Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sitgf Structured version   Visualization version   GIF version

Theorem sitgf 32314
Description: The integral for simple functions is itself a function. (Contributed by Thierry Arnoux, 13-Feb-2018.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
sitgf.1 ((𝜑𝑓 ∈ dom (𝑊sitg𝑀)) → ((𝑊sitg𝑀)‘𝑓) ∈ 𝐵)
Assertion
Ref Expression
sitgf (𝜑 → (𝑊sitg𝑀):dom (𝑊sitg𝑀)⟶𝐵)
Distinct variable groups:   𝐵,𝑓   𝑓,𝐻   𝑓,𝑀   𝑆,𝑓   𝑓,𝑊   0 ,𝑓   · ,𝑓   𝜑,𝑓
Allowed substitution hints:   𝐽(𝑓)   𝑉(𝑓)

Proof of Theorem sitgf
Dummy variables 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funmpt 6472 . . . 4 Fun (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥))))
2 sitgval.b . . . . . 6 𝐵 = (Base‘𝑊)
3 sitgval.j . . . . . 6 𝐽 = (TopOpen‘𝑊)
4 sitgval.s . . . . . 6 𝑆 = (sigaGen‘𝐽)
5 sitgval.0 . . . . . 6 0 = (0g𝑊)
6 sitgval.x . . . . . 6 · = ( ·𝑠𝑊)
7 sitgval.h . . . . . 6 𝐻 = (ℝHom‘(Scalar‘𝑊))
8 sitgval.1 . . . . . 6 (𝜑𝑊𝑉)
9 sitgval.2 . . . . . 6 (𝜑𝑀 ran measures)
102, 3, 4, 5, 6, 7, 8, 9sitgval 32299 . . . . 5 (𝜑 → (𝑊sitg𝑀) = (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥)))))
1110funeqd 6456 . . . 4 (𝜑 → (Fun (𝑊sitg𝑀) ↔ Fun (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥))))))
121, 11mpbiri 257 . . 3 (𝜑 → Fun (𝑊sitg𝑀))
1312funfnd 6465 . 2 (𝜑 → (𝑊sitg𝑀) Fn dom (𝑊sitg𝑀))
14 sitgf.1 . . . 4 ((𝜑𝑓 ∈ dom (𝑊sitg𝑀)) → ((𝑊sitg𝑀)‘𝑓) ∈ 𝐵)
1514ralrimiva 3103 . . 3 (𝜑 → ∀𝑓 ∈ dom (𝑊sitg𝑀)((𝑊sitg𝑀)‘𝑓) ∈ 𝐵)
16 fnfvrnss 6994 . . 3 (((𝑊sitg𝑀) Fn dom (𝑊sitg𝑀) ∧ ∀𝑓 ∈ dom (𝑊sitg𝑀)((𝑊sitg𝑀)‘𝑓) ∈ 𝐵) → ran (𝑊sitg𝑀) ⊆ 𝐵)
1713, 15, 16syl2anc 584 . 2 (𝜑 → ran (𝑊sitg𝑀) ⊆ 𝐵)
18 df-f 6437 . 2 ((𝑊sitg𝑀):dom (𝑊sitg𝑀)⟶𝐵 ↔ ((𝑊sitg𝑀) Fn dom (𝑊sitg𝑀) ∧ ran (𝑊sitg𝑀) ⊆ 𝐵))
1913, 17, 18sylanbrc 583 1 (𝜑 → (𝑊sitg𝑀):dom (𝑊sitg𝑀)⟶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  {crab 3068  cdif 3884  wss 3887  {csn 4561   cuni 4839  cmpt 5157  ccnv 5588  dom cdm 5589  ran crn 5590  cima 5592  Fun wfun 6427   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  Fincfn 8733  0cc0 10871  +∞cpnf 11006  [,)cico 13081  Basecbs 16912  Scalarcsca 16965   ·𝑠 cvsca 16966  TopOpenctopn 17132  0gc0g 17150   Σg cgsu 17151  ℝHomcrrh 31943  sigaGencsigagen 32106  measurescmeas 32163  MblFnMcmbfm 32217  sitgcsitg 32296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-sitg 32297
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator