HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhshsslem2 Structured version   Visualization version   GIF version

Theorem hhshsslem2 31254
Description: Lemma for hhsssh 31255. (Contributed by NM, 6-Apr-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
hhsst.1 𝑈 = ⟨⟨ + , · ⟩, norm
hhsst.2 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
hhssp3.3 𝑊 ∈ (SubSp‘𝑈)
hhssp3.4 𝐻 ⊆ ℋ
Assertion
Ref Expression
hhshsslem2 𝐻S

Proof of Theorem hhshsslem2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hhssp3.4 . . 3 𝐻 ⊆ ℋ
2 hhsst.1 . . . . . 6 𝑈 = ⟨⟨ + , · ⟩, norm
32hhnv 31151 . . . . 5 𝑈 ∈ NrmCVec
4 hhssp3.3 . . . . 5 𝑊 ∈ (SubSp‘𝑈)
52hh0v 31154 . . . . . 6 0 = (0vec𝑈)
6 eqid 2736 . . . . . 6 (0vec𝑊) = (0vec𝑊)
7 eqid 2736 . . . . . 6 (SubSp‘𝑈) = (SubSp‘𝑈)
85, 6, 7sspz 30721 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → (0vec𝑊) = 0)
93, 4, 8mp2an 692 . . . 4 (0vec𝑊) = 0
107sspnv 30712 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑊 ∈ NrmCVec)
113, 4, 10mp2an 692 . . . . . 6 𝑊 ∈ NrmCVec
12 eqid 2736 . . . . . . 7 (BaseSet‘𝑊) = (BaseSet‘𝑊)
1312, 6nvzcl 30620 . . . . . 6 (𝑊 ∈ NrmCVec → (0vec𝑊) ∈ (BaseSet‘𝑊))
1411, 13ax-mp 5 . . . . 5 (0vec𝑊) ∈ (BaseSet‘𝑊)
15 hhsst.2 . . . . . 6 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
162, 15, 4, 1hhshsslem1 31253 . . . . 5 𝐻 = (BaseSet‘𝑊)
1714, 16eleqtrri 2834 . . . 4 (0vec𝑊) ∈ 𝐻
189, 17eqeltrri 2832 . . 3 0𝐻
191, 18pm3.2i 470 . 2 (𝐻 ⊆ ℋ ∧ 0𝐻)
202hhva 31152 . . . . . . 7 + = ( +𝑣𝑈)
21 eqid 2736 . . . . . . 7 ( +𝑣𝑊) = ( +𝑣𝑊)
2216, 20, 21, 7sspgval 30715 . . . . . 6 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) ∧ (𝑥𝐻𝑦𝐻)) → (𝑥( +𝑣𝑊)𝑦) = (𝑥 + 𝑦))
233, 4, 22mpanl12 702 . . . . 5 ((𝑥𝐻𝑦𝐻) → (𝑥( +𝑣𝑊)𝑦) = (𝑥 + 𝑦))
2416, 21nvgcl 30606 . . . . . 6 ((𝑊 ∈ NrmCVec ∧ 𝑥𝐻𝑦𝐻) → (𝑥( +𝑣𝑊)𝑦) ∈ 𝐻)
2511, 24mp3an1 1450 . . . . 5 ((𝑥𝐻𝑦𝐻) → (𝑥( +𝑣𝑊)𝑦) ∈ 𝐻)
2623, 25eqeltrrd 2836 . . . 4 ((𝑥𝐻𝑦𝐻) → (𝑥 + 𝑦) ∈ 𝐻)
2726rgen2 3185 . . 3 𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻
282hhsm 31155 . . . . . . 7 · = ( ·𝑠OLD𝑈)
29 eqid 2736 . . . . . . 7 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
3016, 28, 29, 7sspsval 30717 . . . . . 6 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) ∧ (𝑥 ∈ ℂ ∧ 𝑦𝐻)) → (𝑥( ·𝑠OLD𝑊)𝑦) = (𝑥 · 𝑦))
313, 4, 30mpanl12 702 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦𝐻) → (𝑥( ·𝑠OLD𝑊)𝑦) = (𝑥 · 𝑦))
3216, 29nvscl 30612 . . . . . 6 ((𝑊 ∈ NrmCVec ∧ 𝑥 ∈ ℂ ∧ 𝑦𝐻) → (𝑥( ·𝑠OLD𝑊)𝑦) ∈ 𝐻)
3311, 32mp3an1 1450 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦𝐻) → (𝑥( ·𝑠OLD𝑊)𝑦) ∈ 𝐻)
3431, 33eqeltrrd 2836 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦𝐻) → (𝑥 · 𝑦) ∈ 𝐻)
3534rgen2 3185 . . 3 𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻
3627, 35pm3.2i 470 . 2 (∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻)
37 issh2 31195 . 2 (𝐻S ↔ ((𝐻 ⊆ ℋ ∧ 0𝐻) ∧ (∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻)))
3819, 36, 37mpbir2an 711 1 𝐻S
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  wral 3052  wss 3931  cop 4612   × cxp 5657  cres 5661  cfv 6536  (class class class)co 7410  cc 11132  NrmCVeccnv 30570   +𝑣 cpv 30571  BaseSetcba 30572   ·𝑠OLD cns 30573  0veccn0v 30574  SubSpcss 30707  chba 30905   + cva 30906   · csm 30907  normcno 30909  0c0v 30910   S csh 30914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-hilex 30985  ax-hfvadd 30986  ax-hvcom 30987  ax-hvass 30988  ax-hv0cl 30989  ax-hvaddid 30990  ax-hfvmul 30991  ax-hvmulid 30992  ax-hvmulass 30993  ax-hvdistr1 30994  ax-hvdistr2 30995  ax-hvmul0 30996  ax-hfi 31065  ax-his1 31068  ax-his2 31069  ax-his3 31070  ax-his4 31071
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-grpo 30479  df-gid 30480  df-ginv 30481  df-gdiv 30482  df-ablo 30531  df-vc 30545  df-nv 30578  df-va 30581  df-ba 30582  df-sm 30583  df-0v 30584  df-vs 30585  df-nmcv 30586  df-ssp 30708  df-hnorm 30954  df-hvsub 30957  df-sh 31193
This theorem is referenced by:  hhsssh  31255
  Copyright terms: Public domain W3C validator