Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hhshsslem2 | Structured version Visualization version GIF version |
Description: Lemma for hhsssh 29631. (Contributed by NM, 6-Apr-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hhsst.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
hhsst.2 | ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 |
hhssp3.3 | ⊢ 𝑊 ∈ (SubSp‘𝑈) |
hhssp3.4 | ⊢ 𝐻 ⊆ ℋ |
Ref | Expression |
---|---|
hhshsslem2 | ⊢ 𝐻 ∈ Sℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hhssp3.4 | . . 3 ⊢ 𝐻 ⊆ ℋ | |
2 | hhsst.1 | . . . . . 6 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
3 | 2 | hhnv 29527 | . . . . 5 ⊢ 𝑈 ∈ NrmCVec |
4 | hhssp3.3 | . . . . 5 ⊢ 𝑊 ∈ (SubSp‘𝑈) | |
5 | 2 | hh0v 29530 | . . . . . 6 ⊢ 0ℎ = (0vec‘𝑈) |
6 | eqid 2738 | . . . . . 6 ⊢ (0vec‘𝑊) = (0vec‘𝑊) | |
7 | eqid 2738 | . . . . . 6 ⊢ (SubSp‘𝑈) = (SubSp‘𝑈) | |
8 | 5, 6, 7 | sspz 29097 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → (0vec‘𝑊) = 0ℎ) |
9 | 3, 4, 8 | mp2an 689 | . . . 4 ⊢ (0vec‘𝑊) = 0ℎ |
10 | 7 | sspnv 29088 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑊 ∈ NrmCVec) |
11 | 3, 4, 10 | mp2an 689 | . . . . . 6 ⊢ 𝑊 ∈ NrmCVec |
12 | eqid 2738 | . . . . . . 7 ⊢ (BaseSet‘𝑊) = (BaseSet‘𝑊) | |
13 | 12, 6 | nvzcl 28996 | . . . . . 6 ⊢ (𝑊 ∈ NrmCVec → (0vec‘𝑊) ∈ (BaseSet‘𝑊)) |
14 | 11, 13 | ax-mp 5 | . . . . 5 ⊢ (0vec‘𝑊) ∈ (BaseSet‘𝑊) |
15 | hhsst.2 | . . . . . 6 ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 | |
16 | 2, 15, 4, 1 | hhshsslem1 29629 | . . . . 5 ⊢ 𝐻 = (BaseSet‘𝑊) |
17 | 14, 16 | eleqtrri 2838 | . . . 4 ⊢ (0vec‘𝑊) ∈ 𝐻 |
18 | 9, 17 | eqeltrri 2836 | . . 3 ⊢ 0ℎ ∈ 𝐻 |
19 | 1, 18 | pm3.2i 471 | . 2 ⊢ (𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) |
20 | 2 | hhva 29528 | . . . . . . 7 ⊢ +ℎ = ( +𝑣 ‘𝑈) |
21 | eqid 2738 | . . . . . . 7 ⊢ ( +𝑣 ‘𝑊) = ( +𝑣 ‘𝑊) | |
22 | 16, 20, 21, 7 | sspgval 29091 | . . . . . 6 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → (𝑥( +𝑣 ‘𝑊)𝑦) = (𝑥 +ℎ 𝑦)) |
23 | 3, 4, 22 | mpanl12 699 | . . . . 5 ⊢ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) → (𝑥( +𝑣 ‘𝑊)𝑦) = (𝑥 +ℎ 𝑦)) |
24 | 16, 21 | nvgcl 28982 | . . . . . 6 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) → (𝑥( +𝑣 ‘𝑊)𝑦) ∈ 𝐻) |
25 | 11, 24 | mp3an1 1447 | . . . . 5 ⊢ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) → (𝑥( +𝑣 ‘𝑊)𝑦) ∈ 𝐻) |
26 | 23, 25 | eqeltrrd 2840 | . . . 4 ⊢ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) → (𝑥 +ℎ 𝑦) ∈ 𝐻) |
27 | 26 | rgen2 3120 | . . 3 ⊢ ∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 |
28 | 2 | hhsm 29531 | . . . . . . 7 ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) |
29 | eqid 2738 | . . . . . . 7 ⊢ ( ·𝑠OLD ‘𝑊) = ( ·𝑠OLD ‘𝑊) | |
30 | 16, 28, 29, 7 | sspsval 29093 | . . . . . 6 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝐻)) → (𝑥( ·𝑠OLD ‘𝑊)𝑦) = (𝑥 ·ℎ 𝑦)) |
31 | 3, 4, 30 | mpanl12 699 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝐻) → (𝑥( ·𝑠OLD ‘𝑊)𝑦) = (𝑥 ·ℎ 𝑦)) |
32 | 16, 29 | nvscl 28988 | . . . . . 6 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝐻) → (𝑥( ·𝑠OLD ‘𝑊)𝑦) ∈ 𝐻) |
33 | 11, 32 | mp3an1 1447 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝐻) → (𝑥( ·𝑠OLD ‘𝑊)𝑦) ∈ 𝐻) |
34 | 31, 33 | eqeltrrd 2840 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝐻) → (𝑥 ·ℎ 𝑦) ∈ 𝐻) |
35 | 34 | rgen2 3120 | . . 3 ⊢ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻 |
36 | 27, 35 | pm3.2i 471 | . 2 ⊢ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻) |
37 | issh2 29571 | . 2 ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻))) | |
38 | 19, 36, 37 | mpbir2an 708 | 1 ⊢ 𝐻 ∈ Sℋ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ⊆ wss 3887 〈cop 4567 × cxp 5587 ↾ cres 5591 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 NrmCVeccnv 28946 +𝑣 cpv 28947 BaseSetcba 28948 ·𝑠OLD cns 28949 0veccn0v 28950 SubSpcss 29083 ℋchba 29281 +ℎ cva 29282 ·ℎ csm 29283 normℎcno 29285 0ℎc0v 29286 Sℋ csh 29290 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-hilex 29361 ax-hfvadd 29362 ax-hvcom 29363 ax-hvass 29364 ax-hv0cl 29365 ax-hvaddid 29366 ax-hfvmul 29367 ax-hvmulid 29368 ax-hvmulass 29369 ax-hvdistr1 29370 ax-hvdistr2 29371 ax-hvmul0 29372 ax-hfi 29441 ax-his1 29444 ax-his2 29445 ax-his3 29446 ax-his4 29447 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-grpo 28855 df-gid 28856 df-ginv 28857 df-gdiv 28858 df-ablo 28907 df-vc 28921 df-nv 28954 df-va 28957 df-ba 28958 df-sm 28959 df-0v 28960 df-vs 28961 df-nmcv 28962 df-ssp 29084 df-hnorm 29330 df-hvsub 29333 df-sh 29569 |
This theorem is referenced by: hhsssh 29631 |
Copyright terms: Public domain | W3C validator |