Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sitgf Structured version   Visualization version   GIF version

Theorem sitgf 34308
Description: The integral for simple functions is itself a function. (Contributed by Thierry Arnoux, 13-Feb-2018.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
sitgf.1 ((𝜑𝑓 ∈ dom (𝑊sitg𝑀)) → ((𝑊sitg𝑀)‘𝑓) ∈ 𝐵)
Assertion
Ref Expression
sitgf (𝜑 → (𝑊sitg𝑀):dom (𝑊sitg𝑀)⟶𝐵)
Distinct variable groups:   𝐵,𝑓   𝑓,𝐻   𝑓,𝑀   𝑆,𝑓   𝑓,𝑊   0 ,𝑓   · ,𝑓   𝜑,𝑓
Allowed substitution hints:   𝐽(𝑓)   𝑉(𝑓)

Proof of Theorem sitgf
Dummy variables 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funmpt 6584 . . . 4 Fun (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥))))
2 sitgval.b . . . . . 6 𝐵 = (Base‘𝑊)
3 sitgval.j . . . . . 6 𝐽 = (TopOpen‘𝑊)
4 sitgval.s . . . . . 6 𝑆 = (sigaGen‘𝐽)
5 sitgval.0 . . . . . 6 0 = (0g𝑊)
6 sitgval.x . . . . . 6 · = ( ·𝑠𝑊)
7 sitgval.h . . . . . 6 𝐻 = (ℝHom‘(Scalar‘𝑊))
8 sitgval.1 . . . . . 6 (𝜑𝑊𝑉)
9 sitgval.2 . . . . . 6 (𝜑𝑀 ran measures)
102, 3, 4, 5, 6, 7, 8, 9sitgval 34293 . . . . 5 (𝜑 → (𝑊sitg𝑀) = (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥)))))
1110funeqd 6568 . . . 4 (𝜑 → (Fun (𝑊sitg𝑀) ↔ Fun (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥))))))
121, 11mpbiri 258 . . 3 (𝜑 → Fun (𝑊sitg𝑀))
1312funfnd 6577 . 2 (𝜑 → (𝑊sitg𝑀) Fn dom (𝑊sitg𝑀))
14 sitgf.1 . . . 4 ((𝜑𝑓 ∈ dom (𝑊sitg𝑀)) → ((𝑊sitg𝑀)‘𝑓) ∈ 𝐵)
1514ralrimiva 3133 . . 3 (𝜑 → ∀𝑓 ∈ dom (𝑊sitg𝑀)((𝑊sitg𝑀)‘𝑓) ∈ 𝐵)
16 fnfvrnss 7121 . . 3 (((𝑊sitg𝑀) Fn dom (𝑊sitg𝑀) ∧ ∀𝑓 ∈ dom (𝑊sitg𝑀)((𝑊sitg𝑀)‘𝑓) ∈ 𝐵) → ran (𝑊sitg𝑀) ⊆ 𝐵)
1713, 15, 16syl2anc 584 . 2 (𝜑 → ran (𝑊sitg𝑀) ⊆ 𝐵)
18 df-f 6545 . 2 ((𝑊sitg𝑀):dom (𝑊sitg𝑀)⟶𝐵 ↔ ((𝑊sitg𝑀) Fn dom (𝑊sitg𝑀) ∧ ran (𝑊sitg𝑀) ⊆ 𝐵))
1913, 17, 18sylanbrc 583 1 (𝜑 → (𝑊sitg𝑀):dom (𝑊sitg𝑀)⟶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wral 3050  {crab 3419  cdif 3928  wss 3931  {csn 4606   cuni 4887  cmpt 5205  ccnv 5664  dom cdm 5665  ran crn 5666  cima 5668  Fun wfun 6535   Fn wfn 6536  wf 6537  cfv 6541  (class class class)co 7413  Fincfn 8967  0cc0 11137  +∞cpnf 11274  [,)cico 13371  Basecbs 17229  Scalarcsca 17276   ·𝑠 cvsca 17277  TopOpenctopn 17437  0gc0g 17455   Σg cgsu 17456  ℝHomcrrh 33953  sigaGencsigagen 34098  measurescmeas 34155  MblFnMcmbfm 34209  sitgcsitg 34290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-sitg 34291
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator