Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sitg0 Structured version   Visualization version   GIF version

Theorem sitg0 34345
Description: The integral of the constant zero function is zero. (Contributed by Thierry Arnoux, 13-Mar-2018.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
sitg0.1 (𝜑𝑊 ∈ TopSp)
sitg0.2 (𝜑𝑊 ∈ Mnd)
Assertion
Ref Expression
sitg0 (𝜑 → ((𝑊sitg𝑀)‘( dom 𝑀 × { 0 })) = 0 )

Proof of Theorem sitg0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sitgval.b . . 3 𝐵 = (Base‘𝑊)
2 sitgval.j . . 3 𝐽 = (TopOpen‘𝑊)
3 sitgval.s . . 3 𝑆 = (sigaGen‘𝐽)
4 sitgval.0 . . 3 0 = (0g𝑊)
5 sitgval.x . . 3 · = ( ·𝑠𝑊)
6 sitgval.h . . 3 𝐻 = (ℝHom‘(Scalar‘𝑊))
7 sitgval.1 . . 3 (𝜑𝑊𝑉)
8 sitgval.2 . . 3 (𝜑𝑀 ran measures)
9 sitg0.1 . . . 4 (𝜑𝑊 ∈ TopSp)
10 sitg0.2 . . . 4 (𝜑𝑊 ∈ Mnd)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10sibf0 34333 . . 3 (𝜑 → ( dom 𝑀 × { 0 }) ∈ dom (𝑊sitg𝑀))
121, 2, 3, 4, 5, 6, 7, 8, 11sitgfval 34340 . 2 (𝜑 → ((𝑊sitg𝑀)‘( dom 𝑀 × { 0 })) = (𝑊 Σg (𝑥 ∈ (ran ( dom 𝑀 × { 0 }) ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(( dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥))))
13 rnxpss 6153 . . . . . . 7 ran ( dom 𝑀 × { 0 }) ⊆ { 0 }
14 ssdif0 4337 . . . . . . 7 (ran ( dom 𝑀 × { 0 }) ⊆ { 0 } ↔ (ran ( dom 𝑀 × { 0 }) ∖ { 0 }) = ∅)
1513, 14mpbi 230 . . . . . 6 (ran ( dom 𝑀 × { 0 }) ∖ { 0 }) = ∅
16 mpteq1 5204 . . . . . 6 ((ran ( dom 𝑀 × { 0 }) ∖ { 0 }) = ∅ → (𝑥 ∈ (ran ( dom 𝑀 × { 0 }) ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(( dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥)) = (𝑥 ∈ ∅ ↦ ((𝐻‘(𝑀‘(( dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥)))
1715, 16ax-mp 5 . . . . 5 (𝑥 ∈ (ran ( dom 𝑀 × { 0 }) ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(( dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥)) = (𝑥 ∈ ∅ ↦ ((𝐻‘(𝑀‘(( dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥))
18 mpt0 6668 . . . . 5 (𝑥 ∈ ∅ ↦ ((𝐻‘(𝑀‘(( dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥)) = ∅
1917, 18eqtri 2753 . . . 4 (𝑥 ∈ (ran ( dom 𝑀 × { 0 }) ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(( dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥)) = ∅
2019oveq2i 7405 . . 3 (𝑊 Σg (𝑥 ∈ (ran ( dom 𝑀 × { 0 }) ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(( dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥))) = (𝑊 Σg ∅)
214gsum0 18617 . . 3 (𝑊 Σg ∅) = 0
2220, 21eqtri 2753 . 2 (𝑊 Σg (𝑥 ∈ (ran ( dom 𝑀 × { 0 }) ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(( dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥))) = 0
2312, 22eqtrdi 2781 1 (𝜑 → ((𝑊sitg𝑀)‘( dom 𝑀 × { 0 })) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cdif 3919  wss 3922  c0 4304  {csn 4597   cuni 4879  cmpt 5196   × cxp 5644  ccnv 5645  dom cdm 5646  ran crn 5647  cima 5649  cfv 6519  (class class class)co 7394  Basecbs 17185  Scalarcsca 17229   ·𝑠 cvsca 17230  TopOpenctopn 17390  0gc0g 17408   Σg cgsu 17409  Mndcmnd 18667  TopSpctps 22825  ℝHomcrrh 33991  sigaGencsigagen 34136  measurescmeas 34193  sitgcsitg 34328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-int 4919  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7851  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-1o 8443  df-map 8805  df-en 8923  df-fin 8926  df-seq 13977  df-0g 17410  df-gsum 17411  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-top 22787  df-topon 22804  df-topsp 22826  df-esum 34026  df-siga 34107  df-sigagen 34137  df-meas 34194  df-mbfm 34248  df-sitg 34329
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator