| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sitgf | Structured version Visualization version GIF version | ||
| Description: The integral for simple functions is itself a function. (Contributed by Thierry Arnoux, 13-Feb-2018.) |
| Ref | Expression |
|---|---|
| sitgval.b | ⊢ 𝐵 = (Base‘𝑊) |
| sitgval.j | ⊢ 𝐽 = (TopOpen‘𝑊) |
| sitgval.s | ⊢ 𝑆 = (sigaGen‘𝐽) |
| sitgval.0 | ⊢ 0 = (0g‘𝑊) |
| sitgval.x | ⊢ · = ( ·𝑠 ‘𝑊) |
| sitgval.h | ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) |
| sitgval.1 | ⊢ (𝜑 → 𝑊 ∈ 𝑉) |
| sitgval.2 | ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) |
| sitgf.1 | ⊢ ((𝜑 ∧ 𝑓 ∈ dom (𝑊sitg𝑀)) → ((𝑊sitg𝑀)‘𝑓) ∈ 𝐵) |
| Ref | Expression |
|---|---|
| sitgf | ⊢ (𝜑 → (𝑊sitg𝑀):dom (𝑊sitg𝑀)⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funmpt 6584 | . . . 4 ⊢ Fun (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡𝑓 “ {𝑥}))) · 𝑥)))) | |
| 2 | sitgval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑊) | |
| 3 | sitgval.j | . . . . . 6 ⊢ 𝐽 = (TopOpen‘𝑊) | |
| 4 | sitgval.s | . . . . . 6 ⊢ 𝑆 = (sigaGen‘𝐽) | |
| 5 | sitgval.0 | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
| 6 | sitgval.x | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 7 | sitgval.h | . . . . . 6 ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) | |
| 8 | sitgval.1 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ 𝑉) | |
| 9 | sitgval.2 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) | |
| 10 | 2, 3, 4, 5, 6, 7, 8, 9 | sitgval 34293 | . . . . 5 ⊢ (𝜑 → (𝑊sitg𝑀) = (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡𝑓 “ {𝑥}))) · 𝑥))))) |
| 11 | 10 | funeqd 6568 | . . . 4 ⊢ (𝜑 → (Fun (𝑊sitg𝑀) ↔ Fun (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡𝑓 “ {𝑥}))) · 𝑥)))))) |
| 12 | 1, 11 | mpbiri 258 | . . 3 ⊢ (𝜑 → Fun (𝑊sitg𝑀)) |
| 13 | 12 | funfnd 6577 | . 2 ⊢ (𝜑 → (𝑊sitg𝑀) Fn dom (𝑊sitg𝑀)) |
| 14 | sitgf.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ dom (𝑊sitg𝑀)) → ((𝑊sitg𝑀)‘𝑓) ∈ 𝐵) | |
| 15 | 14 | ralrimiva 3133 | . . 3 ⊢ (𝜑 → ∀𝑓 ∈ dom (𝑊sitg𝑀)((𝑊sitg𝑀)‘𝑓) ∈ 𝐵) |
| 16 | fnfvrnss 7121 | . . 3 ⊢ (((𝑊sitg𝑀) Fn dom (𝑊sitg𝑀) ∧ ∀𝑓 ∈ dom (𝑊sitg𝑀)((𝑊sitg𝑀)‘𝑓) ∈ 𝐵) → ran (𝑊sitg𝑀) ⊆ 𝐵) | |
| 17 | 13, 15, 16 | syl2anc 584 | . 2 ⊢ (𝜑 → ran (𝑊sitg𝑀) ⊆ 𝐵) |
| 18 | df-f 6545 | . 2 ⊢ ((𝑊sitg𝑀):dom (𝑊sitg𝑀)⟶𝐵 ↔ ((𝑊sitg𝑀) Fn dom (𝑊sitg𝑀) ∧ ran (𝑊sitg𝑀) ⊆ 𝐵)) | |
| 19 | 13, 17, 18 | sylanbrc 583 | 1 ⊢ (𝜑 → (𝑊sitg𝑀):dom (𝑊sitg𝑀)⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 {crab 3419 ∖ cdif 3928 ⊆ wss 3931 {csn 4606 ∪ cuni 4887 ↦ cmpt 5205 ◡ccnv 5664 dom cdm 5665 ran crn 5666 “ cima 5668 Fun wfun 6535 Fn wfn 6536 ⟶wf 6537 ‘cfv 6541 (class class class)co 7413 Fincfn 8967 0cc0 11137 +∞cpnf 11274 [,)cico 13371 Basecbs 17229 Scalarcsca 17276 ·𝑠 cvsca 17277 TopOpenctopn 17437 0gc0g 17455 Σg cgsu 17456 ℝHomcrrh 33953 sigaGencsigagen 34098 measurescmeas 34155 MblFnMcmbfm 34209 sitgcsitg 34290 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-sitg 34291 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |