| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > seqsfn | Structured version Visualization version GIF version | ||
| Description: The surreal sequence builder is a function. (Contributed by Scott Fenton, 19-Apr-2025.) |
| Ref | Expression |
|---|---|
| seqsfn.1 | ⊢ (𝜑 → 𝑀 ∈ No ) |
| seqsfn.2 | ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) “ ω)) |
| Ref | Expression |
|---|---|
| seqsfn | ⊢ (𝜑 → seqs𝑀( + , 𝐹) Fn 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqsfn.1 | . 2 ⊢ (𝜑 → 𝑀 ∈ No ) | |
| 2 | eqidd 2732 | . 2 ⊢ (𝜑 → (rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀) ↾ ω) = (rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀) ↾ ω)) | |
| 3 | seqsfn.2 | . . 3 ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) “ ω)) | |
| 4 | oveq1 7353 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 +s 1s ) = (𝑦 +s 1s )) | |
| 5 | 4 | cbvmptv 5193 | . . . . 5 ⊢ (𝑥 ∈ V ↦ (𝑥 +s 1s )) = (𝑦 ∈ V ↦ (𝑦 +s 1s )) |
| 6 | rdgeq1 8330 | . . . . 5 ⊢ ((𝑥 ∈ V ↦ (𝑥 +s 1s )) = (𝑦 ∈ V ↦ (𝑦 +s 1s )) → rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) = rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀)) | |
| 7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) = rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀) |
| 8 | 7 | imaeq1i 6005 | . . 3 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) “ ω) = (rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀) “ ω) |
| 9 | 3, 8 | eqtrdi 2782 | . 2 ⊢ (𝜑 → 𝑍 = (rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀) “ ω)) |
| 10 | fvexd 6837 | . 2 ⊢ (𝜑 → (𝐹‘𝑀) ∈ V) | |
| 11 | eqidd 2732 | . 2 ⊢ (𝜑 → (rec((𝑦 ∈ V, 𝑧 ∈ V ↦ 〈(𝑦 +s 1s ), (𝑦(𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))𝑧)〉), 〈𝑀, (𝐹‘𝑀)〉) ↾ ω) = (rec((𝑦 ∈ V, 𝑧 ∈ V ↦ 〈(𝑦 +s 1s ), (𝑦(𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))𝑧)〉), 〈𝑀, (𝐹‘𝑀)〉) ↾ ω)) | |
| 12 | 11 | seqsval 28218 | . 2 ⊢ (𝜑 → seqs𝑀( + , 𝐹) = ran (rec((𝑦 ∈ V, 𝑧 ∈ V ↦ 〈(𝑦 +s 1s ), (𝑦(𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))𝑧)〉), 〈𝑀, (𝐹‘𝑀)〉) ↾ ω)) |
| 13 | 1, 2, 9, 10, 11, 12 | noseqrdgfn 28236 | 1 ⊢ (𝜑 → seqs𝑀( + , 𝐹) Fn 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4579 ↦ cmpt 5170 ↾ cres 5616 “ cima 5617 Fn wfn 6476 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 ωcom 7796 reccrdg 8328 No csur 27578 1s c1s 27767 +s cadds 27902 seqscseqs 28213 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-ot 4582 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-nadd 8581 df-no 27581 df-slt 27582 df-bday 27583 df-sle 27684 df-sslt 27721 df-scut 27723 df-0s 27768 df-1s 27769 df-made 27788 df-old 27789 df-left 27791 df-right 27792 df-norec2 27892 df-adds 27903 df-seqs 28214 |
| This theorem is referenced by: seqn0sfn 28286 |
| Copyright terms: Public domain | W3C validator |