Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sitg0 Structured version   Visualization version   GIF version

Theorem sitg0 32292
Description: The integral of the constant zero function is zero. (Contributed by Thierry Arnoux, 13-Mar-2018.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
sitg0.1 (𝜑𝑊 ∈ TopSp)
sitg0.2 (𝜑𝑊 ∈ Mnd)
Assertion
Ref Expression
sitg0 (𝜑 → ((𝑊sitg𝑀)‘( dom 𝑀 × { 0 })) = 0 )

Proof of Theorem sitg0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sitgval.b . . 3 𝐵 = (Base‘𝑊)
2 sitgval.j . . 3 𝐽 = (TopOpen‘𝑊)
3 sitgval.s . . 3 𝑆 = (sigaGen‘𝐽)
4 sitgval.0 . . 3 0 = (0g𝑊)
5 sitgval.x . . 3 · = ( ·𝑠𝑊)
6 sitgval.h . . 3 𝐻 = (ℝHom‘(Scalar‘𝑊))
7 sitgval.1 . . 3 (𝜑𝑊𝑉)
8 sitgval.2 . . 3 (𝜑𝑀 ran measures)
9 sitg0.1 . . . 4 (𝜑𝑊 ∈ TopSp)
10 sitg0.2 . . . 4 (𝜑𝑊 ∈ Mnd)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10sibf0 32280 . . 3 (𝜑 → ( dom 𝑀 × { 0 }) ∈ dom (𝑊sitg𝑀))
121, 2, 3, 4, 5, 6, 7, 8, 11sitgfval 32287 . 2 (𝜑 → ((𝑊sitg𝑀)‘( dom 𝑀 × { 0 })) = (𝑊 Σg (𝑥 ∈ (ran ( dom 𝑀 × { 0 }) ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(( dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥))))
13 rnxpss 6072 . . . . . . 7 ran ( dom 𝑀 × { 0 }) ⊆ { 0 }
14 ssdif0 4302 . . . . . . 7 (ran ( dom 𝑀 × { 0 }) ⊆ { 0 } ↔ (ran ( dom 𝑀 × { 0 }) ∖ { 0 }) = ∅)
1513, 14mpbi 229 . . . . . 6 (ran ( dom 𝑀 × { 0 }) ∖ { 0 }) = ∅
16 mpteq1 5171 . . . . . 6 ((ran ( dom 𝑀 × { 0 }) ∖ { 0 }) = ∅ → (𝑥 ∈ (ran ( dom 𝑀 × { 0 }) ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(( dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥)) = (𝑥 ∈ ∅ ↦ ((𝐻‘(𝑀‘(( dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥)))
1715, 16ax-mp 5 . . . . 5 (𝑥 ∈ (ran ( dom 𝑀 × { 0 }) ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(( dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥)) = (𝑥 ∈ ∅ ↦ ((𝐻‘(𝑀‘(( dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥))
18 mpt0 6571 . . . . 5 (𝑥 ∈ ∅ ↦ ((𝐻‘(𝑀‘(( dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥)) = ∅
1917, 18eqtri 2767 . . . 4 (𝑥 ∈ (ran ( dom 𝑀 × { 0 }) ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(( dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥)) = ∅
2019oveq2i 7279 . . 3 (𝑊 Σg (𝑥 ∈ (ran ( dom 𝑀 × { 0 }) ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(( dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥))) = (𝑊 Σg ∅)
214gsum0 18349 . . 3 (𝑊 Σg ∅) = 0
2220, 21eqtri 2767 . 2 (𝑊 Σg (𝑥 ∈ (ran ( dom 𝑀 × { 0 }) ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(( dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥))) = 0
2312, 22eqtrdi 2795 1 (𝜑 → ((𝑊sitg𝑀)‘( dom 𝑀 × { 0 })) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2109  cdif 3888  wss 3891  c0 4261  {csn 4566   cuni 4844  cmpt 5161   × cxp 5586  ccnv 5587  dom cdm 5588  ran crn 5589  cima 5591  cfv 6430  (class class class)co 7268  Basecbs 16893  Scalarcsca 16946   ·𝑠 cvsca 16947  TopOpenctopn 17113  0gc0g 17131   Σg cgsu 17132  Mndcmnd 18366  TopSpctps 22062  ℝHomcrrh 31922  sigaGencsigagen 32085  measurescmeas 32142  sitgcsitg 32275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-map 8591  df-en 8708  df-fin 8711  df-seq 13703  df-0g 17133  df-gsum 17134  df-mgm 18307  df-sgrp 18356  df-mnd 18367  df-top 22024  df-topon 22041  df-topsp 22063  df-esum 31975  df-siga 32056  df-sigagen 32086  df-meas 32143  df-mbfm 32197  df-sitg 32276
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator