MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smorndom Structured version   Visualization version   GIF version

Theorem smorndom 8105
Description: The range of a strictly monotone ordinal function dominates the domain. (Contributed by Mario Carneiro, 13-Mar-2013.)
Assertion
Ref Expression
smorndom ((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) → 𝐴𝐵)

Proof of Theorem smorndom
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1193 . . . . . . 7 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → 𝐹:𝐴𝐵)
21ffnd 6546 . . . . . 6 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → 𝐹 Fn 𝐴)
3 simpl2 1194 . . . . . 6 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → Smo 𝐹)
4 smodm2 8092 . . . . . 6 ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴)
52, 3, 4syl2anc 587 . . . . 5 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → Ord 𝐴)
6 ordelord 6235 . . . . 5 ((Ord 𝐴𝑥𝐴) → Ord 𝑥)
75, 6sylancom 591 . . . 4 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → Ord 𝑥)
8 simpl3 1195 . . . 4 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → Ord 𝐵)
9 simpr 488 . . . . 5 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → 𝑥𝐴)
10 smogt 8104 . . . . 5 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) → 𝑥 ⊆ (𝐹𝑥))
112, 3, 9, 10syl3anc 1373 . . . 4 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → 𝑥 ⊆ (𝐹𝑥))
12 ffvelrn 6902 . . . . 5 ((𝐹:𝐴𝐵𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
13123ad2antl1 1187 . . . 4 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
14 ordtr2 6257 . . . . 5 ((Ord 𝑥 ∧ Ord 𝐵) → ((𝑥 ⊆ (𝐹𝑥) ∧ (𝐹𝑥) ∈ 𝐵) → 𝑥𝐵))
1514imp 410 . . . 4 (((Ord 𝑥 ∧ Ord 𝐵) ∧ (𝑥 ⊆ (𝐹𝑥) ∧ (𝐹𝑥) ∈ 𝐵)) → 𝑥𝐵)
167, 8, 11, 13, 15syl22anc 839 . . 3 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → 𝑥𝐵)
1716ex 416 . 2 ((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) → (𝑥𝐴𝑥𝐵))
1817ssrdv 3907 1 ((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089  wcel 2110  wss 3866  Ord word 6212   Fn wfn 6375  wf 6376  cfv 6380  Smo wsmo 8082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-ord 6216  df-on 6217  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-fv 6388  df-smo 8083
This theorem is referenced by:  cofsmo  9883  hsmexlem1  10040
  Copyright terms: Public domain W3C validator