Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sitmfval Structured version   Visualization version   GIF version

Theorem sitmfval 34347
Description: Value of the integral distance between two simple functions. (Contributed by Thierry Arnoux, 30-Jan-2018.)
Hypotheses
Ref Expression
sitmval.d 𝐷 = (dist‘𝑊)
sitmval.1 (𝜑𝑊𝑉)
sitmval.2 (𝜑𝑀 ran measures)
sitmfval.1 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
sitmfval.2 (𝜑𝐺 ∈ dom (𝑊sitg𝑀))
Assertion
Ref Expression
sitmfval (𝜑 → (𝐹(𝑊sitm𝑀)𝐺) = (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝐹f 𝐷𝐺)))

Proof of Theorem sitmfval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sitmval.d . . 3 𝐷 = (dist‘𝑊)
2 sitmval.1 . . 3 (𝜑𝑊𝑉)
3 sitmval.2 . . 3 (𝜑𝑀 ran measures)
41, 2, 3sitmval 34346 . 2 (𝜑 → (𝑊sitm𝑀) = (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦ (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝑓f 𝐷𝑔))))
5 simprl 770 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → 𝑓 = 𝐹)
6 simprr 772 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → 𝑔 = 𝐺)
75, 6oveq12d 7407 . . 3 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (𝑓f 𝐷𝑔) = (𝐹f 𝐷𝐺))
87fveq2d 6864 . 2 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝑓f 𝐷𝑔)) = (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝐹f 𝐷𝐺)))
9 sitmfval.1 . 2 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
10 sitmfval.2 . 2 (𝜑𝐺 ∈ dom (𝑊sitg𝑀))
11 fvexd 6875 . 2 (𝜑 → (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝐹f 𝐷𝐺)) ∈ V)
124, 8, 9, 10, 11ovmpod 7543 1 (𝜑 → (𝐹(𝑊sitm𝑀)𝐺) = (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝐹f 𝐷𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450   cuni 4873  dom cdm 5640  ran crn 5641  cfv 6513  (class class class)co 7389  f cof 7653  0cc0 11074  +∞cpnf 11211  [,]cicc 13315  s cress 17206  distcds 17235  *𝑠cxrs 17469  measurescmeas 34191  sitmcsitm 34325  sitgcsitg 34326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-of 7655  df-1st 7970  df-2nd 7971  df-sitm 34328
This theorem is referenced by:  sitmcl  34348  sitmf  34349
  Copyright terms: Public domain W3C validator