Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > smorndom | Structured version Visualization version GIF version |
Description: The range of a strictly monotone ordinal function dominates the domain. (Contributed by Mario Carneiro, 13-Mar-2013.) |
Ref | Expression |
---|---|
smorndom | ⊢ ((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1193 | . . . . . . 7 ⊢ (((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐹:𝐴⟶𝐵) | |
2 | 1 | ffnd 6546 | . . . . . 6 ⊢ (((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐹 Fn 𝐴) |
3 | simpl2 1194 | . . . . . 6 ⊢ (((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → Smo 𝐹) | |
4 | smodm2 8092 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴) | |
5 | 2, 3, 4 | syl2anc 587 | . . . . 5 ⊢ (((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → Ord 𝐴) |
6 | ordelord 6235 | . . . . 5 ⊢ ((Ord 𝐴 ∧ 𝑥 ∈ 𝐴) → Ord 𝑥) | |
7 | 5, 6 | sylancom 591 | . . . 4 ⊢ (((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → Ord 𝑥) |
8 | simpl3 1195 | . . . 4 ⊢ (((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → Ord 𝐵) | |
9 | simpr 488 | . . . . 5 ⊢ (((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
10 | smogt 8104 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ 𝑥 ∈ 𝐴) → 𝑥 ⊆ (𝐹‘𝑥)) | |
11 | 2, 3, 9, 10 | syl3anc 1373 | . . . 4 ⊢ (((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑥 ⊆ (𝐹‘𝑥)) |
12 | ffvelrn 6902 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) | |
13 | 12 | 3ad2antl1 1187 | . . . 4 ⊢ (((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) |
14 | ordtr2 6257 | . . . . 5 ⊢ ((Ord 𝑥 ∧ Ord 𝐵) → ((𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘𝑥) ∈ 𝐵) → 𝑥 ∈ 𝐵)) | |
15 | 14 | imp 410 | . . . 4 ⊢ (((Ord 𝑥 ∧ Ord 𝐵) ∧ (𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘𝑥) ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
16 | 7, 8, 11, 13, 15 | syl22anc 839 | . . 3 ⊢ (((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
17 | 16 | ex 416 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
18 | 17 | ssrdv 3907 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 ∈ wcel 2110 ⊆ wss 3866 Ord word 6212 Fn wfn 6375 ⟶wf 6376 ‘cfv 6380 Smo wsmo 8082 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-ord 6216 df-on 6217 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-fv 6388 df-smo 8083 |
This theorem is referenced by: cofsmo 9883 hsmexlem1 10040 |
Copyright terms: Public domain | W3C validator |