HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhshsslem2 Structured version   Visualization version   GIF version

Theorem hhshsslem2 31201
Description: Lemma for hhsssh 31202. (Contributed by NM, 6-Apr-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
hhsst.1 𝑈 = ⟨⟨ + , · ⟩, norm
hhsst.2 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
hhssp3.3 𝑊 ∈ (SubSp‘𝑈)
hhssp3.4 𝐻 ⊆ ℋ
Assertion
Ref Expression
hhshsslem2 𝐻S

Proof of Theorem hhshsslem2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hhssp3.4 . . 3 𝐻 ⊆ ℋ
2 hhsst.1 . . . . . 6 𝑈 = ⟨⟨ + , · ⟩, norm
32hhnv 31098 . . . . 5 𝑈 ∈ NrmCVec
4 hhssp3.3 . . . . 5 𝑊 ∈ (SubSp‘𝑈)
52hh0v 31101 . . . . . 6 0 = (0vec𝑈)
6 eqid 2726 . . . . . 6 (0vec𝑊) = (0vec𝑊)
7 eqid 2726 . . . . . 6 (SubSp‘𝑈) = (SubSp‘𝑈)
85, 6, 7sspz 30668 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → (0vec𝑊) = 0)
93, 4, 8mp2an 690 . . . 4 (0vec𝑊) = 0
107sspnv 30659 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑊 ∈ NrmCVec)
113, 4, 10mp2an 690 . . . . . 6 𝑊 ∈ NrmCVec
12 eqid 2726 . . . . . . 7 (BaseSet‘𝑊) = (BaseSet‘𝑊)
1312, 6nvzcl 30567 . . . . . 6 (𝑊 ∈ NrmCVec → (0vec𝑊) ∈ (BaseSet‘𝑊))
1411, 13ax-mp 5 . . . . 5 (0vec𝑊) ∈ (BaseSet‘𝑊)
15 hhsst.2 . . . . . 6 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
162, 15, 4, 1hhshsslem1 31200 . . . . 5 𝐻 = (BaseSet‘𝑊)
1714, 16eleqtrri 2825 . . . 4 (0vec𝑊) ∈ 𝐻
189, 17eqeltrri 2823 . . 3 0𝐻
191, 18pm3.2i 469 . 2 (𝐻 ⊆ ℋ ∧ 0𝐻)
202hhva 31099 . . . . . . 7 + = ( +𝑣𝑈)
21 eqid 2726 . . . . . . 7 ( +𝑣𝑊) = ( +𝑣𝑊)
2216, 20, 21, 7sspgval 30662 . . . . . 6 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) ∧ (𝑥𝐻𝑦𝐻)) → (𝑥( +𝑣𝑊)𝑦) = (𝑥 + 𝑦))
233, 4, 22mpanl12 700 . . . . 5 ((𝑥𝐻𝑦𝐻) → (𝑥( +𝑣𝑊)𝑦) = (𝑥 + 𝑦))
2416, 21nvgcl 30553 . . . . . 6 ((𝑊 ∈ NrmCVec ∧ 𝑥𝐻𝑦𝐻) → (𝑥( +𝑣𝑊)𝑦) ∈ 𝐻)
2511, 24mp3an1 1445 . . . . 5 ((𝑥𝐻𝑦𝐻) → (𝑥( +𝑣𝑊)𝑦) ∈ 𝐻)
2623, 25eqeltrrd 2827 . . . 4 ((𝑥𝐻𝑦𝐻) → (𝑥 + 𝑦) ∈ 𝐻)
2726rgen2 3188 . . 3 𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻
282hhsm 31102 . . . . . . 7 · = ( ·𝑠OLD𝑈)
29 eqid 2726 . . . . . . 7 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
3016, 28, 29, 7sspsval 30664 . . . . . 6 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) ∧ (𝑥 ∈ ℂ ∧ 𝑦𝐻)) → (𝑥( ·𝑠OLD𝑊)𝑦) = (𝑥 · 𝑦))
313, 4, 30mpanl12 700 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦𝐻) → (𝑥( ·𝑠OLD𝑊)𝑦) = (𝑥 · 𝑦))
3216, 29nvscl 30559 . . . . . 6 ((𝑊 ∈ NrmCVec ∧ 𝑥 ∈ ℂ ∧ 𝑦𝐻) → (𝑥( ·𝑠OLD𝑊)𝑦) ∈ 𝐻)
3311, 32mp3an1 1445 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦𝐻) → (𝑥( ·𝑠OLD𝑊)𝑦) ∈ 𝐻)
3431, 33eqeltrrd 2827 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦𝐻) → (𝑥 · 𝑦) ∈ 𝐻)
3534rgen2 3188 . . 3 𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻
3627, 35pm3.2i 469 . 2 (∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻)
37 issh2 31142 . 2 (𝐻S ↔ ((𝐻 ⊆ ℋ ∧ 0𝐻) ∧ (∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻)))
3819, 36, 37mpbir2an 709 1 𝐻S
Colors of variables: wff setvar class
Syntax hints:  wa 394   = wceq 1534  wcel 2099  wral 3051  wss 3947  cop 4639   × cxp 5680  cres 5684  cfv 6554  (class class class)co 7424  cc 11156  NrmCVeccnv 30517   +𝑣 cpv 30518  BaseSetcba 30519   ·𝑠OLD cns 30520  0veccn0v 30521  SubSpcss 30654  chba 30852   + cva 30853   · csm 30854  normcno 30856  0c0v 30857   S csh 30861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236  ax-hilex 30932  ax-hfvadd 30933  ax-hvcom 30934  ax-hvass 30935  ax-hv0cl 30936  ax-hvaddid 30937  ax-hfvmul 30938  ax-hvmulid 30939  ax-hvmulass 30940  ax-hvdistr1 30941  ax-hvdistr2 30942  ax-hvmul0 30943  ax-hfi 31012  ax-his1 31015  ax-his2 31016  ax-his3 31017  ax-his4 31018
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-sup 9485  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-n0 12525  df-z 12611  df-uz 12875  df-rp 13029  df-seq 14022  df-exp 14082  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-grpo 30426  df-gid 30427  df-ginv 30428  df-gdiv 30429  df-ablo 30478  df-vc 30492  df-nv 30525  df-va 30528  df-ba 30529  df-sm 30530  df-0v 30531  df-vs 30532  df-nmcv 30533  df-ssp 30655  df-hnorm 30901  df-hvsub 30904  df-sh 31140
This theorem is referenced by:  hhsssh  31202
  Copyright terms: Public domain W3C validator