Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sitgf | Structured version Visualization version GIF version |
Description: The integral for simple functions is itself a function. (Contributed by Thierry Arnoux, 13-Feb-2018.) |
Ref | Expression |
---|---|
sitgval.b | ⊢ 𝐵 = (Base‘𝑊) |
sitgval.j | ⊢ 𝐽 = (TopOpen‘𝑊) |
sitgval.s | ⊢ 𝑆 = (sigaGen‘𝐽) |
sitgval.0 | ⊢ 0 = (0g‘𝑊) |
sitgval.x | ⊢ · = ( ·𝑠 ‘𝑊) |
sitgval.h | ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) |
sitgval.1 | ⊢ (𝜑 → 𝑊 ∈ 𝑉) |
sitgval.2 | ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) |
sitgf.1 | ⊢ ((𝜑 ∧ 𝑓 ∈ dom (𝑊sitg𝑀)) → ((𝑊sitg𝑀)‘𝑓) ∈ 𝐵) |
Ref | Expression |
---|---|
sitgf | ⊢ (𝜑 → (𝑊sitg𝑀):dom (𝑊sitg𝑀)⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funmpt 6456 | . . . 4 ⊢ Fun (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡𝑓 “ {𝑥}))) · 𝑥)))) | |
2 | sitgval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑊) | |
3 | sitgval.j | . . . . . 6 ⊢ 𝐽 = (TopOpen‘𝑊) | |
4 | sitgval.s | . . . . . 6 ⊢ 𝑆 = (sigaGen‘𝐽) | |
5 | sitgval.0 | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
6 | sitgval.x | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑊) | |
7 | sitgval.h | . . . . . 6 ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) | |
8 | sitgval.1 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ 𝑉) | |
9 | sitgval.2 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) | |
10 | 2, 3, 4, 5, 6, 7, 8, 9 | sitgval 32199 | . . . . 5 ⊢ (𝜑 → (𝑊sitg𝑀) = (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡𝑓 “ {𝑥}))) · 𝑥))))) |
11 | 10 | funeqd 6440 | . . . 4 ⊢ (𝜑 → (Fun (𝑊sitg𝑀) ↔ Fun (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡𝑓 “ {𝑥}))) · 𝑥)))))) |
12 | 1, 11 | mpbiri 257 | . . 3 ⊢ (𝜑 → Fun (𝑊sitg𝑀)) |
13 | 12 | funfnd 6449 | . 2 ⊢ (𝜑 → (𝑊sitg𝑀) Fn dom (𝑊sitg𝑀)) |
14 | sitgf.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ dom (𝑊sitg𝑀)) → ((𝑊sitg𝑀)‘𝑓) ∈ 𝐵) | |
15 | 14 | ralrimiva 3107 | . . 3 ⊢ (𝜑 → ∀𝑓 ∈ dom (𝑊sitg𝑀)((𝑊sitg𝑀)‘𝑓) ∈ 𝐵) |
16 | fnfvrnss 6976 | . . 3 ⊢ (((𝑊sitg𝑀) Fn dom (𝑊sitg𝑀) ∧ ∀𝑓 ∈ dom (𝑊sitg𝑀)((𝑊sitg𝑀)‘𝑓) ∈ 𝐵) → ran (𝑊sitg𝑀) ⊆ 𝐵) | |
17 | 13, 15, 16 | syl2anc 583 | . 2 ⊢ (𝜑 → ran (𝑊sitg𝑀) ⊆ 𝐵) |
18 | df-f 6422 | . 2 ⊢ ((𝑊sitg𝑀):dom (𝑊sitg𝑀)⟶𝐵 ↔ ((𝑊sitg𝑀) Fn dom (𝑊sitg𝑀) ∧ ran (𝑊sitg𝑀) ⊆ 𝐵)) | |
19 | 13, 17, 18 | sylanbrc 582 | 1 ⊢ (𝜑 → (𝑊sitg𝑀):dom (𝑊sitg𝑀)⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 {crab 3067 ∖ cdif 3880 ⊆ wss 3883 {csn 4558 ∪ cuni 4836 ↦ cmpt 5153 ◡ccnv 5579 dom cdm 5580 ran crn 5581 “ cima 5583 Fun wfun 6412 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 Fincfn 8691 0cc0 10802 +∞cpnf 10937 [,)cico 13010 Basecbs 16840 Scalarcsca 16891 ·𝑠 cvsca 16892 TopOpenctopn 17049 0gc0g 17067 Σg cgsu 17068 ℝHomcrrh 31843 sigaGencsigagen 32006 measurescmeas 32063 MblFnMcmbfm 32117 sitgcsitg 32196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-sitg 32197 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |