Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sitgf | Structured version Visualization version GIF version |
Description: The integral for simple functions is itself a function. (Contributed by Thierry Arnoux, 13-Feb-2018.) |
Ref | Expression |
---|---|
sitgval.b | ⊢ 𝐵 = (Base‘𝑊) |
sitgval.j | ⊢ 𝐽 = (TopOpen‘𝑊) |
sitgval.s | ⊢ 𝑆 = (sigaGen‘𝐽) |
sitgval.0 | ⊢ 0 = (0g‘𝑊) |
sitgval.x | ⊢ · = ( ·𝑠 ‘𝑊) |
sitgval.h | ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) |
sitgval.1 | ⊢ (𝜑 → 𝑊 ∈ 𝑉) |
sitgval.2 | ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) |
sitgf.1 | ⊢ ((𝜑 ∧ 𝑓 ∈ dom (𝑊sitg𝑀)) → ((𝑊sitg𝑀)‘𝑓) ∈ 𝐵) |
Ref | Expression |
---|---|
sitgf | ⊢ (𝜑 → (𝑊sitg𝑀):dom (𝑊sitg𝑀)⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funmpt 6373 | . . . 4 ⊢ Fun (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡𝑓 “ {𝑥}))) · 𝑥)))) | |
2 | sitgval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑊) | |
3 | sitgval.j | . . . . . 6 ⊢ 𝐽 = (TopOpen‘𝑊) | |
4 | sitgval.s | . . . . . 6 ⊢ 𝑆 = (sigaGen‘𝐽) | |
5 | sitgval.0 | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
6 | sitgval.x | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑊) | |
7 | sitgval.h | . . . . . 6 ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) | |
8 | sitgval.1 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ 𝑉) | |
9 | sitgval.2 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) | |
10 | 2, 3, 4, 5, 6, 7, 8, 9 | sitgval 31818 | . . . . 5 ⊢ (𝜑 → (𝑊sitg𝑀) = (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡𝑓 “ {𝑥}))) · 𝑥))))) |
11 | 10 | funeqd 6357 | . . . 4 ⊢ (𝜑 → (Fun (𝑊sitg𝑀) ↔ Fun (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡𝑓 “ {𝑥}))) · 𝑥)))))) |
12 | 1, 11 | mpbiri 261 | . . 3 ⊢ (𝜑 → Fun (𝑊sitg𝑀)) |
13 | 12 | funfnd 6366 | . 2 ⊢ (𝜑 → (𝑊sitg𝑀) Fn dom (𝑊sitg𝑀)) |
14 | sitgf.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ dom (𝑊sitg𝑀)) → ((𝑊sitg𝑀)‘𝑓) ∈ 𝐵) | |
15 | 14 | ralrimiva 3113 | . . 3 ⊢ (𝜑 → ∀𝑓 ∈ dom (𝑊sitg𝑀)((𝑊sitg𝑀)‘𝑓) ∈ 𝐵) |
16 | fnfvrnss 6875 | . . 3 ⊢ (((𝑊sitg𝑀) Fn dom (𝑊sitg𝑀) ∧ ∀𝑓 ∈ dom (𝑊sitg𝑀)((𝑊sitg𝑀)‘𝑓) ∈ 𝐵) → ran (𝑊sitg𝑀) ⊆ 𝐵) | |
17 | 13, 15, 16 | syl2anc 587 | . 2 ⊢ (𝜑 → ran (𝑊sitg𝑀) ⊆ 𝐵) |
18 | df-f 6339 | . 2 ⊢ ((𝑊sitg𝑀):dom (𝑊sitg𝑀)⟶𝐵 ↔ ((𝑊sitg𝑀) Fn dom (𝑊sitg𝑀) ∧ ran (𝑊sitg𝑀) ⊆ 𝐵)) | |
19 | 13, 17, 18 | sylanbrc 586 | 1 ⊢ (𝜑 → (𝑊sitg𝑀):dom (𝑊sitg𝑀)⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∀wral 3070 {crab 3074 ∖ cdif 3855 ⊆ wss 3858 {csn 4522 ∪ cuni 4798 ↦ cmpt 5112 ◡ccnv 5523 dom cdm 5524 ran crn 5525 “ cima 5527 Fun wfun 6329 Fn wfn 6330 ⟶wf 6331 ‘cfv 6335 (class class class)co 7150 Fincfn 8527 0cc0 10575 +∞cpnf 10710 [,)cico 12781 Basecbs 16541 Scalarcsca 16626 ·𝑠 cvsca 16627 TopOpenctopn 16753 0gc0g 16771 Σg cgsu 16772 ℝHomcrrh 31462 sigaGencsigagen 31625 measurescmeas 31682 MblFnMcmbfm 31736 sitgcsitg 31815 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-ov 7153 df-oprab 7154 df-mpo 7155 df-sitg 31816 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |