| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > seqsfn | Structured version Visualization version GIF version | ||
| Description: The surreal sequence builder is a function. (Contributed by Scott Fenton, 19-Apr-2025.) |
| Ref | Expression |
|---|---|
| seqsfn.1 | ⊢ (𝜑 → 𝑀 ∈ No ) |
| seqsfn.2 | ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) “ ω)) |
| Ref | Expression |
|---|---|
| seqsfn | ⊢ (𝜑 → seqs𝑀( + , 𝐹) Fn 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqsfn.1 | . 2 ⊢ (𝜑 → 𝑀 ∈ No ) | |
| 2 | eqidd 2735 | . 2 ⊢ (𝜑 → (rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀) ↾ ω) = (rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀) ↾ ω)) | |
| 3 | seqsfn.2 | . . 3 ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) “ ω)) | |
| 4 | oveq1 7420 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 +s 1s ) = (𝑦 +s 1s )) | |
| 5 | 4 | cbvmptv 5235 | . . . . 5 ⊢ (𝑥 ∈ V ↦ (𝑥 +s 1s )) = (𝑦 ∈ V ↦ (𝑦 +s 1s )) |
| 6 | rdgeq1 8433 | . . . . 5 ⊢ ((𝑥 ∈ V ↦ (𝑥 +s 1s )) = (𝑦 ∈ V ↦ (𝑦 +s 1s )) → rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) = rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀)) | |
| 7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) = rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀) |
| 8 | 7 | imaeq1i 6055 | . . 3 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) “ ω) = (rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀) “ ω) |
| 9 | 3, 8 | eqtrdi 2785 | . 2 ⊢ (𝜑 → 𝑍 = (rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀) “ ω)) |
| 10 | fvexd 6901 | . 2 ⊢ (𝜑 → (𝐹‘𝑀) ∈ V) | |
| 11 | eqidd 2735 | . 2 ⊢ (𝜑 → (rec((𝑦 ∈ V, 𝑧 ∈ V ↦ 〈(𝑦 +s 1s ), (𝑦(𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))𝑧)〉), 〈𝑀, (𝐹‘𝑀)〉) ↾ ω) = (rec((𝑦 ∈ V, 𝑧 ∈ V ↦ 〈(𝑦 +s 1s ), (𝑦(𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))𝑧)〉), 〈𝑀, (𝐹‘𝑀)〉) ↾ ω)) | |
| 12 | 11 | seqsval 28231 | . 2 ⊢ (𝜑 → seqs𝑀( + , 𝐹) = ran (rec((𝑦 ∈ V, 𝑧 ∈ V ↦ 〈(𝑦 +s 1s ), (𝑦(𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))𝑧)〉), 〈𝑀, (𝐹‘𝑀)〉) ↾ ω)) |
| 13 | 1, 2, 9, 10, 11, 12 | noseqrdgfn 28249 | 1 ⊢ (𝜑 → seqs𝑀( + , 𝐹) Fn 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3463 〈cop 4612 ↦ cmpt 5205 ↾ cres 5667 “ cima 5668 Fn wfn 6536 ‘cfv 6541 (class class class)co 7413 ∈ cmpo 7415 ωcom 7869 reccrdg 8431 No csur 27621 1s c1s 27805 +s cadds 27929 seqscseqs 28226 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-ot 4615 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-oadd 8492 df-nadd 8686 df-no 27624 df-slt 27625 df-bday 27626 df-sle 27727 df-sslt 27763 df-scut 27765 df-0s 27806 df-1s 27807 df-made 27823 df-old 27824 df-left 27826 df-right 27827 df-norec2 27919 df-adds 27930 df-seqs 28227 |
| This theorem is referenced by: seqn0sfn 28294 |
| Copyright terms: Public domain | W3C validator |