Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sitgf Structured version   Visualization version   GIF version

Theorem sitgf 34328
Description: The integral for simple functions is itself a function. (Contributed by Thierry Arnoux, 13-Feb-2018.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
sitgf.1 ((𝜑𝑓 ∈ dom (𝑊sitg𝑀)) → ((𝑊sitg𝑀)‘𝑓) ∈ 𝐵)
Assertion
Ref Expression
sitgf (𝜑 → (𝑊sitg𝑀):dom (𝑊sitg𝑀)⟶𝐵)
Distinct variable groups:   𝐵,𝑓   𝑓,𝐻   𝑓,𝑀   𝑆,𝑓   𝑓,𝑊   0 ,𝑓   · ,𝑓   𝜑,𝑓
Allowed substitution hints:   𝐽(𝑓)   𝑉(𝑓)

Proof of Theorem sitgf
Dummy variables 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funmpt 6514 . . . 4 Fun (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥))))
2 sitgval.b . . . . . 6 𝐵 = (Base‘𝑊)
3 sitgval.j . . . . . 6 𝐽 = (TopOpen‘𝑊)
4 sitgval.s . . . . . 6 𝑆 = (sigaGen‘𝐽)
5 sitgval.0 . . . . . 6 0 = (0g𝑊)
6 sitgval.x . . . . . 6 · = ( ·𝑠𝑊)
7 sitgval.h . . . . . 6 𝐻 = (ℝHom‘(Scalar‘𝑊))
8 sitgval.1 . . . . . 6 (𝜑𝑊𝑉)
9 sitgval.2 . . . . . 6 (𝜑𝑀 ran measures)
102, 3, 4, 5, 6, 7, 8, 9sitgval 34313 . . . . 5 (𝜑 → (𝑊sitg𝑀) = (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥)))))
1110funeqd 6498 . . . 4 (𝜑 → (Fun (𝑊sitg𝑀) ↔ Fun (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥))))))
121, 11mpbiri 258 . . 3 (𝜑 → Fun (𝑊sitg𝑀))
1312funfnd 6507 . 2 (𝜑 → (𝑊sitg𝑀) Fn dom (𝑊sitg𝑀))
14 sitgf.1 . . . 4 ((𝜑𝑓 ∈ dom (𝑊sitg𝑀)) → ((𝑊sitg𝑀)‘𝑓) ∈ 𝐵)
1514ralrimiva 3121 . . 3 (𝜑 → ∀𝑓 ∈ dom (𝑊sitg𝑀)((𝑊sitg𝑀)‘𝑓) ∈ 𝐵)
16 fnfvrnss 7048 . . 3 (((𝑊sitg𝑀) Fn dom (𝑊sitg𝑀) ∧ ∀𝑓 ∈ dom (𝑊sitg𝑀)((𝑊sitg𝑀)‘𝑓) ∈ 𝐵) → ran (𝑊sitg𝑀) ⊆ 𝐵)
1713, 15, 16syl2anc 584 . 2 (𝜑 → ran (𝑊sitg𝑀) ⊆ 𝐵)
18 df-f 6480 . 2 ((𝑊sitg𝑀):dom (𝑊sitg𝑀)⟶𝐵 ↔ ((𝑊sitg𝑀) Fn dom (𝑊sitg𝑀) ∧ ran (𝑊sitg𝑀) ⊆ 𝐵))
1913, 17, 18sylanbrc 583 1 (𝜑 → (𝑊sitg𝑀):dom (𝑊sitg𝑀)⟶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3392  cdif 3896  wss 3899  {csn 4573   cuni 4856  cmpt 5169  ccnv 5612  dom cdm 5613  ran crn 5614  cima 5616  Fun wfun 6470   Fn wfn 6471  wf 6472  cfv 6476  (class class class)co 7340  Fincfn 8863  0cc0 10997  +∞cpnf 11134  [,)cico 13238  Basecbs 17107  Scalarcsca 17151   ·𝑠 cvsca 17152  TopOpenctopn 17312  0gc0g 17330   Σg cgsu 17331  ℝHomcrrh 33974  sigaGencsigagen 34119  measurescmeas 34176  MblFnMcmbfm 34230  sitgcsitg 34310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5214  ax-sep 5231  ax-nul 5241  ax-pr 5367
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3393  df-v 3435  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4940  df-br 5089  df-opab 5151  df-mpt 5170  df-id 5508  df-xp 5619  df-rel 5620  df-cnv 5621  df-co 5622  df-dm 5623  df-rn 5624  df-res 5625  df-ima 5626  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7343  df-oprab 7344  df-mpo 7345  df-sitg 34311
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator