![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sspsval | Structured version Visualization version GIF version |
Description: Scalar multiplication on a subspace in terms of scalar multiplication on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ssps.y | β’ π = (BaseSetβπ) |
ssps.s | β’ π = ( Β·π OLD βπ) |
ssps.r | β’ π = ( Β·π OLD βπ) |
ssps.h | β’ π» = (SubSpβπ) |
Ref | Expression |
---|---|
sspsval | β’ (((π β NrmCVec β§ π β π») β§ (π΄ β β β§ π΅ β π)) β (π΄π π΅) = (π΄ππ΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssps.y | . . . 4 β’ π = (BaseSetβπ) | |
2 | ssps.s | . . . 4 β’ π = ( Β·π OLD βπ) | |
3 | ssps.r | . . . 4 β’ π = ( Β·π OLD βπ) | |
4 | ssps.h | . . . 4 β’ π» = (SubSpβπ) | |
5 | 1, 2, 3, 4 | ssps 30560 | . . 3 β’ ((π β NrmCVec β§ π β π») β π = (π βΎ (β Γ π))) |
6 | 5 | oveqd 7443 | . 2 β’ ((π β NrmCVec β§ π β π») β (π΄π π΅) = (π΄(π βΎ (β Γ π))π΅)) |
7 | ovres 7593 | . 2 β’ ((π΄ β β β§ π΅ β π) β (π΄(π βΎ (β Γ π))π΅) = (π΄ππ΅)) | |
8 | 6, 7 | sylan9eq 2788 | 1 β’ (((π β NrmCVec β§ π β π») β§ (π΄ β β β§ π΅ β π)) β (π΄π π΅) = (π΄ππ΅)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 Γ cxp 5680 βΎ cres 5684 βcfv 6553 (class class class)co 7426 βcc 11144 NrmCVeccnv 30414 BaseSetcba 30416 Β·π OLD cns 30417 SubSpcss 30551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7429 df-oprab 7430 df-1st 7999 df-2nd 8000 df-vc 30389 df-nv 30422 df-va 30425 df-ba 30426 df-sm 30427 df-0v 30428 df-nmcv 30430 df-ssp 30552 |
This theorem is referenced by: sspmval 30563 minvecolem2 30705 hhshsslem2 31098 |
Copyright terms: Public domain | W3C validator |