MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noseqex Structured version   Visualization version   GIF version

Theorem noseqex 28188
Description: The next several theorems develop the concept of a countable sequence of surreals. This set is denoted by 𝑍 here and is the analogue of the upper integer sets for surreal numbers. However, we do not require the starting point to be an integer so we can accommodate infinite numbers. This first theorem establishes that 𝑍 is a set. (Contributed by Scott Fenton, 18-Apr-2025.)
Hypothesis
Ref Expression
noseq.1 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω))
Assertion
Ref Expression
noseqex (𝜑𝑍 ∈ V)

Proof of Theorem noseqex
StepHypRef Expression
1 noseq.1 . 2 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω))
2 rdgfun 8338 . . 3 Fun rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴)
3 dcomex 10341 . . . 4 ω ∈ V
43funimaex 6570 . . 3 (Fun rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) → (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω) ∈ V)
52, 4ax-mp 5 . 2 (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω) ∈ V
61, 5eqeltrdi 2836 1 (𝜑𝑍 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3436  cmpt 5173  cima 5622  Fun wfun 6476  (class class class)co 7349  ωcom 7799  reccrdg 8331   1s c1s 27737   +s cadds 27871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671  ax-dc 10340
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388
This theorem is referenced by:  om2noseqoi  28202  n0sex  28215
  Copyright terms: Public domain W3C validator