| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sitmfval | Structured version Visualization version GIF version | ||
| Description: Value of the integral distance between two simple functions. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
| Ref | Expression |
|---|---|
| sitmval.d | ⊢ 𝐷 = (dist‘𝑊) |
| sitmval.1 | ⊢ (𝜑 → 𝑊 ∈ 𝑉) |
| sitmval.2 | ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) |
| sitmfval.1 | ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) |
| sitmfval.2 | ⊢ (𝜑 → 𝐺 ∈ dom (𝑊sitg𝑀)) |
| Ref | Expression |
|---|---|
| sitmfval | ⊢ (𝜑 → (𝐹(𝑊sitm𝑀)𝐺) = (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝐹 ∘f 𝐷𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sitmval.d | . . 3 ⊢ 𝐷 = (dist‘𝑊) | |
| 2 | sitmval.1 | . . 3 ⊢ (𝜑 → 𝑊 ∈ 𝑉) | |
| 3 | sitmval.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) | |
| 4 | 1, 2, 3 | sitmval 34313 | . 2 ⊢ (𝜑 → (𝑊sitm𝑀) = (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦ (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝑓 ∘f 𝐷𝑔)))) |
| 5 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → 𝑓 = 𝐹) | |
| 6 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → 𝑔 = 𝐺) | |
| 7 | 5, 6 | oveq12d 7387 | . . 3 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → (𝑓 ∘f 𝐷𝑔) = (𝐹 ∘f 𝐷𝐺)) |
| 8 | 7 | fveq2d 6844 | . 2 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝑓 ∘f 𝐷𝑔)) = (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝐹 ∘f 𝐷𝐺))) |
| 9 | sitmfval.1 | . 2 ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) | |
| 10 | sitmfval.2 | . 2 ⊢ (𝜑 → 𝐺 ∈ dom (𝑊sitg𝑀)) | |
| 11 | fvexd 6855 | . 2 ⊢ (𝜑 → (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝐹 ∘f 𝐷𝐺)) ∈ V) | |
| 12 | 4, 8, 9, 10, 11 | ovmpod 7521 | 1 ⊢ (𝜑 → (𝐹(𝑊sitm𝑀)𝐺) = (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝐹 ∘f 𝐷𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∪ cuni 4867 dom cdm 5631 ran crn 5632 ‘cfv 6499 (class class class)co 7369 ∘f cof 7631 0cc0 11044 +∞cpnf 11181 [,]cicc 13285 ↾s cress 17176 distcds 17205 ℝ*𝑠cxrs 17439 measurescmeas 34158 sitmcsitm 34292 sitgcsitg 34293 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-1st 7947 df-2nd 7948 df-sitm 34295 |
| This theorem is referenced by: sitmcl 34315 sitmf 34316 |
| Copyright terms: Public domain | W3C validator |