![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > smorndom | Structured version Visualization version GIF version |
Description: The range of a strictly monotone ordinal function dominates the domain. (Contributed by Mario Carneiro, 13-Mar-2013.) |
Ref | Expression |
---|---|
smorndom | ⊢ ((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1171 | . . . . . . 7 ⊢ (((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐹:𝐴⟶𝐵) | |
2 | 1 | ffnd 6339 | . . . . . 6 ⊢ (((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐹 Fn 𝐴) |
3 | simpl2 1172 | . . . . . 6 ⊢ (((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → Smo 𝐹) | |
4 | smodm2 7789 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴) | |
5 | 2, 3, 4 | syl2anc 576 | . . . . 5 ⊢ (((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → Ord 𝐴) |
6 | ordelord 6045 | . . . . 5 ⊢ ((Ord 𝐴 ∧ 𝑥 ∈ 𝐴) → Ord 𝑥) | |
7 | 5, 6 | sylancom 579 | . . . 4 ⊢ (((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → Ord 𝑥) |
8 | simpl3 1173 | . . . 4 ⊢ (((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → Ord 𝐵) | |
9 | simpr 477 | . . . . 5 ⊢ (((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
10 | smogt 7801 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ 𝑥 ∈ 𝐴) → 𝑥 ⊆ (𝐹‘𝑥)) | |
11 | 2, 3, 9, 10 | syl3anc 1351 | . . . 4 ⊢ (((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑥 ⊆ (𝐹‘𝑥)) |
12 | ffvelrn 6668 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) | |
13 | 12 | 3ad2antl1 1165 | . . . 4 ⊢ (((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) |
14 | ordtr2 6067 | . . . . 5 ⊢ ((Ord 𝑥 ∧ Ord 𝐵) → ((𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘𝑥) ∈ 𝐵) → 𝑥 ∈ 𝐵)) | |
15 | 14 | imp 398 | . . . 4 ⊢ (((Ord 𝑥 ∧ Ord 𝐵) ∧ (𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘𝑥) ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
16 | 7, 8, 11, 13, 15 | syl22anc 826 | . . 3 ⊢ (((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
17 | 16 | ex 405 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
18 | 17 | ssrdv 3860 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1068 ∈ wcel 2048 ⊆ wss 3825 Ord word 6022 Fn wfn 6177 ⟶wf 6178 ‘cfv 6182 Smo wsmo 7779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-sbc 3678 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-br 4924 df-opab 4986 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-ord 6026 df-on 6027 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-fv 6190 df-smo 7780 |
This theorem is referenced by: cofsmo 9481 hsmexlem1 9638 |
Copyright terms: Public domain | W3C validator |