Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sitg0 | Structured version Visualization version GIF version |
Description: The integral of the constant zero function is zero. (Contributed by Thierry Arnoux, 13-Mar-2018.) |
Ref | Expression |
---|---|
sitgval.b | ⊢ 𝐵 = (Base‘𝑊) |
sitgval.j | ⊢ 𝐽 = (TopOpen‘𝑊) |
sitgval.s | ⊢ 𝑆 = (sigaGen‘𝐽) |
sitgval.0 | ⊢ 0 = (0g‘𝑊) |
sitgval.x | ⊢ · = ( ·𝑠 ‘𝑊) |
sitgval.h | ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) |
sitgval.1 | ⊢ (𝜑 → 𝑊 ∈ 𝑉) |
sitgval.2 | ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) |
sitg0.1 | ⊢ (𝜑 → 𝑊 ∈ TopSp) |
sitg0.2 | ⊢ (𝜑 → 𝑊 ∈ Mnd) |
Ref | Expression |
---|---|
sitg0 | ⊢ (𝜑 → ((𝑊sitg𝑀)‘(∪ dom 𝑀 × { 0 })) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sitgval.b | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
2 | sitgval.j | . . 3 ⊢ 𝐽 = (TopOpen‘𝑊) | |
3 | sitgval.s | . . 3 ⊢ 𝑆 = (sigaGen‘𝐽) | |
4 | sitgval.0 | . . 3 ⊢ 0 = (0g‘𝑊) | |
5 | sitgval.x | . . 3 ⊢ · = ( ·𝑠 ‘𝑊) | |
6 | sitgval.h | . . 3 ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) | |
7 | sitgval.1 | . . 3 ⊢ (𝜑 → 𝑊 ∈ 𝑉) | |
8 | sitgval.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) | |
9 | sitg0.1 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ TopSp) | |
10 | sitg0.2 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ Mnd) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | sibf0 32280 | . . 3 ⊢ (𝜑 → (∪ dom 𝑀 × { 0 }) ∈ dom (𝑊sitg𝑀)) |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 11 | sitgfval 32287 | . 2 ⊢ (𝜑 → ((𝑊sitg𝑀)‘(∪ dom 𝑀 × { 0 })) = (𝑊 Σg (𝑥 ∈ (ran (∪ dom 𝑀 × { 0 }) ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡(∪ dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥)))) |
13 | rnxpss 6072 | . . . . . . 7 ⊢ ran (∪ dom 𝑀 × { 0 }) ⊆ { 0 } | |
14 | ssdif0 4302 | . . . . . . 7 ⊢ (ran (∪ dom 𝑀 × { 0 }) ⊆ { 0 } ↔ (ran (∪ dom 𝑀 × { 0 }) ∖ { 0 }) = ∅) | |
15 | 13, 14 | mpbi 229 | . . . . . 6 ⊢ (ran (∪ dom 𝑀 × { 0 }) ∖ { 0 }) = ∅ |
16 | mpteq1 5171 | . . . . . 6 ⊢ ((ran (∪ dom 𝑀 × { 0 }) ∖ { 0 }) = ∅ → (𝑥 ∈ (ran (∪ dom 𝑀 × { 0 }) ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡(∪ dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥)) = (𝑥 ∈ ∅ ↦ ((𝐻‘(𝑀‘(◡(∪ dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥))) | |
17 | 15, 16 | ax-mp 5 | . . . . 5 ⊢ (𝑥 ∈ (ran (∪ dom 𝑀 × { 0 }) ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡(∪ dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥)) = (𝑥 ∈ ∅ ↦ ((𝐻‘(𝑀‘(◡(∪ dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥)) |
18 | mpt0 6571 | . . . . 5 ⊢ (𝑥 ∈ ∅ ↦ ((𝐻‘(𝑀‘(◡(∪ dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥)) = ∅ | |
19 | 17, 18 | eqtri 2767 | . . . 4 ⊢ (𝑥 ∈ (ran (∪ dom 𝑀 × { 0 }) ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡(∪ dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥)) = ∅ |
20 | 19 | oveq2i 7279 | . . 3 ⊢ (𝑊 Σg (𝑥 ∈ (ran (∪ dom 𝑀 × { 0 }) ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡(∪ dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥))) = (𝑊 Σg ∅) |
21 | 4 | gsum0 18349 | . . 3 ⊢ (𝑊 Σg ∅) = 0 |
22 | 20, 21 | eqtri 2767 | . 2 ⊢ (𝑊 Σg (𝑥 ∈ (ran (∪ dom 𝑀 × { 0 }) ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡(∪ dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥))) = 0 |
23 | 12, 22 | eqtrdi 2795 | 1 ⊢ (𝜑 → ((𝑊sitg𝑀)‘(∪ dom 𝑀 × { 0 })) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 ∖ cdif 3888 ⊆ wss 3891 ∅c0 4261 {csn 4566 ∪ cuni 4844 ↦ cmpt 5161 × cxp 5586 ◡ccnv 5587 dom cdm 5588 ran crn 5589 “ cima 5591 ‘cfv 6430 (class class class)co 7268 Basecbs 16893 Scalarcsca 16946 ·𝑠 cvsca 16947 TopOpenctopn 17113 0gc0g 17131 Σg cgsu 17132 Mndcmnd 18366 TopSpctps 22062 ℝHomcrrh 31922 sigaGencsigagen 32085 measurescmeas 32142 sitgcsitg 32275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-map 8591 df-en 8708 df-fin 8711 df-seq 13703 df-0g 17133 df-gsum 17134 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-top 22024 df-topon 22041 df-topsp 22063 df-esum 31975 df-siga 32056 df-sigagen 32086 df-meas 32143 df-mbfm 32197 df-sitg 32276 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |