Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sitg0 Structured version   Visualization version   GIF version

Theorem sitg0 31836
 Description: The integral of the constant zero function is zero. (Contributed by Thierry Arnoux, 13-Mar-2018.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
sitg0.1 (𝜑𝑊 ∈ TopSp)
sitg0.2 (𝜑𝑊 ∈ Mnd)
Assertion
Ref Expression
sitg0 (𝜑 → ((𝑊sitg𝑀)‘( dom 𝑀 × { 0 })) = 0 )

Proof of Theorem sitg0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sitgval.b . . 3 𝐵 = (Base‘𝑊)
2 sitgval.j . . 3 𝐽 = (TopOpen‘𝑊)
3 sitgval.s . . 3 𝑆 = (sigaGen‘𝐽)
4 sitgval.0 . . 3 0 = (0g𝑊)
5 sitgval.x . . 3 · = ( ·𝑠𝑊)
6 sitgval.h . . 3 𝐻 = (ℝHom‘(Scalar‘𝑊))
7 sitgval.1 . . 3 (𝜑𝑊𝑉)
8 sitgval.2 . . 3 (𝜑𝑀 ran measures)
9 sitg0.1 . . . 4 (𝜑𝑊 ∈ TopSp)
10 sitg0.2 . . . 4 (𝜑𝑊 ∈ Mnd)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10sibf0 31824 . . 3 (𝜑 → ( dom 𝑀 × { 0 }) ∈ dom (𝑊sitg𝑀))
121, 2, 3, 4, 5, 6, 7, 8, 11sitgfval 31831 . 2 (𝜑 → ((𝑊sitg𝑀)‘( dom 𝑀 × { 0 })) = (𝑊 Σg (𝑥 ∈ (ran ( dom 𝑀 × { 0 }) ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(( dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥))))
13 rnxpss 6005 . . . . . . 7 ran ( dom 𝑀 × { 0 }) ⊆ { 0 }
14 ssdif0 4264 . . . . . . 7 (ran ( dom 𝑀 × { 0 }) ⊆ { 0 } ↔ (ran ( dom 𝑀 × { 0 }) ∖ { 0 }) = ∅)
1513, 14mpbi 233 . . . . . 6 (ran ( dom 𝑀 × { 0 }) ∖ { 0 }) = ∅
16 mpteq1 5123 . . . . . 6 ((ran ( dom 𝑀 × { 0 }) ∖ { 0 }) = ∅ → (𝑥 ∈ (ran ( dom 𝑀 × { 0 }) ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(( dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥)) = (𝑥 ∈ ∅ ↦ ((𝐻‘(𝑀‘(( dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥)))
1715, 16ax-mp 5 . . . . 5 (𝑥 ∈ (ran ( dom 𝑀 × { 0 }) ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(( dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥)) = (𝑥 ∈ ∅ ↦ ((𝐻‘(𝑀‘(( dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥))
18 mpt0 6477 . . . . 5 (𝑥 ∈ ∅ ↦ ((𝐻‘(𝑀‘(( dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥)) = ∅
1917, 18eqtri 2781 . . . 4 (𝑥 ∈ (ran ( dom 𝑀 × { 0 }) ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(( dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥)) = ∅
2019oveq2i 7166 . . 3 (𝑊 Σg (𝑥 ∈ (ran ( dom 𝑀 × { 0 }) ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(( dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥))) = (𝑊 Σg ∅)
214gsum0 17965 . . 3 (𝑊 Σg ∅) = 0
2220, 21eqtri 2781 . 2 (𝑊 Σg (𝑥 ∈ (ran ( dom 𝑀 × { 0 }) ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(( dom 𝑀 × { 0 }) “ {𝑥}))) · 𝑥))) = 0
2312, 22eqtrdi 2809 1 (𝜑 → ((𝑊sitg𝑀)‘( dom 𝑀 × { 0 })) = 0 )
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2111   ∖ cdif 3857   ⊆ wss 3860  ∅c0 4227  {csn 4525  ∪ cuni 4801   ↦ cmpt 5115   × cxp 5525  ◡ccnv 5526  dom cdm 5527  ran crn 5528   “ cima 5530  ‘cfv 6339  (class class class)co 7155  Basecbs 16546  Scalarcsca 16631   ·𝑠 cvsca 16632  TopOpenctopn 16758  0gc0g 16776   Σg cgsu 16777  Mndcmnd 17982  TopSpctps 21637  ℝHomcrrh 31466  sigaGencsigagen 31629  measurescmeas 31686  sitgcsitg 31819 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7585  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-1o 8117  df-map 8423  df-en 8533  df-fin 8536  df-seq 13424  df-0g 16778  df-gsum 16779  df-mgm 17923  df-sgrp 17972  df-mnd 17983  df-top 21599  df-topon 21616  df-topsp 21638  df-esum 31519  df-siga 31600  df-sigagen 31630  df-meas 31687  df-mbfm 31741  df-sitg 31820 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator