| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sspsval | Structured version Visualization version GIF version | ||
| Description: Scalar multiplication on a subspace in terms of scalar multiplication on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ssps.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
| ssps.s | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
| ssps.r | ⊢ 𝑅 = ( ·𝑠OLD ‘𝑊) |
| ssps.h | ⊢ 𝐻 = (SubSp‘𝑈) |
| Ref | Expression |
|---|---|
| sspsval | ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑌)) → (𝐴𝑅𝐵) = (𝐴𝑆𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssps.y | . . . 4 ⊢ 𝑌 = (BaseSet‘𝑊) | |
| 2 | ssps.s | . . . 4 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
| 3 | ssps.r | . . . 4 ⊢ 𝑅 = ( ·𝑠OLD ‘𝑊) | |
| 4 | ssps.h | . . . 4 ⊢ 𝐻 = (SubSp‘𝑈) | |
| 5 | 1, 2, 3, 4 | ssps 30705 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑅 = (𝑆 ↾ (ℂ × 𝑌))) |
| 6 | 5 | oveqd 7363 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (𝐴𝑅𝐵) = (𝐴(𝑆 ↾ (ℂ × 𝑌))𝐵)) |
| 7 | ovres 7512 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑌) → (𝐴(𝑆 ↾ (ℂ × 𝑌))𝐵) = (𝐴𝑆𝐵)) | |
| 8 | 6, 7 | sylan9eq 2786 | 1 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑌)) → (𝐴𝑅𝐵) = (𝐴𝑆𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 × cxp 5614 ↾ cres 5618 ‘cfv 6481 (class class class)co 7346 ℂcc 11001 NrmCVeccnv 30559 BaseSetcba 30561 ·𝑠OLD cns 30562 SubSpcss 30696 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-1st 7921 df-2nd 7922 df-vc 30534 df-nv 30567 df-va 30570 df-ba 30571 df-sm 30572 df-0v 30573 df-nmcv 30575 df-ssp 30697 |
| This theorem is referenced by: sspmval 30708 minvecolem2 30850 hhshsslem2 31243 |
| Copyright terms: Public domain | W3C validator |