MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqsfn Structured version   Visualization version   GIF version

Theorem seqsfn 28239
Description: The surreal sequence builder is a function. (Contributed by Scott Fenton, 19-Apr-2025.)
Hypotheses
Ref Expression
seqsfn.1 (𝜑𝑀 No )
seqsfn.2 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) “ ω))
Assertion
Ref Expression
seqsfn (𝜑 → seqs𝑀( + , 𝐹) Fn 𝑍)

Proof of Theorem seqsfn
Dummy variables 𝑡 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqsfn.1 . 2 (𝜑𝑀 No )
2 eqidd 2732 . 2 (𝜑 → (rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀) ↾ ω) = (rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀) ↾ ω))
3 seqsfn.2 . . 3 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) “ ω))
4 oveq1 7353 . . . . . 6 (𝑥 = 𝑦 → (𝑥 +s 1s ) = (𝑦 +s 1s ))
54cbvmptv 5193 . . . . 5 (𝑥 ∈ V ↦ (𝑥 +s 1s )) = (𝑦 ∈ V ↦ (𝑦 +s 1s ))
6 rdgeq1 8330 . . . . 5 ((𝑥 ∈ V ↦ (𝑥 +s 1s )) = (𝑦 ∈ V ↦ (𝑦 +s 1s )) → rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) = rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀))
75, 6ax-mp 5 . . . 4 rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) = rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀)
87imaeq1i 6005 . . 3 (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) “ ω) = (rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀) “ ω)
93, 8eqtrdi 2782 . 2 (𝜑𝑍 = (rec((𝑦 ∈ V ↦ (𝑦 +s 1s )), 𝑀) “ ω))
10 fvexd 6837 . 2 (𝜑 → (𝐹𝑀) ∈ V)
11 eqidd 2732 . 2 (𝜑 → (rec((𝑦 ∈ V, 𝑧 ∈ V ↦ ⟨(𝑦 +s 1s ), (𝑦(𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))𝑧)⟩), ⟨𝑀, (𝐹𝑀)⟩) ↾ ω) = (rec((𝑦 ∈ V, 𝑧 ∈ V ↦ ⟨(𝑦 +s 1s ), (𝑦(𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))𝑧)⟩), ⟨𝑀, (𝐹𝑀)⟩) ↾ ω))
1211seqsval 28218 . 2 (𝜑 → seqs𝑀( + , 𝐹) = ran (rec((𝑦 ∈ V, 𝑧 ∈ V ↦ ⟨(𝑦 +s 1s ), (𝑦(𝑤 ∈ V, 𝑡 ∈ V ↦ (𝑡 + (𝐹‘(𝑤 +s 1s ))))𝑧)⟩), ⟨𝑀, (𝐹𝑀)⟩) ↾ ω))
131, 2, 9, 10, 11, 12noseqrdgfn 28236 1 (𝜑 → seqs𝑀( + , 𝐹) Fn 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  cop 4579  cmpt 5170  cres 5616  cima 5617   Fn wfn 6476  cfv 6481  (class class class)co 7346  cmpo 7348  ωcom 7796  reccrdg 8328   No csur 27578   1s c1s 27767   +s cadds 27902  seqscseqs 28213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-ot 4582  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-nadd 8581  df-no 27581  df-slt 27582  df-bday 27583  df-sle 27684  df-sslt 27721  df-scut 27723  df-0s 27768  df-1s 27769  df-made 27788  df-old 27789  df-left 27791  df-right 27792  df-norec2 27892  df-adds 27903  df-seqs 28214
This theorem is referenced by:  seqn0sfn  28286
  Copyright terms: Public domain W3C validator