Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sitgf Structured version   Visualization version   GIF version

Theorem sitgf 34314
Description: The integral for simple functions is itself a function. (Contributed by Thierry Arnoux, 13-Feb-2018.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
sitgf.1 ((𝜑𝑓 ∈ dom (𝑊sitg𝑀)) → ((𝑊sitg𝑀)‘𝑓) ∈ 𝐵)
Assertion
Ref Expression
sitgf (𝜑 → (𝑊sitg𝑀):dom (𝑊sitg𝑀)⟶𝐵)
Distinct variable groups:   𝐵,𝑓   𝑓,𝐻   𝑓,𝑀   𝑆,𝑓   𝑓,𝑊   0 ,𝑓   · ,𝑓   𝜑,𝑓
Allowed substitution hints:   𝐽(𝑓)   𝑉(𝑓)

Proof of Theorem sitgf
Dummy variables 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funmpt 6618 . . . 4 Fun (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥))))
2 sitgval.b . . . . . 6 𝐵 = (Base‘𝑊)
3 sitgval.j . . . . . 6 𝐽 = (TopOpen‘𝑊)
4 sitgval.s . . . . . 6 𝑆 = (sigaGen‘𝐽)
5 sitgval.0 . . . . . 6 0 = (0g𝑊)
6 sitgval.x . . . . . 6 · = ( ·𝑠𝑊)
7 sitgval.h . . . . . 6 𝐻 = (ℝHom‘(Scalar‘𝑊))
8 sitgval.1 . . . . . 6 (𝜑𝑊𝑉)
9 sitgval.2 . . . . . 6 (𝜑𝑀 ran measures)
102, 3, 4, 5, 6, 7, 8, 9sitgval 34299 . . . . 5 (𝜑 → (𝑊sitg𝑀) = (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥)))))
1110funeqd 6602 . . . 4 (𝜑 → (Fun (𝑊sitg𝑀) ↔ Fun (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥))))))
121, 11mpbiri 258 . . 3 (𝜑 → Fun (𝑊sitg𝑀))
1312funfnd 6611 . 2 (𝜑 → (𝑊sitg𝑀) Fn dom (𝑊sitg𝑀))
14 sitgf.1 . . . 4 ((𝜑𝑓 ∈ dom (𝑊sitg𝑀)) → ((𝑊sitg𝑀)‘𝑓) ∈ 𝐵)
1514ralrimiva 3152 . . 3 (𝜑 → ∀𝑓 ∈ dom (𝑊sitg𝑀)((𝑊sitg𝑀)‘𝑓) ∈ 𝐵)
16 fnfvrnss 7157 . . 3 (((𝑊sitg𝑀) Fn dom (𝑊sitg𝑀) ∧ ∀𝑓 ∈ dom (𝑊sitg𝑀)((𝑊sitg𝑀)‘𝑓) ∈ 𝐵) → ran (𝑊sitg𝑀) ⊆ 𝐵)
1713, 15, 16syl2anc 583 . 2 (𝜑 → ran (𝑊sitg𝑀) ⊆ 𝐵)
18 df-f 6579 . 2 ((𝑊sitg𝑀):dom (𝑊sitg𝑀)⟶𝐵 ↔ ((𝑊sitg𝑀) Fn dom (𝑊sitg𝑀) ∧ ran (𝑊sitg𝑀) ⊆ 𝐵))
1913, 17, 18sylanbrc 582 1 (𝜑 → (𝑊sitg𝑀):dom (𝑊sitg𝑀)⟶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  {crab 3443  cdif 3973  wss 3976  {csn 4648   cuni 4931  cmpt 5249  ccnv 5699  dom cdm 5700  ran crn 5701  cima 5703  Fun wfun 6569   Fn wfn 6570  wf 6571  cfv 6575  (class class class)co 7450  Fincfn 9005  0cc0 11186  +∞cpnf 11323  [,)cico 13411  Basecbs 17260  Scalarcsca 17316   ·𝑠 cvsca 17317  TopOpenctopn 17483  0gc0g 17501   Σg cgsu 17502  ℝHomcrrh 33941  sigaGencsigagen 34104  measurescmeas 34161  MblFnMcmbfm 34215  sitgcsitg 34296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-ov 7453  df-oprab 7454  df-mpo 7455  df-sitg 34297
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator