MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqsfn Structured version   Visualization version   GIF version

Theorem seqsfn 28252
Description: The surreal sequence builder is a function. (Contributed by Scott Fenton, 19-Apr-2025.)
Hypotheses
Ref Expression
seqsfn.1 (𝜑𝑀 No )
seqsfn.2 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) “ ω))
Assertion
Ref Expression
seqsfn (𝜑 → seqs𝑀( + , 𝐹) Fn 𝑍)

Proof of Theorem seqsfn
Dummy variables 𝑡 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqsfn.1 . 2 (𝜑𝑀 No )
2 eqidd 2735 . 2 (𝜑 → (rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀) ↾ ω) = (rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀) ↾ ω))
3 seqsfn.2 . . 3 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) “ ω))
4 oveq1 7420 . . . . . 6 (𝑥 = 𝑦 → (𝑥 +s 1s ) = (𝑦 +s 1s ))
54cbvmptv 5235 . . . . 5 (𝑥 ∈ V ↦ (𝑥 +s 1s )) = (𝑦 ∈ V ↦ (𝑦 +s 1s ))
6 rdgeq1 8433 . . . . 5 ((𝑥 ∈ V ↦ (𝑥 +s 1s )) = (𝑦 ∈ V ↦ (𝑦 +s 1s )) → rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) = rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀))
75, 6ax-mp 5 . . . 4 rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) = rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀)
87imaeq1i 6055 . . 3 (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) “ ω) = (rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀) “ ω)
93, 8eqtrdi 2785 . 2 (𝜑𝑍 = (rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀) “ ω))
10 fvexd 6901 . 2 (𝜑 → (𝐹𝑀) ∈ V)
11 eqidd 2735 . 2 (𝜑 → (rec((𝑦 ∈ V, 𝑧 ∈ V ↦ ⟨(𝑦 +s 1s ), (𝑦(𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))𝑧)⟩), ⟨𝑀, (𝐹𝑀)⟩) ↾ ω) = (rec((𝑦 ∈ V, 𝑧 ∈ V ↦ ⟨(𝑦 +s 1s ), (𝑦(𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))𝑧)⟩), ⟨𝑀, (𝐹𝑀)⟩) ↾ ω))
1211seqsval 28231 . 2 (𝜑 → seqs𝑀( + , 𝐹) = ran (rec((𝑦 ∈ V, 𝑧 ∈ V ↦ ⟨(𝑦 +s 1s ), (𝑦(𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))𝑧)⟩), ⟨𝑀, (𝐹𝑀)⟩) ↾ ω))
131, 2, 9, 10, 11, 12noseqrdgfn 28249 1 (𝜑 → seqs𝑀( + , 𝐹) Fn 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  Vcvv 3463  cop 4612  cmpt 5205  cres 5667  cima 5668   Fn wfn 6536  cfv 6541  (class class class)co 7413  cmpo 7415  ωcom 7869  reccrdg 8431   No csur 27621   1s c1s 27805   +s cadds 27929  seqscseqs 28226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-oadd 8492  df-nadd 8686  df-no 27624  df-slt 27625  df-bday 27626  df-sle 27727  df-sslt 27763  df-scut 27765  df-0s 27806  df-1s 27807  df-made 27823  df-old 27824  df-left 27826  df-right 27827  df-norec2 27919  df-adds 27930  df-seqs 28227
This theorem is referenced by:  seqn0sfn  28294
  Copyright terms: Public domain W3C validator