| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hhshsslem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for hhsssh 31241. (Contributed by NM, 6-Apr-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hhsst.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
| hhsst.2 | ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 |
| hhssp3.3 | ⊢ 𝑊 ∈ (SubSp‘𝑈) |
| hhssp3.4 | ⊢ 𝐻 ⊆ ℋ |
| Ref | Expression |
|---|---|
| hhshsslem2 | ⊢ 𝐻 ∈ Sℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhssp3.4 | . . 3 ⊢ 𝐻 ⊆ ℋ | |
| 2 | hhsst.1 | . . . . . 6 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
| 3 | 2 | hhnv 31137 | . . . . 5 ⊢ 𝑈 ∈ NrmCVec |
| 4 | hhssp3.3 | . . . . 5 ⊢ 𝑊 ∈ (SubSp‘𝑈) | |
| 5 | 2 | hh0v 31140 | . . . . . 6 ⊢ 0ℎ = (0vec‘𝑈) |
| 6 | eqid 2731 | . . . . . 6 ⊢ (0vec‘𝑊) = (0vec‘𝑊) | |
| 7 | eqid 2731 | . . . . . 6 ⊢ (SubSp‘𝑈) = (SubSp‘𝑈) | |
| 8 | 5, 6, 7 | sspz 30707 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → (0vec‘𝑊) = 0ℎ) |
| 9 | 3, 4, 8 | mp2an 692 | . . . 4 ⊢ (0vec‘𝑊) = 0ℎ |
| 10 | 7 | sspnv 30698 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑊 ∈ NrmCVec) |
| 11 | 3, 4, 10 | mp2an 692 | . . . . . 6 ⊢ 𝑊 ∈ NrmCVec |
| 12 | eqid 2731 | . . . . . . 7 ⊢ (BaseSet‘𝑊) = (BaseSet‘𝑊) | |
| 13 | 12, 6 | nvzcl 30606 | . . . . . 6 ⊢ (𝑊 ∈ NrmCVec → (0vec‘𝑊) ∈ (BaseSet‘𝑊)) |
| 14 | 11, 13 | ax-mp 5 | . . . . 5 ⊢ (0vec‘𝑊) ∈ (BaseSet‘𝑊) |
| 15 | hhsst.2 | . . . . . 6 ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 | |
| 16 | 2, 15, 4, 1 | hhshsslem1 31239 | . . . . 5 ⊢ 𝐻 = (BaseSet‘𝑊) |
| 17 | 14, 16 | eleqtrri 2830 | . . . 4 ⊢ (0vec‘𝑊) ∈ 𝐻 |
| 18 | 9, 17 | eqeltrri 2828 | . . 3 ⊢ 0ℎ ∈ 𝐻 |
| 19 | 1, 18 | pm3.2i 470 | . 2 ⊢ (𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) |
| 20 | 2 | hhva 31138 | . . . . . . 7 ⊢ +ℎ = ( +𝑣 ‘𝑈) |
| 21 | eqid 2731 | . . . . . . 7 ⊢ ( +𝑣 ‘𝑊) = ( +𝑣 ‘𝑊) | |
| 22 | 16, 20, 21, 7 | sspgval 30701 | . . . . . 6 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → (𝑥( +𝑣 ‘𝑊)𝑦) = (𝑥 +ℎ 𝑦)) |
| 23 | 3, 4, 22 | mpanl12 702 | . . . . 5 ⊢ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) → (𝑥( +𝑣 ‘𝑊)𝑦) = (𝑥 +ℎ 𝑦)) |
| 24 | 16, 21 | nvgcl 30592 | . . . . . 6 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) → (𝑥( +𝑣 ‘𝑊)𝑦) ∈ 𝐻) |
| 25 | 11, 24 | mp3an1 1450 | . . . . 5 ⊢ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) → (𝑥( +𝑣 ‘𝑊)𝑦) ∈ 𝐻) |
| 26 | 23, 25 | eqeltrrd 2832 | . . . 4 ⊢ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) → (𝑥 +ℎ 𝑦) ∈ 𝐻) |
| 27 | 26 | rgen2 3172 | . . 3 ⊢ ∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 |
| 28 | 2 | hhsm 31141 | . . . . . . 7 ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) |
| 29 | eqid 2731 | . . . . . . 7 ⊢ ( ·𝑠OLD ‘𝑊) = ( ·𝑠OLD ‘𝑊) | |
| 30 | 16, 28, 29, 7 | sspsval 30703 | . . . . . 6 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝐻)) → (𝑥( ·𝑠OLD ‘𝑊)𝑦) = (𝑥 ·ℎ 𝑦)) |
| 31 | 3, 4, 30 | mpanl12 702 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝐻) → (𝑥( ·𝑠OLD ‘𝑊)𝑦) = (𝑥 ·ℎ 𝑦)) |
| 32 | 16, 29 | nvscl 30598 | . . . . . 6 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝐻) → (𝑥( ·𝑠OLD ‘𝑊)𝑦) ∈ 𝐻) |
| 33 | 11, 32 | mp3an1 1450 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝐻) → (𝑥( ·𝑠OLD ‘𝑊)𝑦) ∈ 𝐻) |
| 34 | 31, 33 | eqeltrrd 2832 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝐻) → (𝑥 ·ℎ 𝑦) ∈ 𝐻) |
| 35 | 34 | rgen2 3172 | . . 3 ⊢ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻 |
| 36 | 27, 35 | pm3.2i 470 | . 2 ⊢ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻) |
| 37 | issh2 31181 | . 2 ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻))) | |
| 38 | 19, 36, 37 | mpbir2an 711 | 1 ⊢ 𝐻 ∈ Sℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ⊆ wss 3897 〈cop 4577 × cxp 5609 ↾ cres 5613 ‘cfv 6476 (class class class)co 7341 ℂcc 10999 NrmCVeccnv 30556 +𝑣 cpv 30557 BaseSetcba 30558 ·𝑠OLD cns 30559 0veccn0v 30560 SubSpcss 30693 ℋchba 30891 +ℎ cva 30892 ·ℎ csm 30893 normℎcno 30895 0ℎc0v 30896 Sℋ csh 30900 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 ax-hilex 30971 ax-hfvadd 30972 ax-hvcom 30973 ax-hvass 30974 ax-hv0cl 30975 ax-hvaddid 30976 ax-hfvmul 30977 ax-hvmulid 30978 ax-hvmulass 30979 ax-hvdistr1 30980 ax-hvdistr2 30981 ax-hvmul0 30982 ax-hfi 31051 ax-his1 31054 ax-his2 31055 ax-his3 31056 ax-his4 31057 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-n0 12377 df-z 12464 df-uz 12728 df-rp 12886 df-seq 13904 df-exp 13964 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-grpo 30465 df-gid 30466 df-ginv 30467 df-gdiv 30468 df-ablo 30517 df-vc 30531 df-nv 30564 df-va 30567 df-ba 30568 df-sm 30569 df-0v 30570 df-vs 30571 df-nmcv 30572 df-ssp 30694 df-hnorm 30940 df-hvsub 30943 df-sh 31179 |
| This theorem is referenced by: hhsssh 31241 |
| Copyright terms: Public domain | W3C validator |