| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sitg0 | Structured version Visualization version GIF version | ||
| Description: The integral of the constant zero function is zero. (Contributed by Thierry Arnoux, 13-Mar-2018.) |
| Ref | Expression |
|---|---|
| sitgval.b | ⊢ 𝐵 = (Base‘𝑊) |
| sitgval.j | ⊢ 𝐽 = (TopOpen‘𝑊) |
| sitgval.s | ⊢ 𝑆 = (sigaGen‘𝐽) |
| sitgval.0 | ⊢ 0 = (0g‘𝑊) |
| sitgval.x | ⊢ · = ( ·𝑠 ‘𝑊) |
| sitgval.h | ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) |
| sitgval.1 | ⊢ (𝜑 → 𝑊 ∈ 𝑉) |
| sitgval.2 | ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) |
| sitg0.1 | ⊢ (𝜑 → 𝑊 ∈ TopSp) |
| sitg0.2 | ⊢ (𝜑 → 𝑊 ∈ Mnd) |
| Ref | Expression |
|---|---|
| sitg0 | ⊢ (𝜑 → ((𝑊sitg𝑀)‘(∪ dom 𝑀 × { 0 })) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sitgval.b | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
| 2 | sitgval.j | . . 3 ⊢ 𝐽 = (TopOpen‘𝑊) | |
| 3 | sitgval.s | . . 3 ⊢ 𝑆 = (sigaGen‘𝐽) | |
| 4 | sitgval.0 | . . 3 ⊢ 0 = (0g‘𝑊) | |
| 5 | sitgval.x | . . 3 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 6 | sitgval.h | . . 3 ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) | |
| 7 | sitgval.1 | . . 3 ⊢ (𝜑 → 𝑊 ∈ 𝑉) | |
| 8 | sitgval.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) | |
| 9 | sitg0.1 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ TopSp) | |
| 10 | sitg0.2 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ Mnd) | |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | sibf0 34368 | . . 3 ⊢ (𝜑 → (∪ dom 𝑀 × { 0 }) ∈ dom (𝑊sitg𝑀)) |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 11 | sitgfval 34375 | . 2 ⊢ (𝜑 → ((𝑊sitg𝑀)‘(∪ dom 𝑀 × { 0 })) = (𝑊 Σg (𝑥 ∈ (ran (∪ dom 𝑀 × { 0 }) ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡(∪ dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥)))) |
| 13 | rnxpss 6124 | . . . . . . 7 ⊢ ran (∪ dom 𝑀 × { 0 }) ⊆ { 0 } | |
| 14 | ssdif0 4315 | . . . . . . 7 ⊢ (ran (∪ dom 𝑀 × { 0 }) ⊆ { 0 } ↔ (ran (∪ dom 𝑀 × { 0 }) ∖ { 0 }) = ∅) | |
| 15 | 13, 14 | mpbi 230 | . . . . . 6 ⊢ (ran (∪ dom 𝑀 × { 0 }) ∖ { 0 }) = ∅ |
| 16 | mpteq1 5182 | . . . . . 6 ⊢ ((ran (∪ dom 𝑀 × { 0 }) ∖ { 0 }) = ∅ → (𝑥 ∈ (ran (∪ dom 𝑀 × { 0 }) ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡(∪ dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥)) = (𝑥 ∈ ∅ ↦ ((𝐻‘(𝑀‘(◡(∪ dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥))) | |
| 17 | 15, 16 | ax-mp 5 | . . . . 5 ⊢ (𝑥 ∈ (ran (∪ dom 𝑀 × { 0 }) ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡(∪ dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥)) = (𝑥 ∈ ∅ ↦ ((𝐻‘(𝑀‘(◡(∪ dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥)) |
| 18 | mpt0 6628 | . . . . 5 ⊢ (𝑥 ∈ ∅ ↦ ((𝐻‘(𝑀‘(◡(∪ dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥)) = ∅ | |
| 19 | 17, 18 | eqtri 2756 | . . . 4 ⊢ (𝑥 ∈ (ran (∪ dom 𝑀 × { 0 }) ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡(∪ dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥)) = ∅ |
| 20 | 19 | oveq2i 7363 | . . 3 ⊢ (𝑊 Σg (𝑥 ∈ (ran (∪ dom 𝑀 × { 0 }) ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡(∪ dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥))) = (𝑊 Σg ∅) |
| 21 | 4 | gsum0 18594 | . . 3 ⊢ (𝑊 Σg ∅) = 0 |
| 22 | 20, 21 | eqtri 2756 | . 2 ⊢ (𝑊 Σg (𝑥 ∈ (ran (∪ dom 𝑀 × { 0 }) ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡(∪ dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥))) = 0 |
| 23 | 12, 22 | eqtrdi 2784 | 1 ⊢ (𝜑 → ((𝑊sitg𝑀)‘(∪ dom 𝑀 × { 0 })) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∖ cdif 3895 ⊆ wss 3898 ∅c0 4282 {csn 4575 ∪ cuni 4858 ↦ cmpt 5174 × cxp 5617 ◡ccnv 5618 dom cdm 5619 ran crn 5620 “ cima 5622 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 Scalarcsca 17166 ·𝑠 cvsca 17167 TopOpenctopn 17327 0gc0g 17345 Σg cgsu 17346 Mndcmnd 18644 TopSpctps 22848 ℝHomcrrh 34027 sigaGencsigagen 34172 measurescmeas 34229 sitgcsitg 34363 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-map 8758 df-en 8876 df-fin 8879 df-seq 13911 df-0g 17347 df-gsum 17348 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-top 22810 df-topon 22827 df-topsp 22849 df-esum 34062 df-siga 34143 df-sigagen 34173 df-meas 34230 df-mbfm 34284 df-sitg 34364 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |