MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqs1 Structured version   Visualization version   GIF version

Theorem seqs1 28241
Description: The value of the surreal sequence bulder function at its initial value. (Contributed by Scott Fenton, 19-Apr-2025.)
Hypothesis
Ref Expression
seqs1.1 (𝜑𝑀 No )
Assertion
Ref Expression
seqs1 (𝜑 → (seqs𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))

Proof of Theorem seqs1
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqs1.1 . 2 (𝜑𝑀 No )
2 eqidd 2734 . 2 (𝜑 → (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) ↾ ω))
3 eqidd 2734 . 2 (𝜑 → (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) “ ω) = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) “ ω))
4 fvexd 6843 . 2 (𝜑 → (𝐹𝑀) ∈ V)
5 eqidd 2734 . 2 (𝜑 → (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s ))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩) ↾ ω) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s ))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩) ↾ ω))
65seqsval 28219 . 2 (𝜑 → seqs𝑀( + , 𝐹) = ran (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s ))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩) ↾ ω))
71, 2, 3, 4, 5, 6noseqrdg0 28238 1 (𝜑 → (seqs𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  Vcvv 3437  cop 4581  cmpt 5174  cres 5621  cima 5622  cfv 6486  (class class class)co 7352  cmpo 7354  ωcom 7802  reccrdg 8334   No csur 27579   1s c1s 27768   +s cadds 27903  seqscseqs 28214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-ot 4584  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-oadd 8395  df-nadd 8587  df-no 27582  df-slt 27583  df-bday 27584  df-sle 27685  df-sslt 27722  df-scut 27724  df-0s 27769  df-1s 27770  df-made 27789  df-old 27790  df-left 27792  df-right 27793  df-norec2 27893  df-adds 27904  df-seqs 28215
This theorem is referenced by:  exps1  28352
  Copyright terms: Public domain W3C validator