MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noseqex Structured version   Visualization version   GIF version

Theorem noseqex 28313
Description: The next several theorems develop the concept of a countable sequence of surreals. This set is denoted by 𝑍 here and is the analogue of the upper integer sets for surreal numbers. However, we do not require the starting point to be an integer so we can accommodate infinite numbers. This first theorem establishes that 𝑍 is a set. (Contributed by Scott Fenton, 18-Apr-2025.)
Hypothesis
Ref Expression
noseq.1 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω))
Assertion
Ref Expression
noseqex (𝜑𝑍 ∈ V)

Proof of Theorem noseqex
StepHypRef Expression
1 noseq.1 . 2 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω))
2 rdgfun 8472 . . 3 Fun rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴)
3 dcomex 10516 . . . 4 ω ∈ V
43funimaex 6666 . . 3 (Fun rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) → (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω) ∈ V)
52, 4ax-mp 5 . 2 (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω) ∈ V
61, 5eqeltrdi 2852 1 (𝜑𝑍 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  Vcvv 3488  cmpt 5249  cima 5703  Fun wfun 6567  (class class class)co 7448  ωcom 7903  reccrdg 8465   1s c1s 27886   +s cadds 28010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770  ax-dc 10515
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522
This theorem is referenced by:  om2noseqoi  28327  n0sex  28340
  Copyright terms: Public domain W3C validator