| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > seqsp1 | Structured version Visualization version GIF version | ||
| Description: The value of the surreal sequence builder at a successor. (Contributed by Scott Fenton, 19-Apr-2025.) |
| Ref | Expression |
|---|---|
| seqsp1.1 | ⊢ (𝜑 → 𝑀 ∈ No ) |
| seqsp1.2 | ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) “ ω)) |
| seqsp1.3 | ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
| Ref | Expression |
|---|---|
| seqsp1 | ⊢ (𝜑 → (seqs𝑀( + , 𝐹)‘(𝑁 +s 1s )) = ((seqs𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 +s 1s )))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqsp1.3 | . . 3 ⊢ (𝜑 → 𝑁 ∈ 𝑍) | |
| 2 | seqsp1.1 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ No ) | |
| 3 | eqidd 2732 | . . . 4 ⊢ (𝜑 → (rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀) ↾ ω) = (rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀) ↾ ω)) | |
| 4 | seqsp1.2 | . . . . 5 ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) “ ω)) | |
| 5 | oveq1 7348 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝑥 +s 1s ) = (𝑦 +s 1s )) | |
| 6 | 5 | cbvmptv 5190 | . . . . . . 7 ⊢ (𝑥 ∈ V ↦ (𝑥 +s 1s )) = (𝑦 ∈ V ↦ (𝑦 +s 1s )) |
| 7 | rdgeq1 8325 | . . . . . . 7 ⊢ ((𝑥 ∈ V ↦ (𝑥 +s 1s )) = (𝑦 ∈ V ↦ (𝑦 +s 1s )) → rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) = rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀)) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) = rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀) |
| 9 | 8 | imaeq1i 6001 | . . . . 5 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) “ ω) = (rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀) “ ω) |
| 10 | 4, 9 | eqtrdi 2782 | . . . 4 ⊢ (𝜑 → 𝑍 = (rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀) “ ω)) |
| 11 | fvexd 6832 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑀) ∈ V) | |
| 12 | eqidd 2732 | . . . 4 ⊢ (𝜑 → (rec((𝑦 ∈ V, 𝑧 ∈ V ↦ 〈(𝑦 +s 1s ), (𝑦(𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))𝑧)〉), 〈𝑀, (𝐹‘𝑀)〉) ↾ ω) = (rec((𝑦 ∈ V, 𝑧 ∈ V ↦ 〈(𝑦 +s 1s ), (𝑦(𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))𝑧)〉), 〈𝑀, (𝐹‘𝑀)〉) ↾ ω)) | |
| 13 | 12 | seqsval 28213 | . . . 4 ⊢ (𝜑 → seqs𝑀( + , 𝐹) = ran (rec((𝑦 ∈ V, 𝑧 ∈ V ↦ 〈(𝑦 +s 1s ), (𝑦(𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))𝑧)〉), 〈𝑀, (𝐹‘𝑀)〉) ↾ ω)) |
| 14 | 2, 3, 10, 11, 12, 13 | noseqrdgsuc 28233 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍) → (seqs𝑀( + , 𝐹)‘(𝑁 +s 1s )) = (𝑁(𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))(seqs𝑀( + , 𝐹)‘𝑁))) |
| 15 | 1, 14 | mpdan 687 | . 2 ⊢ (𝜑 → (seqs𝑀( + , 𝐹)‘(𝑁 +s 1s )) = (𝑁(𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))(seqs𝑀( + , 𝐹)‘𝑁))) |
| 16 | 1 | elexd 3460 | . . 3 ⊢ (𝜑 → 𝑁 ∈ V) |
| 17 | fvex 6830 | . . 3 ⊢ (seqs𝑀( + , 𝐹)‘𝑁) ∈ V | |
| 18 | fvoveq1 7364 | . . . . 5 ⊢ (𝑤 = 𝑁 → (𝐹‘(𝑤 +s 1s )) = (𝐹‘(𝑁 +s 1s ))) | |
| 19 | 18 | oveq2d 7357 | . . . 4 ⊢ (𝑤 = 𝑁 → (𝑡 + (𝐹‘(𝑤 +s 1s ))) = (𝑡 + (𝐹‘(𝑁 +s 1s )))) |
| 20 | oveq1 7348 | . . . 4 ⊢ (𝑡 = (seqs𝑀( + , 𝐹)‘𝑁) → (𝑡 + (𝐹‘(𝑁 +s 1s ))) = ((seqs𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 +s 1s )))) | |
| 21 | eqid 2731 | . . . 4 ⊢ (𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s )))) = (𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s )))) | |
| 22 | ovex 7374 | . . . 4 ⊢ ((seqs𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 +s 1s ))) ∈ V | |
| 23 | 19, 20, 21, 22 | ovmpo 7501 | . . 3 ⊢ ((𝑁 ∈ V ∧ (seqs𝑀( + , 𝐹)‘𝑁) ∈ V) → (𝑁(𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))(seqs𝑀( + , 𝐹)‘𝑁)) = ((seqs𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 +s 1s )))) |
| 24 | 16, 17, 23 | sylancl 586 | . 2 ⊢ (𝜑 → (𝑁(𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))(seqs𝑀( + , 𝐹)‘𝑁)) = ((seqs𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 +s 1s )))) |
| 25 | 15, 24 | eqtrd 2766 | 1 ⊢ (𝜑 → (seqs𝑀( + , 𝐹)‘(𝑁 +s 1s )) = ((seqs𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 +s 1s )))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4577 ↦ cmpt 5167 ↾ cres 5613 “ cima 5614 ‘cfv 6476 (class class class)co 7341 ∈ cmpo 7343 ωcom 7791 reccrdg 8323 No csur 27573 1s c1s 27762 +s cadds 27897 seqscseqs 28208 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-ot 4580 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-nadd 8576 df-no 27576 df-slt 27577 df-bday 27578 df-sle 27679 df-sslt 27716 df-scut 27718 df-0s 27763 df-1s 27764 df-made 27783 df-old 27784 df-left 27786 df-right 27787 df-norec2 27887 df-adds 27898 df-seqs 28209 |
| This theorem is referenced by: expsp1 28347 |
| Copyright terms: Public domain | W3C validator |