| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oppcinv | Structured version Visualization version GIF version | ||
| Description: An inverse in the opposite category. (Contributed by Mario Carneiro, 3-Jan-2017.) |
| Ref | Expression |
|---|---|
| oppcsect.b | ⊢ 𝐵 = (Base‘𝐶) |
| oppcsect.o | ⊢ 𝑂 = (oppCat‘𝐶) |
| oppcsect.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| oppcsect.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| oppcsect.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| oppcinv.s | ⊢ 𝐼 = (Inv‘𝐶) |
| oppcinv.t | ⊢ 𝐽 = (Inv‘𝑂) |
| Ref | Expression |
|---|---|
| oppcinv | ⊢ (𝜑 → (𝑋𝐽𝑌) = (𝑌𝐼𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 4168 | . . 3 ⊢ ((𝑋(Sect‘𝑂)𝑌) ∩ ◡(𝑌(Sect‘𝑂)𝑋)) = (◡(𝑌(Sect‘𝑂)𝑋) ∩ (𝑋(Sect‘𝑂)𝑌)) | |
| 2 | oppcsect.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | oppcsect.o | . . . . . . 7 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 4 | oppcsect.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 5 | oppcsect.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | oppcsect.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 7 | eqid 2729 | . . . . . . 7 ⊢ (Sect‘𝐶) = (Sect‘𝐶) | |
| 8 | eqid 2729 | . . . . . . 7 ⊢ (Sect‘𝑂) = (Sect‘𝑂) | |
| 9 | 2, 3, 4, 5, 6, 7, 8 | oppcsect2 17721 | . . . . . 6 ⊢ (𝜑 → (𝑌(Sect‘𝑂)𝑋) = ◡(𝑌(Sect‘𝐶)𝑋)) |
| 10 | 9 | cnveqd 5829 | . . . . 5 ⊢ (𝜑 → ◡(𝑌(Sect‘𝑂)𝑋) = ◡◡(𝑌(Sect‘𝐶)𝑋)) |
| 11 | eqid 2729 | . . . . . . . 8 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 12 | eqid 2729 | . . . . . . . 8 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 13 | eqid 2729 | . . . . . . . 8 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 14 | 2, 11, 12, 13, 7, 4, 5, 6 | sectss 17694 | . . . . . . 7 ⊢ (𝜑 → (𝑌(Sect‘𝐶)𝑋) ⊆ ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌))) |
| 15 | relxp 5649 | . . . . . . 7 ⊢ Rel ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) | |
| 16 | relss 5736 | . . . . . . 7 ⊢ ((𝑌(Sect‘𝐶)𝑋) ⊆ ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) → (Rel ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) → Rel (𝑌(Sect‘𝐶)𝑋))) | |
| 17 | 14, 15, 16 | mpisyl 21 | . . . . . 6 ⊢ (𝜑 → Rel (𝑌(Sect‘𝐶)𝑋)) |
| 18 | dfrel2 6150 | . . . . . 6 ⊢ (Rel (𝑌(Sect‘𝐶)𝑋) ↔ ◡◡(𝑌(Sect‘𝐶)𝑋) = (𝑌(Sect‘𝐶)𝑋)) | |
| 19 | 17, 18 | sylib 218 | . . . . 5 ⊢ (𝜑 → ◡◡(𝑌(Sect‘𝐶)𝑋) = (𝑌(Sect‘𝐶)𝑋)) |
| 20 | 10, 19 | eqtrd 2764 | . . . 4 ⊢ (𝜑 → ◡(𝑌(Sect‘𝑂)𝑋) = (𝑌(Sect‘𝐶)𝑋)) |
| 21 | 2, 3, 4, 6, 5, 7, 8 | oppcsect2 17721 | . . . 4 ⊢ (𝜑 → (𝑋(Sect‘𝑂)𝑌) = ◡(𝑋(Sect‘𝐶)𝑌)) |
| 22 | 20, 21 | ineq12d 4180 | . . 3 ⊢ (𝜑 → (◡(𝑌(Sect‘𝑂)𝑋) ∩ (𝑋(Sect‘𝑂)𝑌)) = ((𝑌(Sect‘𝐶)𝑋) ∩ ◡(𝑋(Sect‘𝐶)𝑌))) |
| 23 | 1, 22 | eqtrid 2776 | . 2 ⊢ (𝜑 → ((𝑋(Sect‘𝑂)𝑌) ∩ ◡(𝑌(Sect‘𝑂)𝑋)) = ((𝑌(Sect‘𝐶)𝑋) ∩ ◡(𝑋(Sect‘𝐶)𝑌))) |
| 24 | 3, 2 | oppcbas 17659 | . . 3 ⊢ 𝐵 = (Base‘𝑂) |
| 25 | oppcinv.t | . . 3 ⊢ 𝐽 = (Inv‘𝑂) | |
| 26 | 3 | oppccat 17663 | . . . 4 ⊢ (𝐶 ∈ Cat → 𝑂 ∈ Cat) |
| 27 | 4, 26 | syl 17 | . . 3 ⊢ (𝜑 → 𝑂 ∈ Cat) |
| 28 | 24, 25, 27, 6, 5, 8 | invfval 17701 | . 2 ⊢ (𝜑 → (𝑋𝐽𝑌) = ((𝑋(Sect‘𝑂)𝑌) ∩ ◡(𝑌(Sect‘𝑂)𝑋))) |
| 29 | oppcinv.s | . . 3 ⊢ 𝐼 = (Inv‘𝐶) | |
| 30 | 2, 29, 4, 5, 6, 7 | invfval 17701 | . 2 ⊢ (𝜑 → (𝑌𝐼𝑋) = ((𝑌(Sect‘𝐶)𝑋) ∩ ◡(𝑋(Sect‘𝐶)𝑌))) |
| 31 | 23, 28, 30 | 3eqtr4d 2774 | 1 ⊢ (𝜑 → (𝑋𝐽𝑌) = (𝑌𝐼𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∩ cin 3910 ⊆ wss 3911 × cxp 5629 ◡ccnv 5630 Rel wrel 5636 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 Hom chom 17207 compcco 17208 Catccat 17605 Idccid 17606 oppCatcoppc 17652 Sectcsect 17686 Invcinv 17687 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-hom 17220 df-cco 17221 df-cat 17609 df-cid 17610 df-oppc 17653 df-sect 17689 df-inv 17690 |
| This theorem is referenced by: oppciso 17723 episect 17727 |
| Copyright terms: Public domain | W3C validator |