| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sitg0 | Structured version Visualization version GIF version | ||
| Description: The integral of the constant zero function is zero. (Contributed by Thierry Arnoux, 13-Mar-2018.) |
| Ref | Expression |
|---|---|
| sitgval.b | ⊢ 𝐵 = (Base‘𝑊) |
| sitgval.j | ⊢ 𝐽 = (TopOpen‘𝑊) |
| sitgval.s | ⊢ 𝑆 = (sigaGen‘𝐽) |
| sitgval.0 | ⊢ 0 = (0g‘𝑊) |
| sitgval.x | ⊢ · = ( ·𝑠 ‘𝑊) |
| sitgval.h | ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) |
| sitgval.1 | ⊢ (𝜑 → 𝑊 ∈ 𝑉) |
| sitgval.2 | ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) |
| sitg0.1 | ⊢ (𝜑 → 𝑊 ∈ TopSp) |
| sitg0.2 | ⊢ (𝜑 → 𝑊 ∈ Mnd) |
| Ref | Expression |
|---|---|
| sitg0 | ⊢ (𝜑 → ((𝑊sitg𝑀)‘(∪ dom 𝑀 × { 0 })) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sitgval.b | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
| 2 | sitgval.j | . . 3 ⊢ 𝐽 = (TopOpen‘𝑊) | |
| 3 | sitgval.s | . . 3 ⊢ 𝑆 = (sigaGen‘𝐽) | |
| 4 | sitgval.0 | . . 3 ⊢ 0 = (0g‘𝑊) | |
| 5 | sitgval.x | . . 3 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 6 | sitgval.h | . . 3 ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) | |
| 7 | sitgval.1 | . . 3 ⊢ (𝜑 → 𝑊 ∈ 𝑉) | |
| 8 | sitgval.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) | |
| 9 | sitg0.1 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ TopSp) | |
| 10 | sitg0.2 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ Mnd) | |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | sibf0 34332 | . . 3 ⊢ (𝜑 → (∪ dom 𝑀 × { 0 }) ∈ dom (𝑊sitg𝑀)) |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 11 | sitgfval 34339 | . 2 ⊢ (𝜑 → ((𝑊sitg𝑀)‘(∪ dom 𝑀 × { 0 })) = (𝑊 Σg (𝑥 ∈ (ran (∪ dom 𝑀 × { 0 }) ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡(∪ dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥)))) |
| 13 | rnxpss 6148 | . . . . . . 7 ⊢ ran (∪ dom 𝑀 × { 0 }) ⊆ { 0 } | |
| 14 | ssdif0 4332 | . . . . . . 7 ⊢ (ran (∪ dom 𝑀 × { 0 }) ⊆ { 0 } ↔ (ran (∪ dom 𝑀 × { 0 }) ∖ { 0 }) = ∅) | |
| 15 | 13, 14 | mpbi 230 | . . . . . 6 ⊢ (ran (∪ dom 𝑀 × { 0 }) ∖ { 0 }) = ∅ |
| 16 | mpteq1 5199 | . . . . . 6 ⊢ ((ran (∪ dom 𝑀 × { 0 }) ∖ { 0 }) = ∅ → (𝑥 ∈ (ran (∪ dom 𝑀 × { 0 }) ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡(∪ dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥)) = (𝑥 ∈ ∅ ↦ ((𝐻‘(𝑀‘(◡(∪ dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥))) | |
| 17 | 15, 16 | ax-mp 5 | . . . . 5 ⊢ (𝑥 ∈ (ran (∪ dom 𝑀 × { 0 }) ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡(∪ dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥)) = (𝑥 ∈ ∅ ↦ ((𝐻‘(𝑀‘(◡(∪ dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥)) |
| 18 | mpt0 6663 | . . . . 5 ⊢ (𝑥 ∈ ∅ ↦ ((𝐻‘(𝑀‘(◡(∪ dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥)) = ∅ | |
| 19 | 17, 18 | eqtri 2753 | . . . 4 ⊢ (𝑥 ∈ (ran (∪ dom 𝑀 × { 0 }) ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡(∪ dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥)) = ∅ |
| 20 | 19 | oveq2i 7401 | . . 3 ⊢ (𝑊 Σg (𝑥 ∈ (ran (∪ dom 𝑀 × { 0 }) ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡(∪ dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥))) = (𝑊 Σg ∅) |
| 21 | 4 | gsum0 18618 | . . 3 ⊢ (𝑊 Σg ∅) = 0 |
| 22 | 20, 21 | eqtri 2753 | . 2 ⊢ (𝑊 Σg (𝑥 ∈ (ran (∪ dom 𝑀 × { 0 }) ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡(∪ dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥))) = 0 |
| 23 | 12, 22 | eqtrdi 2781 | 1 ⊢ (𝜑 → ((𝑊sitg𝑀)‘(∪ dom 𝑀 × { 0 })) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∖ cdif 3914 ⊆ wss 3917 ∅c0 4299 {csn 4592 ∪ cuni 4874 ↦ cmpt 5191 × cxp 5639 ◡ccnv 5640 dom cdm 5641 ran crn 5642 “ cima 5644 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 Scalarcsca 17230 ·𝑠 cvsca 17231 TopOpenctopn 17391 0gc0g 17409 Σg cgsu 17410 Mndcmnd 18668 TopSpctps 22826 ℝHomcrrh 33990 sigaGencsigagen 34135 measurescmeas 34192 sitgcsitg 34327 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-map 8804 df-en 8922 df-fin 8925 df-seq 13974 df-0g 17411 df-gsum 17412 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-top 22788 df-topon 22805 df-topsp 22827 df-esum 34025 df-siga 34106 df-sigagen 34136 df-meas 34193 df-mbfm 34247 df-sitg 34328 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |