| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oppcinv | Structured version Visualization version GIF version | ||
| Description: An inverse in the opposite category. (Contributed by Mario Carneiro, 3-Jan-2017.) |
| Ref | Expression |
|---|---|
| oppcsect.b | ⊢ 𝐵 = (Base‘𝐶) |
| oppcsect.o | ⊢ 𝑂 = (oppCat‘𝐶) |
| oppcsect.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| oppcsect.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| oppcsect.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| oppcinv.s | ⊢ 𝐼 = (Inv‘𝐶) |
| oppcinv.t | ⊢ 𝐽 = (Inv‘𝑂) |
| Ref | Expression |
|---|---|
| oppcinv | ⊢ (𝜑 → (𝑋𝐽𝑌) = (𝑌𝐼𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 4189 | . . 3 ⊢ ((𝑋(Sect‘𝑂)𝑌) ∩ ◡(𝑌(Sect‘𝑂)𝑋)) = (◡(𝑌(Sect‘𝑂)𝑋) ∩ (𝑋(Sect‘𝑂)𝑌)) | |
| 2 | oppcsect.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | oppcsect.o | . . . . . . 7 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 4 | oppcsect.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 5 | oppcsect.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | oppcsect.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 7 | eqid 2736 | . . . . . . 7 ⊢ (Sect‘𝐶) = (Sect‘𝐶) | |
| 8 | eqid 2736 | . . . . . . 7 ⊢ (Sect‘𝑂) = (Sect‘𝑂) | |
| 9 | 2, 3, 4, 5, 6, 7, 8 | oppcsect2 17797 | . . . . . 6 ⊢ (𝜑 → (𝑌(Sect‘𝑂)𝑋) = ◡(𝑌(Sect‘𝐶)𝑋)) |
| 10 | 9 | cnveqd 5860 | . . . . 5 ⊢ (𝜑 → ◡(𝑌(Sect‘𝑂)𝑋) = ◡◡(𝑌(Sect‘𝐶)𝑋)) |
| 11 | eqid 2736 | . . . . . . . 8 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 12 | eqid 2736 | . . . . . . . 8 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 13 | eqid 2736 | . . . . . . . 8 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 14 | 2, 11, 12, 13, 7, 4, 5, 6 | sectss 17770 | . . . . . . 7 ⊢ (𝜑 → (𝑌(Sect‘𝐶)𝑋) ⊆ ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌))) |
| 15 | relxp 5677 | . . . . . . 7 ⊢ Rel ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) | |
| 16 | relss 5765 | . . . . . . 7 ⊢ ((𝑌(Sect‘𝐶)𝑋) ⊆ ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) → (Rel ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) → Rel (𝑌(Sect‘𝐶)𝑋))) | |
| 17 | 14, 15, 16 | mpisyl 21 | . . . . . 6 ⊢ (𝜑 → Rel (𝑌(Sect‘𝐶)𝑋)) |
| 18 | dfrel2 6183 | . . . . . 6 ⊢ (Rel (𝑌(Sect‘𝐶)𝑋) ↔ ◡◡(𝑌(Sect‘𝐶)𝑋) = (𝑌(Sect‘𝐶)𝑋)) | |
| 19 | 17, 18 | sylib 218 | . . . . 5 ⊢ (𝜑 → ◡◡(𝑌(Sect‘𝐶)𝑋) = (𝑌(Sect‘𝐶)𝑋)) |
| 20 | 10, 19 | eqtrd 2771 | . . . 4 ⊢ (𝜑 → ◡(𝑌(Sect‘𝑂)𝑋) = (𝑌(Sect‘𝐶)𝑋)) |
| 21 | 2, 3, 4, 6, 5, 7, 8 | oppcsect2 17797 | . . . 4 ⊢ (𝜑 → (𝑋(Sect‘𝑂)𝑌) = ◡(𝑋(Sect‘𝐶)𝑌)) |
| 22 | 20, 21 | ineq12d 4201 | . . 3 ⊢ (𝜑 → (◡(𝑌(Sect‘𝑂)𝑋) ∩ (𝑋(Sect‘𝑂)𝑌)) = ((𝑌(Sect‘𝐶)𝑋) ∩ ◡(𝑋(Sect‘𝐶)𝑌))) |
| 23 | 1, 22 | eqtrid 2783 | . 2 ⊢ (𝜑 → ((𝑋(Sect‘𝑂)𝑌) ∩ ◡(𝑌(Sect‘𝑂)𝑋)) = ((𝑌(Sect‘𝐶)𝑋) ∩ ◡(𝑋(Sect‘𝐶)𝑌))) |
| 24 | 3, 2 | oppcbas 17735 | . . 3 ⊢ 𝐵 = (Base‘𝑂) |
| 25 | oppcinv.t | . . 3 ⊢ 𝐽 = (Inv‘𝑂) | |
| 26 | 3 | oppccat 17739 | . . . 4 ⊢ (𝐶 ∈ Cat → 𝑂 ∈ Cat) |
| 27 | 4, 26 | syl 17 | . . 3 ⊢ (𝜑 → 𝑂 ∈ Cat) |
| 28 | 24, 25, 27, 6, 5, 8 | invfval 17777 | . 2 ⊢ (𝜑 → (𝑋𝐽𝑌) = ((𝑋(Sect‘𝑂)𝑌) ∩ ◡(𝑌(Sect‘𝑂)𝑋))) |
| 29 | oppcinv.s | . . 3 ⊢ 𝐼 = (Inv‘𝐶) | |
| 30 | 2, 29, 4, 5, 6, 7 | invfval 17777 | . 2 ⊢ (𝜑 → (𝑌𝐼𝑋) = ((𝑌(Sect‘𝐶)𝑋) ∩ ◡(𝑋(Sect‘𝐶)𝑌))) |
| 31 | 23, 28, 30 | 3eqtr4d 2781 | 1 ⊢ (𝜑 → (𝑋𝐽𝑌) = (𝑌𝐼𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∩ cin 3930 ⊆ wss 3931 × cxp 5657 ◡ccnv 5658 Rel wrel 5664 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 Hom chom 17287 compcco 17288 Catccat 17681 Idccid 17682 oppCatcoppc 17728 Sectcsect 17762 Invcinv 17763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-hom 17300 df-cco 17301 df-cat 17685 df-cid 17686 df-oppc 17729 df-sect 17765 df-inv 17766 |
| This theorem is referenced by: oppciso 17799 episect 17803 |
| Copyright terms: Public domain | W3C validator |