| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sitmfval | Structured version Visualization version GIF version | ||
| Description: Value of the integral distance between two simple functions. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
| Ref | Expression |
|---|---|
| sitmval.d | ⊢ 𝐷 = (dist‘𝑊) |
| sitmval.1 | ⊢ (𝜑 → 𝑊 ∈ 𝑉) |
| sitmval.2 | ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) |
| sitmfval.1 | ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) |
| sitmfval.2 | ⊢ (𝜑 → 𝐺 ∈ dom (𝑊sitg𝑀)) |
| Ref | Expression |
|---|---|
| sitmfval | ⊢ (𝜑 → (𝐹(𝑊sitm𝑀)𝐺) = (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝐹 ∘f 𝐷𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sitmval.d | . . 3 ⊢ 𝐷 = (dist‘𝑊) | |
| 2 | sitmval.1 | . . 3 ⊢ (𝜑 → 𝑊 ∈ 𝑉) | |
| 3 | sitmval.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) | |
| 4 | 1, 2, 3 | sitmval 34310 | . 2 ⊢ (𝜑 → (𝑊sitm𝑀) = (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦ (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝑓 ∘f 𝐷𝑔)))) |
| 5 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → 𝑓 = 𝐹) | |
| 6 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → 𝑔 = 𝐺) | |
| 7 | 5, 6 | oveq12d 7431 | . . 3 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → (𝑓 ∘f 𝐷𝑔) = (𝐹 ∘f 𝐷𝐺)) |
| 8 | 7 | fveq2d 6890 | . 2 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝑓 ∘f 𝐷𝑔)) = (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝐹 ∘f 𝐷𝐺))) |
| 9 | sitmfval.1 | . 2 ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) | |
| 10 | sitmfval.2 | . 2 ⊢ (𝜑 → 𝐺 ∈ dom (𝑊sitg𝑀)) | |
| 11 | fvexd 6901 | . 2 ⊢ (𝜑 → (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝐹 ∘f 𝐷𝐺)) ∈ V) | |
| 12 | 4, 8, 9, 10, 11 | ovmpod 7567 | 1 ⊢ (𝜑 → (𝐹(𝑊sitm𝑀)𝐺) = (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝐹 ∘f 𝐷𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ∪ cuni 4887 dom cdm 5665 ran crn 5666 ‘cfv 6541 (class class class)co 7413 ∘f cof 7677 0cc0 11137 +∞cpnf 11274 [,]cicc 13372 ↾s cress 17252 distcds 17282 ℝ*𝑠cxrs 17516 measurescmeas 34155 sitmcsitm 34289 sitgcsitg 34290 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-1st 7996 df-2nd 7997 df-sitm 34292 |
| This theorem is referenced by: sitmcl 34312 sitmf 34313 |
| Copyright terms: Public domain | W3C validator |