![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hhshsslem2 | Structured version Visualization version GIF version |
Description: Lemma for hhsssh 30786. (Contributed by NM, 6-Apr-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hhsst.1 | β’ π = β¨β¨ +β , Β·β β©, normββ© |
hhsst.2 | β’ π = β¨β¨( +β βΎ (π» Γ π»)), ( Β·β βΎ (β Γ π»))β©, (normβ βΎ π»)β© |
hhssp3.3 | β’ π β (SubSpβπ) |
hhssp3.4 | β’ π» β β |
Ref | Expression |
---|---|
hhshsslem2 | β’ π» β Sβ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hhssp3.4 | . . 3 β’ π» β β | |
2 | hhsst.1 | . . . . . 6 β’ π = β¨β¨ +β , Β·β β©, normββ© | |
3 | 2 | hhnv 30682 | . . . . 5 β’ π β NrmCVec |
4 | hhssp3.3 | . . . . 5 β’ π β (SubSpβπ) | |
5 | 2 | hh0v 30685 | . . . . . 6 β’ 0β = (0vecβπ) |
6 | eqid 2731 | . . . . . 6 β’ (0vecβπ) = (0vecβπ) | |
7 | eqid 2731 | . . . . . 6 β’ (SubSpβπ) = (SubSpβπ) | |
8 | 5, 6, 7 | sspz 30252 | . . . . 5 β’ ((π β NrmCVec β§ π β (SubSpβπ)) β (0vecβπ) = 0β) |
9 | 3, 4, 8 | mp2an 689 | . . . 4 β’ (0vecβπ) = 0β |
10 | 7 | sspnv 30243 | . . . . . . 7 β’ ((π β NrmCVec β§ π β (SubSpβπ)) β π β NrmCVec) |
11 | 3, 4, 10 | mp2an 689 | . . . . . 6 β’ π β NrmCVec |
12 | eqid 2731 | . . . . . . 7 β’ (BaseSetβπ) = (BaseSetβπ) | |
13 | 12, 6 | nvzcl 30151 | . . . . . 6 β’ (π β NrmCVec β (0vecβπ) β (BaseSetβπ)) |
14 | 11, 13 | ax-mp 5 | . . . . 5 β’ (0vecβπ) β (BaseSetβπ) |
15 | hhsst.2 | . . . . . 6 β’ π = β¨β¨( +β βΎ (π» Γ π»)), ( Β·β βΎ (β Γ π»))β©, (normβ βΎ π»)β© | |
16 | 2, 15, 4, 1 | hhshsslem1 30784 | . . . . 5 β’ π» = (BaseSetβπ) |
17 | 14, 16 | eleqtrri 2831 | . . . 4 β’ (0vecβπ) β π» |
18 | 9, 17 | eqeltrri 2829 | . . 3 β’ 0β β π» |
19 | 1, 18 | pm3.2i 470 | . 2 β’ (π» β β β§ 0β β π») |
20 | 2 | hhva 30683 | . . . . . . 7 β’ +β = ( +π£ βπ) |
21 | eqid 2731 | . . . . . . 7 β’ ( +π£ βπ) = ( +π£ βπ) | |
22 | 16, 20, 21, 7 | sspgval 30246 | . . . . . 6 β’ (((π β NrmCVec β§ π β (SubSpβπ)) β§ (π₯ β π» β§ π¦ β π»)) β (π₯( +π£ βπ)π¦) = (π₯ +β π¦)) |
23 | 3, 4, 22 | mpanl12 699 | . . . . 5 β’ ((π₯ β π» β§ π¦ β π») β (π₯( +π£ βπ)π¦) = (π₯ +β π¦)) |
24 | 16, 21 | nvgcl 30137 | . . . . . 6 β’ ((π β NrmCVec β§ π₯ β π» β§ π¦ β π») β (π₯( +π£ βπ)π¦) β π») |
25 | 11, 24 | mp3an1 1447 | . . . . 5 β’ ((π₯ β π» β§ π¦ β π») β (π₯( +π£ βπ)π¦) β π») |
26 | 23, 25 | eqeltrrd 2833 | . . . 4 β’ ((π₯ β π» β§ π¦ β π») β (π₯ +β π¦) β π») |
