![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > seqsp1 | Structured version Visualization version GIF version |
Description: The value of the surreal sequence builder at a successor. (Contributed by Scott Fenton, 19-Apr-2025.) |
Ref | Expression |
---|---|
seqsp1.1 | ⊢ (𝜑 → 𝑀 ∈ No ) |
seqsp1.2 | ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) “ ω)) |
seqsp1.3 | ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
Ref | Expression |
---|---|
seqsp1 | ⊢ (𝜑 → (seqs𝑀( + , 𝐹)‘(𝑁 +s 1s )) = ((seqs𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 +s 1s )))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqsp1.3 | . . 3 ⊢ (𝜑 → 𝑁 ∈ 𝑍) | |
2 | seqsp1.1 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ No ) | |
3 | eqidd 2729 | . . . 4 ⊢ (𝜑 → (rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀) ↾ ω) = (rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀) ↾ ω)) | |
4 | seqsp1.2 | . . . . 5 ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) “ ω)) | |
5 | oveq1 7433 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝑥 +s 1s ) = (𝑦 +s 1s )) | |
6 | 5 | cbvmptv 5265 | . . . . . . 7 ⊢ (𝑥 ∈ V ↦ (𝑥 +s 1s )) = (𝑦 ∈ V ↦ (𝑦 +s 1s )) |
7 | rdgeq1 8438 | . . . . . . 7 ⊢ ((𝑥 ∈ V ↦ (𝑥 +s 1s )) = (𝑦 ∈ V ↦ (𝑦 +s 1s )) → rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) = rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀)) | |
8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) = rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀) |
9 | 8 | imaeq1i 6065 | . . . . 5 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) “ ω) = (rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀) “ ω) |
10 | 4, 9 | eqtrdi 2784 | . . . 4 ⊢ (𝜑 → 𝑍 = (rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀) “ ω)) |
11 | fvexd 6917 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑀) ∈ V) | |
12 | eqidd 2729 | . . . 4 ⊢ (𝜑 → (rec((𝑦 ∈ V, 𝑧 ∈ V ↦ 〈(𝑦 +s 1s ), (𝑦(𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))𝑧)〉), 〈𝑀, (𝐹‘𝑀)〉) ↾ ω) = (rec((𝑦 ∈ V, 𝑧 ∈ V ↦ 〈(𝑦 +s 1s ), (𝑦(𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))𝑧)〉), 〈𝑀, (𝐹‘𝑀)〉) ↾ ω)) | |
13 | 12 | seqsval 28181 | . . . 4 ⊢ (𝜑 → seqs𝑀( + , 𝐹) = ran (rec((𝑦 ∈ V, 𝑧 ∈ V ↦ 〈(𝑦 +s 1s ), (𝑦(𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))𝑧)〉), 〈𝑀, (𝐹‘𝑀)〉) ↾ ω)) |
14 | 2, 3, 10, 11, 12, 13 | noseqrdgsuc 28201 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍) → (seqs𝑀( + , 𝐹)‘(𝑁 +s 1s )) = (𝑁(𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))(seqs𝑀( + , 𝐹)‘𝑁))) |
15 | 1, 14 | mpdan 685 | . 2 ⊢ (𝜑 → (seqs𝑀( + , 𝐹)‘(𝑁 +s 1s )) = (𝑁(𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))(seqs𝑀( + , 𝐹)‘𝑁))) |
16 | 1 | elexd 3494 | . . 3 ⊢ (𝜑 → 𝑁 ∈ V) |
17 | fvex 6915 | . . 3 ⊢ (seqs𝑀( + , 𝐹)‘𝑁) ∈ V | |
18 | fvoveq1 7449 | . . . . 5 ⊢ (𝑤 = 𝑁 → (𝐹‘(𝑤 +s 1s )) = (𝐹‘(𝑁 +s 1s ))) | |
19 | 18 | oveq2d 7442 | . . . 4 ⊢ (𝑤 = 𝑁 → (𝑡 + (𝐹‘(𝑤 +s 1s ))) = (𝑡 + (𝐹‘(𝑁 +s 1s )))) |
20 | oveq1 7433 | . . . 4 ⊢ (𝑡 = (seqs𝑀( + , 𝐹)‘𝑁) → (𝑡 + (𝐹‘(𝑁 +s 1s ))) = ((seqs𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 +s 1s )))) | |
21 | eqid 2728 | . . . 4 ⊢ (𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s )))) = (𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s )))) | |
22 | ovex 7459 | . . . 4 ⊢ ((seqs𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 +s 1s ))) ∈ V | |
23 | 19, 20, 21, 22 | ovmpo 7587 | . . 3 ⊢ ((𝑁 ∈ V ∧ (seqs𝑀( + , 𝐹)‘𝑁) ∈ V) → (𝑁(𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))(seqs𝑀( + , 𝐹)‘𝑁)) = ((seqs𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 +s 1s )))) |
24 | 16, 17, 23 | sylancl 584 | . 2 ⊢ (𝜑 → (𝑁(𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))(seqs𝑀( + , 𝐹)‘𝑁)) = ((seqs𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 +s 1s )))) |
25 | 15, 24 | eqtrd 2768 | 1 ⊢ (𝜑 → (seqs𝑀( + , 𝐹)‘(𝑁 +s 1s )) = ((seqs𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 +s 1s )))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 Vcvv 3473 〈cop 4638 ↦ cmpt 5235 ↾ cres 5684 “ cima 5685 ‘cfv 6553 (class class class)co 7426 ∈ cmpo 7428 ωcom 7876 reccrdg 8436 No csur 27593 1s c1s 27776 +s cadds 27896 seqscseqs 28176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-ot 4641 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-2o 8494 df-oadd 8497 df-nadd 8693 df-no 27596 df-slt 27597 df-bday 27598 df-sle 27698 df-sslt 27734 df-scut 27736 df-0s 27777 df-1s 27778 df-made 27794 df-old 27795 df-left 27797 df-right 27798 df-norec2 27886 df-adds 27897 df-seqs 28177 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |