Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sitmfval Structured version   Visualization version   GIF version

Theorem sitmfval 34314
Description: Value of the integral distance between two simple functions. (Contributed by Thierry Arnoux, 30-Jan-2018.)
Hypotheses
Ref Expression
sitmval.d 𝐷 = (dist‘𝑊)
sitmval.1 (𝜑𝑊𝑉)
sitmval.2 (𝜑𝑀 ran measures)
sitmfval.1 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
sitmfval.2 (𝜑𝐺 ∈ dom (𝑊sitg𝑀))
Assertion
Ref Expression
sitmfval (𝜑 → (𝐹(𝑊sitm𝑀)𝐺) = (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝐹f 𝐷𝐺)))

Proof of Theorem sitmfval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sitmval.d . . 3 𝐷 = (dist‘𝑊)
2 sitmval.1 . . 3 (𝜑𝑊𝑉)
3 sitmval.2 . . 3 (𝜑𝑀 ran measures)
41, 2, 3sitmval 34313 . 2 (𝜑 → (𝑊sitm𝑀) = (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦ (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝑓f 𝐷𝑔))))
5 simprl 770 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → 𝑓 = 𝐹)
6 simprr 772 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → 𝑔 = 𝐺)
75, 6oveq12d 7387 . . 3 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (𝑓f 𝐷𝑔) = (𝐹f 𝐷𝐺))
87fveq2d 6844 . 2 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝑓f 𝐷𝑔)) = (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝐹f 𝐷𝐺)))
9 sitmfval.1 . 2 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
10 sitmfval.2 . 2 (𝜑𝐺 ∈ dom (𝑊sitg𝑀))
11 fvexd 6855 . 2 (𝜑 → (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝐹f 𝐷𝐺)) ∈ V)
124, 8, 9, 10, 11ovmpod 7521 1 (𝜑 → (𝐹(𝑊sitm𝑀)𝐺) = (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝐹f 𝐷𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444   cuni 4867  dom cdm 5631  ran crn 5632  cfv 6499  (class class class)co 7369  f cof 7631  0cc0 11044  +∞cpnf 11181  [,]cicc 13285  s cress 17176  distcds 17205  *𝑠cxrs 17439  measurescmeas 34158  sitmcsitm 34292  sitgcsitg 34293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-1st 7947  df-2nd 7948  df-sitm 34295
This theorem is referenced by:  sitmcl  34315  sitmf  34316
  Copyright terms: Public domain W3C validator