| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sitg0 | Structured version Visualization version GIF version | ||
| Description: The integral of the constant zero function is zero. (Contributed by Thierry Arnoux, 13-Mar-2018.) |
| Ref | Expression |
|---|---|
| sitgval.b | ⊢ 𝐵 = (Base‘𝑊) |
| sitgval.j | ⊢ 𝐽 = (TopOpen‘𝑊) |
| sitgval.s | ⊢ 𝑆 = (sigaGen‘𝐽) |
| sitgval.0 | ⊢ 0 = (0g‘𝑊) |
| sitgval.x | ⊢ · = ( ·𝑠 ‘𝑊) |
| sitgval.h | ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) |
| sitgval.1 | ⊢ (𝜑 → 𝑊 ∈ 𝑉) |
| sitgval.2 | ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) |
| sitg0.1 | ⊢ (𝜑 → 𝑊 ∈ TopSp) |
| sitg0.2 | ⊢ (𝜑 → 𝑊 ∈ Mnd) |
| Ref | Expression |
|---|---|
| sitg0 | ⊢ (𝜑 → ((𝑊sitg𝑀)‘(∪ dom 𝑀 × { 0 })) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sitgval.b | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
| 2 | sitgval.j | . . 3 ⊢ 𝐽 = (TopOpen‘𝑊) | |
| 3 | sitgval.s | . . 3 ⊢ 𝑆 = (sigaGen‘𝐽) | |
| 4 | sitgval.0 | . . 3 ⊢ 0 = (0g‘𝑊) | |
| 5 | sitgval.x | . . 3 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 6 | sitgval.h | . . 3 ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) | |
| 7 | sitgval.1 | . . 3 ⊢ (𝜑 → 𝑊 ∈ 𝑉) | |
| 8 | sitgval.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) | |
| 9 | sitg0.1 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ TopSp) | |
| 10 | sitg0.2 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ Mnd) | |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | sibf0 34301 | . . 3 ⊢ (𝜑 → (∪ dom 𝑀 × { 0 }) ∈ dom (𝑊sitg𝑀)) |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 11 | sitgfval 34308 | . 2 ⊢ (𝜑 → ((𝑊sitg𝑀)‘(∪ dom 𝑀 × { 0 })) = (𝑊 Σg (𝑥 ∈ (ran (∪ dom 𝑀 × { 0 }) ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡(∪ dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥)))) |
| 13 | rnxpss 6125 | . . . . . . 7 ⊢ ran (∪ dom 𝑀 × { 0 }) ⊆ { 0 } | |
| 14 | ssdif0 4319 | . . . . . . 7 ⊢ (ran (∪ dom 𝑀 × { 0 }) ⊆ { 0 } ↔ (ran (∪ dom 𝑀 × { 0 }) ∖ { 0 }) = ∅) | |
| 15 | 13, 14 | mpbi 230 | . . . . . 6 ⊢ (ran (∪ dom 𝑀 × { 0 }) ∖ { 0 }) = ∅ |
| 16 | mpteq1 5184 | . . . . . 6 ⊢ ((ran (∪ dom 𝑀 × { 0 }) ∖ { 0 }) = ∅ → (𝑥 ∈ (ran (∪ dom 𝑀 × { 0 }) ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡(∪ dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥)) = (𝑥 ∈ ∅ ↦ ((𝐻‘(𝑀‘(◡(∪ dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥))) | |
| 17 | 15, 16 | ax-mp 5 | . . . . 5 ⊢ (𝑥 ∈ (ran (∪ dom 𝑀 × { 0 }) ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡(∪ dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥)) = (𝑥 ∈ ∅ ↦ ((𝐻‘(𝑀‘(◡(∪ dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥)) |
| 18 | mpt0 6628 | . . . . 5 ⊢ (𝑥 ∈ ∅ ↦ ((𝐻‘(𝑀‘(◡(∪ dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥)) = ∅ | |
| 19 | 17, 18 | eqtri 2752 | . . . 4 ⊢ (𝑥 ∈ (ran (∪ dom 𝑀 × { 0 }) ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡(∪ dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥)) = ∅ |
| 20 | 19 | oveq2i 7364 | . . 3 ⊢ (𝑊 Σg (𝑥 ∈ (ran (∪ dom 𝑀 × { 0 }) ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡(∪ dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥))) = (𝑊 Σg ∅) |
| 21 | 4 | gsum0 18576 | . . 3 ⊢ (𝑊 Σg ∅) = 0 |
| 22 | 20, 21 | eqtri 2752 | . 2 ⊢ (𝑊 Σg (𝑥 ∈ (ran (∪ dom 𝑀 × { 0 }) ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡(∪ dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥))) = 0 |
| 23 | 12, 22 | eqtrdi 2780 | 1 ⊢ (𝜑 → ((𝑊sitg𝑀)‘(∪ dom 𝑀 × { 0 })) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∖ cdif 3902 ⊆ wss 3905 ∅c0 4286 {csn 4579 ∪ cuni 4861 ↦ cmpt 5176 × cxp 5621 ◡ccnv 5622 dom cdm 5623 ran crn 5624 “ cima 5626 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 Scalarcsca 17182 ·𝑠 cvsca 17183 TopOpenctopn 17343 0gc0g 17361 Σg cgsu 17362 Mndcmnd 18626 TopSpctps 22835 ℝHomcrrh 33959 sigaGencsigagen 34104 measurescmeas 34161 sitgcsitg 34296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-map 8762 df-en 8880 df-fin 8883 df-seq 13927 df-0g 17363 df-gsum 17364 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-top 22797 df-topon 22814 df-topsp 22836 df-esum 33994 df-siga 34075 df-sigagen 34105 df-meas 34162 df-mbfm 34216 df-sitg 34297 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |