MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqsp1 Structured version   Visualization version   GIF version

Theorem seqsp1 28181
Description: The value of the surreal sequence builder at a successor. (Contributed by Scott Fenton, 19-Apr-2025.)
Hypotheses
Ref Expression
seqsp1.1 (𝜑𝑀 No )
seqsp1.2 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) “ ω))
seqsp1.3 (𝜑𝑁𝑍)
Assertion
Ref Expression
seqsp1 (𝜑 → (seqs𝑀( + , 𝐹)‘(𝑁 +s 1s )) = ((seqs𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 +s 1s ))))

Proof of Theorem seqsp1
Dummy variables 𝑦 𝑧 𝑤 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqsp1.3 . . 3 (𝜑𝑁𝑍)
2 seqsp1.1 . . . 4 (𝜑𝑀 No )
3 eqidd 2730 . . . 4 (𝜑 → (rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀) ↾ ω) = (rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀) ↾ ω))
4 seqsp1.2 . . . . 5 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) “ ω))
5 oveq1 7376 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 +s 1s ) = (𝑦 +s 1s ))
65cbvmptv 5206 . . . . . . 7 (𝑥 ∈ V ↦ (𝑥 +s 1s )) = (𝑦 ∈ V ↦ (𝑦 +s 1s ))
7 rdgeq1 8356 . . . . . . 7 ((𝑥 ∈ V ↦ (𝑥 +s 1s )) = (𝑦 ∈ V ↦ (𝑦 +s 1s )) → rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) = rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀))
86, 7ax-mp 5 . . . . . 6 rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) = rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀)
98imaeq1i 6017 . . . . 5 (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) “ ω) = (rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀) “ ω)
104, 9eqtrdi 2780 . . . 4 (𝜑𝑍 = (rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀) “ ω))
11 fvexd 6855 . . . 4 (𝜑 → (𝐹𝑀) ∈ V)
12 eqidd 2730 . . . 4 (𝜑 → (rec((𝑦 ∈ V, 𝑧 ∈ V ↦ ⟨(𝑦 +s 1s ), (𝑦(𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))𝑧)⟩), ⟨𝑀, (𝐹𝑀)⟩) ↾ ω) = (rec((𝑦 ∈ V, 𝑧 ∈ V ↦ ⟨(𝑦 +s 1s ), (𝑦(𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))𝑧)⟩), ⟨𝑀, (𝐹𝑀)⟩) ↾ ω))
1312seqsval 28158 . . . 4 (𝜑 → seqs𝑀( + , 𝐹) = ran (rec((𝑦 ∈ V, 𝑧 ∈ V ↦ ⟨(𝑦 +s 1s ), (𝑦(𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))𝑧)⟩), ⟨𝑀, (𝐹𝑀)⟩) ↾ ω))
142, 3, 10, 11, 12, 13noseqrdgsuc 28178 . . 3 ((𝜑𝑁𝑍) → (seqs𝑀( + , 𝐹)‘(𝑁 +s 1s )) = (𝑁(𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))(seqs𝑀( + , 𝐹)‘𝑁)))
151, 14mpdan 687 . 2 (𝜑 → (seqs𝑀( + , 𝐹)‘(𝑁 +s 1s )) = (𝑁(𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))(seqs𝑀( + , 𝐹)‘𝑁)))
161elexd 3468 . . 3 (𝜑𝑁 ∈ V)
17 fvex 6853 . . 3 (seqs𝑀( + , 𝐹)‘𝑁) ∈ V
18 fvoveq1 7392 . . . . 5 (𝑤 = 𝑁 → (𝐹‘(𝑤 +s 1s )) = (𝐹‘(𝑁 +s 1s )))
1918oveq2d 7385 . . . 4 (𝑤 = 𝑁 → (𝑡 + (𝐹‘(𝑤 +s 1s ))) = (𝑡 + (𝐹‘(𝑁 +s 1s ))))
20 oveq1 7376 . . . 4 (𝑡 = (seqs𝑀( + , 𝐹)‘𝑁) → (𝑡 + (𝐹‘(𝑁 +s 1s ))) = ((seqs𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 +s 1s ))))
21 eqid 2729 . . . 4 (𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s )))) = (𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))
22 ovex 7402 . . . 4 ((seqs𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 +s 1s ))) ∈ V
2319, 20, 21, 22ovmpo 7529 . . 3 ((𝑁 ∈ V ∧ (seqs𝑀( + , 𝐹)‘𝑁) ∈ V) → (𝑁(𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))(seqs𝑀( + , 𝐹)‘𝑁)) = ((seqs𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 +s 1s ))))
2416, 17, 23sylancl 586 . 2 (𝜑 → (𝑁(𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))(seqs𝑀( + , 𝐹)‘𝑁)) = ((seqs𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 +s 1s ))))
2515, 24eqtrd 2764 1 (𝜑 → (seqs𝑀( + , 𝐹)‘(𝑁 +s 1s )) = ((seqs𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 +s 1s ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3444  cop 4591  cmpt 5183  cres 5633  cima 5634  cfv 6499  (class class class)co 7369  cmpo 7371  ωcom 7822  reccrdg 8354   No csur 27527   1s c1s 27711   +s cadds 27842  seqscseqs 28153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-nadd 8607  df-no 27530  df-slt 27531  df-bday 27532  df-sle 27633  df-sslt 27669  df-scut 27671  df-0s 27712  df-1s 27713  df-made 27731  df-old 27732  df-left 27734  df-right 27735  df-norec2 27832  df-adds 27843  df-seqs 28154
This theorem is referenced by:  expsp1  28291
  Copyright terms: Public domain W3C validator