| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sitmfval | Structured version Visualization version GIF version | ||
| Description: Value of the integral distance between two simple functions. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
| Ref | Expression |
|---|---|
| sitmval.d | ⊢ 𝐷 = (dist‘𝑊) |
| sitmval.1 | ⊢ (𝜑 → 𝑊 ∈ 𝑉) |
| sitmval.2 | ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) |
| sitmfval.1 | ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) |
| sitmfval.2 | ⊢ (𝜑 → 𝐺 ∈ dom (𝑊sitg𝑀)) |
| Ref | Expression |
|---|---|
| sitmfval | ⊢ (𝜑 → (𝐹(𝑊sitm𝑀)𝐺) = (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝐹 ∘f 𝐷𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sitmval.d | . . 3 ⊢ 𝐷 = (dist‘𝑊) | |
| 2 | sitmval.1 | . . 3 ⊢ (𝜑 → 𝑊 ∈ 𝑉) | |
| 3 | sitmval.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) | |
| 4 | 1, 2, 3 | sitmval 34340 | . 2 ⊢ (𝜑 → (𝑊sitm𝑀) = (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦ (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝑓 ∘f 𝐷𝑔)))) |
| 5 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → 𝑓 = 𝐹) | |
| 6 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → 𝑔 = 𝐺) | |
| 7 | 5, 6 | oveq12d 7405 | . . 3 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → (𝑓 ∘f 𝐷𝑔) = (𝐹 ∘f 𝐷𝐺)) |
| 8 | 7 | fveq2d 6862 | . 2 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝑓 ∘f 𝐷𝑔)) = (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝐹 ∘f 𝐷𝐺))) |
| 9 | sitmfval.1 | . 2 ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) | |
| 10 | sitmfval.2 | . 2 ⊢ (𝜑 → 𝐺 ∈ dom (𝑊sitg𝑀)) | |
| 11 | fvexd 6873 | . 2 ⊢ (𝜑 → (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝐹 ∘f 𝐷𝐺)) ∈ V) | |
| 12 | 4, 8, 9, 10, 11 | ovmpod 7541 | 1 ⊢ (𝜑 → (𝐹(𝑊sitm𝑀)𝐺) = (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝐹 ∘f 𝐷𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∪ cuni 4871 dom cdm 5638 ran crn 5639 ‘cfv 6511 (class class class)co 7387 ∘f cof 7651 0cc0 11068 +∞cpnf 11205 [,]cicc 13309 ↾s cress 17200 distcds 17229 ℝ*𝑠cxrs 17463 measurescmeas 34185 sitmcsitm 34319 sitgcsitg 34320 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-1st 7968 df-2nd 7969 df-sitm 34322 |
| This theorem is referenced by: sitmcl 34342 sitmf 34343 |
| Copyright terms: Public domain | W3C validator |