| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hhshsslem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for hhsssh 31171. (Contributed by NM, 6-Apr-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hhsst.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
| hhsst.2 | ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 |
| hhssp3.3 | ⊢ 𝑊 ∈ (SubSp‘𝑈) |
| hhssp3.4 | ⊢ 𝐻 ⊆ ℋ |
| Ref | Expression |
|---|---|
| hhshsslem2 | ⊢ 𝐻 ∈ Sℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhssp3.4 | . . 3 ⊢ 𝐻 ⊆ ℋ | |
| 2 | hhsst.1 | . . . . . 6 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
| 3 | 2 | hhnv 31067 | . . . . 5 ⊢ 𝑈 ∈ NrmCVec |
| 4 | hhssp3.3 | . . . . 5 ⊢ 𝑊 ∈ (SubSp‘𝑈) | |
| 5 | 2 | hh0v 31070 | . . . . . 6 ⊢ 0ℎ = (0vec‘𝑈) |
| 6 | eqid 2729 | . . . . . 6 ⊢ (0vec‘𝑊) = (0vec‘𝑊) | |
| 7 | eqid 2729 | . . . . . 6 ⊢ (SubSp‘𝑈) = (SubSp‘𝑈) | |
| 8 | 5, 6, 7 | sspz 30637 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → (0vec‘𝑊) = 0ℎ) |
| 9 | 3, 4, 8 | mp2an 692 | . . . 4 ⊢ (0vec‘𝑊) = 0ℎ |
| 10 | 7 | sspnv 30628 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑊 ∈ NrmCVec) |
| 11 | 3, 4, 10 | mp2an 692 | . . . . . 6 ⊢ 𝑊 ∈ NrmCVec |
| 12 | eqid 2729 | . . . . . . 7 ⊢ (BaseSet‘𝑊) = (BaseSet‘𝑊) | |
| 13 | 12, 6 | nvzcl 30536 | . . . . . 6 ⊢ (𝑊 ∈ NrmCVec → (0vec‘𝑊) ∈ (BaseSet‘𝑊)) |
| 14 | 11, 13 | ax-mp 5 | . . . . 5 ⊢ (0vec‘𝑊) ∈ (BaseSet‘𝑊) |
| 15 | hhsst.2 | . . . . . 6 ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 | |
| 16 | 2, 15, 4, 1 | hhshsslem1 31169 | . . . . 5 ⊢ 𝐻 = (BaseSet‘𝑊) |
| 17 | 14, 16 | eleqtrri 2827 | . . . 4 ⊢ (0vec‘𝑊) ∈ 𝐻 |
| 18 | 9, 17 | eqeltrri 2825 | . . 3 ⊢ 0ℎ ∈ 𝐻 |
| 19 | 1, 18 | pm3.2i 470 | . 2 ⊢ (𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) |
| 20 | 2 | hhva 31068 | . . . . . . 7 ⊢ +ℎ = ( +𝑣 ‘𝑈) |
| 21 | eqid 2729 | . . . . . . 7 ⊢ ( +𝑣 ‘𝑊) = ( +𝑣 ‘𝑊) | |
| 22 | 16, 20, 21, 7 | sspgval 30631 | . . . . . 6 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → (𝑥( +𝑣 ‘𝑊)𝑦) = (𝑥 +ℎ 𝑦)) |
| 23 | 3, 4, 22 | mpanl12 702 | . . . . 5 ⊢ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) → (𝑥( +𝑣 ‘𝑊)𝑦) = (𝑥 +ℎ 𝑦)) |
| 24 | 16, 21 | nvgcl 30522 | . . . . . 6 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) → (𝑥( +𝑣 ‘𝑊)𝑦) ∈ 𝐻) |
| 25 | 11, 24 | mp3an1 1450 | . . . . 5 ⊢ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) → (𝑥( +𝑣 ‘𝑊)𝑦) ∈ 𝐻) |
| 26 | 23, 25 | eqeltrrd 2829 | . . . 4 ⊢ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) → (𝑥 +ℎ 𝑦) ∈ 𝐻) |
| 27 | 26 | rgen2 3175 | . . 3 ⊢ ∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 |
| 28 | 2 | hhsm 31071 | . . . . . . 7 ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) |
| 29 | eqid 2729 | . . . . . . 7 ⊢ ( ·𝑠OLD ‘𝑊) = ( ·𝑠OLD ‘𝑊) | |
| 30 | 16, 28, 29, 7 | sspsval 30633 | . . . . . 6 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝐻)) → (𝑥( ·𝑠OLD ‘𝑊)𝑦) = (𝑥 ·ℎ 𝑦)) |
| 31 | 3, 4, 30 | mpanl12 702 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝐻) → (𝑥( ·𝑠OLD ‘𝑊)𝑦) = (𝑥 ·ℎ 𝑦)) |
| 32 | 16, 29 | nvscl 30528 | . . . . . 6 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝐻) → (𝑥( ·𝑠OLD ‘𝑊)𝑦) ∈ 𝐻) |
| 33 | 11, 32 | mp3an1 1450 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝐻) → (𝑥( ·𝑠OLD ‘𝑊)𝑦) ∈ 𝐻) |
| 34 | 31, 33 | eqeltrrd 2829 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝐻) → (𝑥 ·ℎ 𝑦) ∈ 𝐻) |
| 35 | 34 | rgen2 3175 | . . 3 ⊢ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻 |
| 36 | 27, 35 | pm3.2i 470 | . 2 ⊢ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻) |
| 37 | issh2 31111 | . 2 ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻))) | |
| 38 | 19, 36, 37 | mpbir2an 711 | 1 ⊢ 𝐻 ∈ Sℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3911 〈cop 4591 × cxp 5629 ↾ cres 5633 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 NrmCVeccnv 30486 +𝑣 cpv 30487 BaseSetcba 30488 ·𝑠OLD cns 30489 0veccn0v 30490 SubSpcss 30623 ℋchba 30821 +ℎ cva 30822 ·ℎ csm 30823 normℎcno 30825 0ℎc0v 30826 Sℋ csh 30830 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-hilex 30901 ax-hfvadd 30902 ax-hvcom 30903 ax-hvass 30904 ax-hv0cl 30905 ax-hvaddid 30906 ax-hfvmul 30907 ax-hvmulid 30908 ax-hvmulass 30909 ax-hvdistr1 30910 ax-hvdistr2 30911 ax-hvmul0 30912 ax-hfi 30981 ax-his1 30984 ax-his2 30985 ax-his3 30986 ax-his4 30987 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-grpo 30395 df-gid 30396 df-ginv 30397 df-gdiv 30398 df-ablo 30447 df-vc 30461 df-nv 30494 df-va 30497 df-ba 30498 df-sm 30499 df-0v 30500 df-vs 30501 df-nmcv 30502 df-ssp 30624 df-hnorm 30870 df-hvsub 30873 df-sh 31109 |
| This theorem is referenced by: hhsssh 31171 |
| Copyright terms: Public domain | W3C validator |