑋))) |
| 29 | oppcinv.s | . . 3 ⊢ 𝐼 = (Inv‘𝐶) | |
| 30 | 2, 29, 4, 5, 6, 7 | invfval 17759 | . 2 ⊢ (𝜑 → (𝑌𝐼𝑋) = ((𝑌(Sect‘𝐶)𝑋) ∩ ◡(𝑋(Sect‘𝐶)𝑌))) |
| 31 | 23, 28, 30 | 3eqtr4d 2779 | 1 ⊢ (𝜑 → (𝑋𝐽𝑌) = (𝑌𝐼𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∩ cin 3923 ⊆ wss 3924 × cxp 5650 ◡ccnv 5651 Rel wrel 5657 ‘cfv 6528 (class class class)co 7400 Basecbs 17215 Hom chom 17269 compcco 17270 Catccat 17663 Idccid 17664 oppCatcoppc 17710 Sectcsect 17744 Invcinv 17745 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-cnex 11178 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 ax-pre-mulgt0 11199 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-om 7857 df-1st 7983 df-2nd 7984 df-tpos 8220 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-er 8714 df-en 8955 df-dom 8956 df-sdom 8957 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-sub 11461 df-neg 11462 df-nn 12234 df-2 12296 df-3 12297 df-4 12298 df-5 12299 df-6 12300 df-7 12301 df-8 12302 df-9 12303 df-n0 12495 df-z 12582 df-dec 12702 df-sets 17170 df-slot 17188 df-ndx 17200 df-base 17216 df-hom 17282 df-cco 17283 df-cat 17667 df-cid 17668 df-oppc 17711 df-sect 17747 df-inv 17748 |
| This theorem is referenced by: oppciso 17781 episect 17785 |
| Copyright terms: Public domain | W3C validator |