MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqsp1 Structured version   Visualization version   GIF version

Theorem seqsp1 28261
Description: The value of the surreal sequence builder at a successor. (Contributed by Scott Fenton, 19-Apr-2025.)
Hypotheses
Ref Expression
seqsp1.1 (𝜑𝑀 No )
seqsp1.2 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) “ ω))
seqsp1.3 (𝜑𝑁𝑍)
Assertion
Ref Expression
seqsp1 (𝜑 → (seqs𝑀( + , 𝐹)‘(𝑁 +s 1s )) = ((seqs𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 +s 1s ))))

Proof of Theorem seqsp1
Dummy variables 𝑦 𝑧 𝑤 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqsp1.3 . . 3 (𝜑𝑁𝑍)
2 seqsp1.1 . . . 4 (𝜑𝑀 No )
3 eqidd 2734 . . . 4 (𝜑 → (rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀) ↾ ω) = (rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀) ↾ ω))
4 seqsp1.2 . . . . 5 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) “ ω))
5 oveq1 7362 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 +s 1s ) = (𝑦 +s 1s ))
65cbvmptv 5199 . . . . . . 7 (𝑥 ∈ V ↦ (𝑥 +s 1s )) = (𝑦 ∈ V ↦ (𝑦 +s 1s ))
7 rdgeq1 8339 . . . . . . 7 ((𝑥 ∈ V ↦ (𝑥 +s 1s )) = (𝑦 ∈ V ↦ (𝑦 +s 1s )) → rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) = rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀))
86, 7ax-mp 5 . . . . . 6 rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) = rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀)
98imaeq1i 6013 . . . . 5 (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) “ ω) = (rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀) “ ω)
104, 9eqtrdi 2784 . . . 4 (𝜑𝑍 = (rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀) “ ω))
11 fvexd 6846 . . . 4 (𝜑 → (𝐹𝑀) ∈ V)
12 eqidd 2734 . . . 4 (𝜑 → (rec((𝑦 ∈ V, 𝑧 ∈ V ↦ ⟨(𝑦 +s 1s ), (𝑦(𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))𝑧)⟩), ⟨𝑀, (𝐹𝑀)⟩) ↾ ω) = (rec((𝑦 ∈ V, 𝑧 ∈ V ↦ ⟨(𝑦 +s 1s ), (𝑦(𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))𝑧)⟩), ⟨𝑀, (𝐹𝑀)⟩) ↾ ω))
1312seqsval 28238 . . . 4 (𝜑 → seqs𝑀( + , 𝐹) = ran (rec((𝑦 ∈ V, 𝑧 ∈ V ↦ ⟨(𝑦 +s 1s ), (𝑦(𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))𝑧)⟩), ⟨𝑀, (𝐹𝑀)⟩) ↾ ω))
142, 3, 10, 11, 12, 13noseqrdgsuc 28258 . . 3 ((𝜑𝑁𝑍) → (seqs𝑀( + , 𝐹)‘(𝑁 +s 1s )) = (𝑁(𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))(seqs𝑀( + , 𝐹)‘𝑁)))
151, 14mpdan 687 . 2 (𝜑 → (seqs𝑀( + , 𝐹)‘(𝑁 +s 1s )) = (𝑁(𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))(seqs𝑀( + , 𝐹)‘𝑁)))
161elexd 3461 . . 3 (𝜑𝑁 ∈ V)
17 fvex 6844 . . 3 (seqs𝑀( + , 𝐹)‘𝑁) ∈ V
18 fvoveq1 7378 . . . . 5 (𝑤 = 𝑁 → (𝐹‘(𝑤 +s 1s )) = (𝐹‘(𝑁 +s 1s )))
1918oveq2d 7371 . . . 4 (𝑤 = 𝑁 → (𝑡 + (𝐹‘(𝑤 +s 1s ))) = (𝑡 + (𝐹‘(𝑁 +s 1s ))))
20 oveq1 7362 . . . 4 (𝑡 = (seqs𝑀( + , 𝐹)‘𝑁) → (𝑡 + (𝐹‘(𝑁 +s 1s ))) = ((seqs𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 +s 1s ))))
21 eqid 2733 . . . 4 (𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s )))) = (𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))
22 ovex 7388 . . . 4 ((seqs𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 +s 1s ))) ∈ V
2319, 20, 21, 22ovmpo 7515 . . 3 ((𝑁 ∈ V ∧ (seqs𝑀( + , 𝐹)‘𝑁) ∈ V) → (𝑁(𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))(seqs𝑀( + , 𝐹)‘𝑁)) = ((seqs𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 +s 1s ))))
2416, 17, 23sylancl 586 . 2 (𝜑 → (𝑁(𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))(seqs𝑀( + , 𝐹)‘𝑁)) = ((seqs𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 +s 1s ))))
2515, 24eqtrd 2768 1 (𝜑 → (seqs𝑀( + , 𝐹)‘(𝑁 +s 1s )) = ((seqs𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 +s 1s ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  Vcvv 3437  cop 4583  cmpt 5176  cres 5623  cima 5624  cfv 6489  (class class class)co 7355  cmpo 7357  ωcom 7805  reccrdg 8337   No csur 27598   1s c1s 27787   +s cadds 27922  seqscseqs 28233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-nadd 8590  df-no 27601  df-slt 27602  df-bday 27603  df-sle 27704  df-sslt 27741  df-scut 27743  df-0s 27788  df-1s 27789  df-made 27808  df-old 27809  df-left 27811  df-right 27812  df-norec2 27912  df-adds 27923  df-seqs 28234
This theorem is referenced by:  expsp1  28372
  Copyright terms: Public domain W3C validator