| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > seqsp1 | Structured version Visualization version GIF version | ||
| Description: The value of the surreal sequence builder at a successor. (Contributed by Scott Fenton, 19-Apr-2025.) |
| Ref | Expression |
|---|---|
| seqsp1.1 | ⊢ (𝜑 → 𝑀 ∈ No ) |
| seqsp1.2 | ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) “ ω)) |
| seqsp1.3 | ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
| Ref | Expression |
|---|---|
| seqsp1 | ⊢ (𝜑 → (seqs𝑀( + , 𝐹)‘(𝑁 +s 1s )) = ((seqs𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 +s 1s )))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqsp1.3 | . . 3 ⊢ (𝜑 → 𝑁 ∈ 𝑍) | |
| 2 | seqsp1.1 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ No ) | |
| 3 | eqidd 2730 | . . . 4 ⊢ (𝜑 → (rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀) ↾ ω) = (rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀) ↾ ω)) | |
| 4 | seqsp1.2 | . . . . 5 ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) “ ω)) | |
| 5 | oveq1 7356 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝑥 +s 1s ) = (𝑦 +s 1s )) | |
| 6 | 5 | cbvmptv 5196 | . . . . . . 7 ⊢ (𝑥 ∈ V ↦ (𝑥 +s 1s )) = (𝑦 ∈ V ↦ (𝑦 +s 1s )) |
| 7 | rdgeq1 8333 | . . . . . . 7 ⊢ ((𝑥 ∈ V ↦ (𝑥 +s 1s )) = (𝑦 ∈ V ↦ (𝑦 +s 1s )) → rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) = rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀)) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) = rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀) |
| 9 | 8 | imaeq1i 6008 | . . . . 5 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) “ ω) = (rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀) “ ω) |
| 10 | 4, 9 | eqtrdi 2780 | . . . 4 ⊢ (𝜑 → 𝑍 = (rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀) “ ω)) |
| 11 | fvexd 6837 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑀) ∈ V) | |
| 12 | eqidd 2730 | . . . 4 ⊢ (𝜑 → (rec((𝑦 ∈ V, 𝑧 ∈ V ↦ 〈(𝑦 +s 1s ), (𝑦(𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))𝑧)〉), 〈𝑀, (𝐹‘𝑀)〉) ↾ ω) = (rec((𝑦 ∈ V, 𝑧 ∈ V ↦ 〈(𝑦 +s 1s ), (𝑦(𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))𝑧)〉), 〈𝑀, (𝐹‘𝑀)〉) ↾ ω)) | |
| 13 | 12 | seqsval 28187 | . . . 4 ⊢ (𝜑 → seqs𝑀( + , 𝐹) = ran (rec((𝑦 ∈ V, 𝑧 ∈ V ↦ 〈(𝑦 +s 1s ), (𝑦(𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))𝑧)〉), 〈𝑀, (𝐹‘𝑀)〉) ↾ ω)) |
| 14 | 2, 3, 10, 11, 12, 13 | noseqrdgsuc 28207 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍) → (seqs𝑀( + , 𝐹)‘(𝑁 +s 1s )) = (𝑁(𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))(seqs𝑀( + , 𝐹)‘𝑁))) |
| 15 | 1, 14 | mpdan 687 | . 2 ⊢ (𝜑 → (seqs𝑀( + , 𝐹)‘(𝑁 +s 1s )) = (𝑁(𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))(seqs𝑀( + , 𝐹)‘𝑁))) |
| 16 | 1 | elexd 3460 | . . 3 ⊢ (𝜑 → 𝑁 ∈ V) |
| 17 | fvex 6835 | . . 3 ⊢ (seqs𝑀( + , 𝐹)‘𝑁) ∈ V | |
| 18 | fvoveq1 7372 | . . . . 5 ⊢ (𝑤 = 𝑁 → (𝐹‘(𝑤 +s 1s )) = (𝐹‘(𝑁 +s 1s ))) | |
| 19 | 18 | oveq2d 7365 | . . . 4 ⊢ (𝑤 = 𝑁 → (𝑡 + (𝐹‘(𝑤 +s 1s ))) = (𝑡 + (𝐹‘(𝑁 +s 1s )))) |
| 20 | oveq1 7356 | . . . 4 ⊢ (𝑡 = (seqs𝑀( + , 𝐹)‘𝑁) → (𝑡 + (𝐹‘(𝑁 +s 1s ))) = ((seqs𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 +s 1s )))) | |
| 21 | eqid 2729 | . . . 4 ⊢ (𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s )))) = (𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s )))) | |
| 22 | ovex 7382 | . . . 4 ⊢ ((seqs𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 +s 1s ))) ∈ V | |
| 23 | 19, 20, 21, 22 | ovmpo 7509 | . . 3 ⊢ ((𝑁 ∈ V ∧ (seqs𝑀( + , 𝐹)‘𝑁) ∈ V) → (𝑁(𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))(seqs𝑀( + , 𝐹)‘𝑁)) = ((seqs𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 +s 1s )))) |
| 24 | 16, 17, 23 | sylancl 586 | . 2 ⊢ (𝜑 → (𝑁(𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))(seqs𝑀( + , 𝐹)‘𝑁)) = ((seqs𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 +s 1s )))) |
| 25 | 15, 24 | eqtrd 2764 | 1 ⊢ (𝜑 → (seqs𝑀( + , 𝐹)‘(𝑁 +s 1s )) = ((seqs𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 +s 1s )))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3436 〈cop 4583 ↦ cmpt 5173 ↾ cres 5621 “ cima 5622 ‘cfv 6482 (class class class)co 7349 ∈ cmpo 7351 ωcom 7799 reccrdg 8331 No csur 27549 1s c1s 27737 +s cadds 27871 seqscseqs 28182 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-ot 4586 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-nadd 8584 df-no 27552 df-slt 27553 df-bday 27554 df-sle 27655 df-sslt 27692 df-scut 27694 df-0s 27738 df-1s 27739 df-made 27757 df-old 27758 df-left 27760 df-right 27761 df-norec2 27861 df-adds 27872 df-seqs 28183 |
| This theorem is referenced by: expsp1 28321 |
| Copyright terms: Public domain | W3C validator |