Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sitmfval Structured version   Visualization version   GIF version

Theorem sitmfval 34346
Description: Value of the integral distance between two simple functions. (Contributed by Thierry Arnoux, 30-Jan-2018.)
Hypotheses
Ref Expression
sitmval.d 𝐷 = (dist‘𝑊)
sitmval.1 (𝜑𝑊𝑉)
sitmval.2 (𝜑𝑀 ran measures)
sitmfval.1 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
sitmfval.2 (𝜑𝐺 ∈ dom (𝑊sitg𝑀))
Assertion
Ref Expression
sitmfval (𝜑 → (𝐹(𝑊sitm𝑀)𝐺) = (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝐹f 𝐷𝐺)))

Proof of Theorem sitmfval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sitmval.d . . 3 𝐷 = (dist‘𝑊)
2 sitmval.1 . . 3 (𝜑𝑊𝑉)
3 sitmval.2 . . 3 (𝜑𝑀 ran measures)
41, 2, 3sitmval 34345 . 2 (𝜑 → (𝑊sitm𝑀) = (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦ (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝑓f 𝐷𝑔))))
5 simprl 771 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → 𝑓 = 𝐹)
6 simprr 773 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → 𝑔 = 𝐺)
75, 6oveq12d 7456 . . 3 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (𝑓f 𝐷𝑔) = (𝐹f 𝐷𝐺))
87fveq2d 6918 . 2 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝑓f 𝐷𝑔)) = (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝐹f 𝐷𝐺)))
9 sitmfval.1 . 2 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
10 sitmfval.2 . 2 (𝜑𝐺 ∈ dom (𝑊sitg𝑀))
11 fvexd 6929 . 2 (𝜑 → (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝐹f 𝐷𝐺)) ∈ V)
124, 8, 9, 10, 11ovmpod 7592 1 (𝜑 → (𝐹(𝑊sitm𝑀)𝐺) = (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝐹f 𝐷𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3481   cuni 4915  dom cdm 5693  ran crn 5694  cfv 6569  (class class class)co 7438  f cof 7702  0cc0 11162  +∞cpnf 11299  [,]cicc 13396  s cress 17283  distcds 17316  *𝑠cxrs 17556  measurescmeas 34190  sitmcsitm 34324  sitgcsitg 34325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443  df-of 7704  df-1st 8022  df-2nd 8023  df-sitm 34327
This theorem is referenced by:  sitmcl  34347  sitmf  34348
  Copyright terms: Public domain W3C validator