27 | 26 | rgen2 3196 | . . 3 β’ βπ₯ β π» βπ¦ β π» (π₯ +β π¦) β π» |
28 | 2 | hhsm 30686 | . . . . . . 7 β’ Β·β = ( Β·π OLD βπ) |
29 | eqid 2731 | . . . . . . 7 β’ ( Β·π OLD βπ) = ( Β·π OLD βπ) | |
30 | 16, 28, 29, 7 | sspsval 30248 | . . . . . 6 β’ (((π β NrmCVec β§ π β (SubSpβπ)) β§ (π₯ β β β§ π¦ β π»)) β (π₯( Β·π OLD βπ)π¦) = (π₯ Β·β π¦)) |
31 | 3, 4, 30 | mpanl12 699 | . . . . 5 β’ ((π₯ β β β§ π¦ β π») β (π₯( Β·π OLD βπ)π¦) = (π₯ Β·β π¦)) |
32 | 16, 29 | nvscl 30143 | . . . . . 6 β’ ((π β NrmCVec β§ π₯ β β β§ π¦ β π») β (π₯( Β·π OLD βπ)π¦) β π») |
33 | 11, 32 | mp3an1 1447 | . . . . 5 β’ ((π₯ β β β§ π¦ β π») β (π₯( Β·π OLD βπ)π¦) β π») |
34 | 31, 33 | eqeltrrd 2833 | . . . 4 β’ ((π₯ β β β§ π¦ β π») β (π₯ Β·β π¦) β π») |
35 | 34 | rgen2 3196 | . . 3 β’ βπ₯ β β βπ¦ β π» (π₯ Β·β π¦) β π» |
36 | 27, 35 | pm3.2i 470 | . 2 β’ (βπ₯ β π» βπ¦ β π» (π₯ +β π¦) β π» β§ βπ₯ β β βπ¦ β π» (π₯ Β·β π¦) β π») |
37 | issh2 30726 | . 2 β’ (π» β Sβ β ((π» β β β§ 0β β π») β§ (βπ₯ β π» βπ¦ β π» (π₯ +β π¦) β π» β§ βπ₯ β β βπ¦ β π» (π₯ Β·β π¦) β π»))) | |
38 | 19, 36, 37 | mpbir2an 708 | 1 β’ π» β Sβ |
Colors of variables: wff setvar class |
Syntax hints: β§ wa 395 = wceq 1540 β wcel 2105 βwral 3060 β wss 3949 β¨cop 4635 Γ cxp 5675 βΎ cres 5679 βcfv 6544 (class class class)co 7412 βcc 11111 NrmCVeccnv 30101 +π£ cpv 30102 BaseSetcba 30103 Β·π OLD cns 30104 0veccn0v 30105 SubSpcss 30238 βchba 30436 +β cva 30437 Β·β csm 30438 normβcno 30440 0βc0v 30441 Sβ csh 30445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-pre-sup 11191 ax-hilex 30516 ax-hfvadd 30517 ax-hvcom 30518 ax-hvass 30519 ax-hv0cl 30520 ax-hvaddid 30521 ax-hfvmul 30522 ax-hvmulid 30523 ax-hvmulass 30524 ax-hvdistr1 30525 ax-hvdistr2 30526 ax-hvmul0 30527 ax-hfi 30596 ax-his1 30599 ax-his2 30600 ax-his3 30601 ax-his4 30602 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-sup 9440 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-n0 12478 df-z 12564 df-uz 12828 df-rp 12980 df-seq 13972 df-exp 14033 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-grpo 30010 df-gid 30011 df-ginv 30012 df-gdiv 30013 df-ablo 30062 df-vc 30076 df-nv 30109 df-va 30112 df-ba 30113 df-sm 30114 df-0v 30115 df-vs 30116 df-nmcv 30117 df-ssp 30239 df-hnorm 30485 df-hvsub 30488 df-sh 30724 |
This theorem is referenced by: hhsssh 30786 |
Copyright terms: Public domain | W3C validator |