| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sitmfval | Structured version Visualization version GIF version | ||
| Description: Value of the integral distance between two simple functions. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
| Ref | Expression |
|---|---|
| sitmval.d | ⊢ 𝐷 = (dist‘𝑊) |
| sitmval.1 | ⊢ (𝜑 → 𝑊 ∈ 𝑉) |
| sitmval.2 | ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) |
| sitmfval.1 | ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) |
| sitmfval.2 | ⊢ (𝜑 → 𝐺 ∈ dom (𝑊sitg𝑀)) |
| Ref | Expression |
|---|---|
| sitmfval | ⊢ (𝜑 → (𝐹(𝑊sitm𝑀)𝐺) = (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝐹 ∘f 𝐷𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sitmval.d | . . 3 ⊢ 𝐷 = (dist‘𝑊) | |
| 2 | sitmval.1 | . . 3 ⊢ (𝜑 → 𝑊 ∈ 𝑉) | |
| 3 | sitmval.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) | |
| 4 | 1, 2, 3 | sitmval 34346 | . 2 ⊢ (𝜑 → (𝑊sitm𝑀) = (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦ (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝑓 ∘f 𝐷𝑔)))) |
| 5 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → 𝑓 = 𝐹) | |
| 6 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → 𝑔 = 𝐺) | |
| 7 | 5, 6 | oveq12d 7407 | . . 3 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → (𝑓 ∘f 𝐷𝑔) = (𝐹 ∘f 𝐷𝐺)) |
| 8 | 7 | fveq2d 6864 | . 2 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝑓 ∘f 𝐷𝑔)) = (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝐹 ∘f 𝐷𝐺))) |
| 9 | sitmfval.1 | . 2 ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) | |
| 10 | sitmfval.2 | . 2 ⊢ (𝜑 → 𝐺 ∈ dom (𝑊sitg𝑀)) | |
| 11 | fvexd 6875 | . 2 ⊢ (𝜑 → (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝐹 ∘f 𝐷𝐺)) ∈ V) | |
| 12 | 4, 8, 9, 10, 11 | ovmpod 7543 | 1 ⊢ (𝜑 → (𝐹(𝑊sitm𝑀)𝐺) = (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝐹 ∘f 𝐷𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∪ cuni 4873 dom cdm 5640 ran crn 5641 ‘cfv 6513 (class class class)co 7389 ∘f cof 7653 0cc0 11074 +∞cpnf 11211 [,]cicc 13315 ↾s cress 17206 distcds 17235 ℝ*𝑠cxrs 17469 measurescmeas 34191 sitmcsitm 34325 sitgcsitg 34326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-of 7655 df-1st 7970 df-2nd 7971 df-sitm 34328 |
| This theorem is referenced by: sitmcl 34348 sitmf 34349 |
| Copyright terms: Public domain | W3C validator |