Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sitgf Structured version   Visualization version   GIF version

Theorem sitgf 31626
Description: The integral for simple functions is itself a function. (Contributed by Thierry Arnoux, 13-Feb-2018.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
sitgf.1 ((𝜑𝑓 ∈ dom (𝑊sitg𝑀)) → ((𝑊sitg𝑀)‘𝑓) ∈ 𝐵)
Assertion
Ref Expression
sitgf (𝜑 → (𝑊sitg𝑀):dom (𝑊sitg𝑀)⟶𝐵)
Distinct variable groups:   𝐵,𝑓   𝑓,𝐻   𝑓,𝑀   𝑆,𝑓   𝑓,𝑊   0 ,𝑓   · ,𝑓   𝜑,𝑓
Allowed substitution hints:   𝐽(𝑓)   𝑉(𝑓)

Proof of Theorem sitgf
Dummy variables 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funmpt 6386 . . . 4 Fun (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥))))
2 sitgval.b . . . . . 6 𝐵 = (Base‘𝑊)
3 sitgval.j . . . . . 6 𝐽 = (TopOpen‘𝑊)
4 sitgval.s . . . . . 6 𝑆 = (sigaGen‘𝐽)
5 sitgval.0 . . . . . 6 0 = (0g𝑊)
6 sitgval.x . . . . . 6 · = ( ·𝑠𝑊)
7 sitgval.h . . . . . 6 𝐻 = (ℝHom‘(Scalar‘𝑊))
8 sitgval.1 . . . . . 6 (𝜑𝑊𝑉)
9 sitgval.2 . . . . . 6 (𝜑𝑀 ran measures)
102, 3, 4, 5, 6, 7, 8, 9sitgval 31611 . . . . 5 (𝜑 → (𝑊sitg𝑀) = (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥)))))
1110funeqd 6370 . . . 4 (𝜑 → (Fun (𝑊sitg𝑀) ↔ Fun (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥))))))
121, 11mpbiri 260 . . 3 (𝜑 → Fun (𝑊sitg𝑀))
1312funfnd 6379 . 2 (𝜑 → (𝑊sitg𝑀) Fn dom (𝑊sitg𝑀))
14 sitgf.1 . . . 4 ((𝜑𝑓 ∈ dom (𝑊sitg𝑀)) → ((𝑊sitg𝑀)‘𝑓) ∈ 𝐵)
1514ralrimiva 3181 . . 3 (𝜑 → ∀𝑓 ∈ dom (𝑊sitg𝑀)((𝑊sitg𝑀)‘𝑓) ∈ 𝐵)
16 fnfvrnss 6877 . . 3 (((𝑊sitg𝑀) Fn dom (𝑊sitg𝑀) ∧ ∀𝑓 ∈ dom (𝑊sitg𝑀)((𝑊sitg𝑀)‘𝑓) ∈ 𝐵) → ran (𝑊sitg𝑀) ⊆ 𝐵)
1713, 15, 16syl2anc 586 . 2 (𝜑 → ran (𝑊sitg𝑀) ⊆ 𝐵)
18 df-f 6352 . 2 ((𝑊sitg𝑀):dom (𝑊sitg𝑀)⟶𝐵 ↔ ((𝑊sitg𝑀) Fn dom (𝑊sitg𝑀) ∧ ran (𝑊sitg𝑀) ⊆ 𝐵))
1913, 17, 18sylanbrc 585 1 (𝜑 → (𝑊sitg𝑀):dom (𝑊sitg𝑀)⟶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  wral 3137  {crab 3141  cdif 3926  wss 3929  {csn 4560   cuni 4831  cmpt 5139  ccnv 5547  dom cdm 5548  ran crn 5549  cima 5551  Fun wfun 6342   Fn wfn 6343  wf 6344  cfv 6348  (class class class)co 7149  Fincfn 8502  0cc0 10530  +∞cpnf 10665  [,)cico 12734  Basecbs 16478  Scalarcsca 16563   ·𝑠 cvsca 16564  TopOpenctopn 16690  0gc0g 16708   Σg cgsu 16709  ℝHomcrrh 31255  sigaGencsigagen 31418  measurescmeas 31475  MblFnMcmbfm 31529  sitgcsitg 31608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pr 5323
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-reu 3144  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7152  df-oprab 7153  df-mpo 7154  df-sitg 31609
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator