Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ccatcan2d | Structured version Visualization version GIF version |
Description: Cancellation law for concatenation. (Contributed by SN, 6-Sep-2023.) |
Ref | Expression |
---|---|
ccatcan2d.a | ⊢ (𝜑 → 𝐴 ∈ Word 𝑉) |
ccatcan2d.b | ⊢ (𝜑 → 𝐵 ∈ Word 𝑉) |
ccatcan2d.c | ⊢ (𝜑 → 𝐶 ∈ Word 𝑉) |
Ref | Expression |
---|---|
ccatcan2d | ⊢ (𝜑 → ((𝐴 ++ 𝐶) = (𝐵 ++ 𝐶) ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 ++ 𝐶) = (𝐵 ++ 𝐶)) → (𝐴 ++ 𝐶) = (𝐵 ++ 𝐶)) | |
2 | ccatcan2d.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ Word 𝑉) | |
3 | lencl 14164 | . . . . . . . . 9 ⊢ (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0) | |
4 | 2, 3 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (♯‘𝐴) ∈ ℕ0) |
5 | 4 | nn0cnd 12225 | . . . . . . 7 ⊢ (𝜑 → (♯‘𝐴) ∈ ℂ) |
6 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 ++ 𝐶) = (𝐵 ++ 𝐶)) → (♯‘𝐴) ∈ ℂ) |
7 | ccatcan2d.b | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ Word 𝑉) | |
8 | lencl 14164 | . . . . . . . . 9 ⊢ (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℕ0) | |
9 | 7, 8 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (♯‘𝐵) ∈ ℕ0) |
10 | 9 | nn0cnd 12225 | . . . . . . 7 ⊢ (𝜑 → (♯‘𝐵) ∈ ℂ) |
11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 ++ 𝐶) = (𝐵 ++ 𝐶)) → (♯‘𝐵) ∈ ℂ) |
12 | ccatcan2d.c | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ Word 𝑉) | |
13 | lencl 14164 | . . . . . . . . 9 ⊢ (𝐶 ∈ Word 𝑉 → (♯‘𝐶) ∈ ℕ0) | |
14 | 12, 13 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (♯‘𝐶) ∈ ℕ0) |
15 | 14 | nn0cnd 12225 | . . . . . . 7 ⊢ (𝜑 → (♯‘𝐶) ∈ ℂ) |
16 | 15 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 ++ 𝐶) = (𝐵 ++ 𝐶)) → (♯‘𝐶) ∈ ℂ) |
17 | ccatlen 14206 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐶 ∈ Word 𝑉) → (♯‘(𝐴 ++ 𝐶)) = ((♯‘𝐴) + (♯‘𝐶))) | |
18 | 2, 12, 17 | syl2anc 583 | . . . . . . . 8 ⊢ (𝜑 → (♯‘(𝐴 ++ 𝐶)) = ((♯‘𝐴) + (♯‘𝐶))) |
19 | fveq2 6756 | . . . . . . . 8 ⊢ ((𝐴 ++ 𝐶) = (𝐵 ++ 𝐶) → (♯‘(𝐴 ++ 𝐶)) = (♯‘(𝐵 ++ 𝐶))) | |
20 | 18, 19 | sylan9req 2800 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐴 ++ 𝐶) = (𝐵 ++ 𝐶)) → ((♯‘𝐴) + (♯‘𝐶)) = (♯‘(𝐵 ++ 𝐶))) |
21 | ccatlen 14206 | . . . . . . . . 9 ⊢ ((𝐵 ∈ Word 𝑉 ∧ 𝐶 ∈ Word 𝑉) → (♯‘(𝐵 ++ 𝐶)) = ((♯‘𝐵) + (♯‘𝐶))) | |
22 | 7, 12, 21 | syl2anc 583 | . . . . . . . 8 ⊢ (𝜑 → (♯‘(𝐵 ++ 𝐶)) = ((♯‘𝐵) + (♯‘𝐶))) |
23 | 22 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐴 ++ 𝐶) = (𝐵 ++ 𝐶)) → (♯‘(𝐵 ++ 𝐶)) = ((♯‘𝐵) + (♯‘𝐶))) |
24 | 20, 23 | eqtrd 2778 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 ++ 𝐶) = (𝐵 ++ 𝐶)) → ((♯‘𝐴) + (♯‘𝐶)) = ((♯‘𝐵) + (♯‘𝐶))) |
25 | 6, 11, 16, 24 | addcan2ad 11111 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 ++ 𝐶) = (𝐵 ++ 𝐶)) → (♯‘𝐴) = (♯‘𝐵)) |
26 | 1, 25 | oveq12d 7273 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ++ 𝐶) = (𝐵 ++ 𝐶)) → ((𝐴 ++ 𝐶) prefix (♯‘𝐴)) = ((𝐵 ++ 𝐶) prefix (♯‘𝐵))) |
27 | 26 | ex 412 | . . 3 ⊢ (𝜑 → ((𝐴 ++ 𝐶) = (𝐵 ++ 𝐶) → ((𝐴 ++ 𝐶) prefix (♯‘𝐴)) = ((𝐵 ++ 𝐶) prefix (♯‘𝐵)))) |
28 | pfxccat1 14343 | . . . . 5 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐶 ∈ Word 𝑉) → ((𝐴 ++ 𝐶) prefix (♯‘𝐴)) = 𝐴) | |
29 | 2, 12, 28 | syl2anc 583 | . . . 4 ⊢ (𝜑 → ((𝐴 ++ 𝐶) prefix (♯‘𝐴)) = 𝐴) |
30 | pfxccat1 14343 | . . . . 5 ⊢ ((𝐵 ∈ Word 𝑉 ∧ 𝐶 ∈ Word 𝑉) → ((𝐵 ++ 𝐶) prefix (♯‘𝐵)) = 𝐵) | |
31 | 7, 12, 30 | syl2anc 583 | . . . 4 ⊢ (𝜑 → ((𝐵 ++ 𝐶) prefix (♯‘𝐵)) = 𝐵) |
32 | 29, 31 | eqeq12d 2754 | . . 3 ⊢ (𝜑 → (((𝐴 ++ 𝐶) prefix (♯‘𝐴)) = ((𝐵 ++ 𝐶) prefix (♯‘𝐵)) ↔ 𝐴 = 𝐵)) |
33 | 27, 32 | sylibd 238 | . 2 ⊢ (𝜑 → ((𝐴 ++ 𝐶) = (𝐵 ++ 𝐶) → 𝐴 = 𝐵)) |
34 | oveq1 7262 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ++ 𝐶) = (𝐵 ++ 𝐶)) | |
35 | 33, 34 | impbid1 224 | 1 ⊢ (𝜑 → ((𝐴 ++ 𝐶) = (𝐵 ++ 𝐶) ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 + caddc 10805 ℕ0cn0 12163 ♯chash 13972 Word cword 14145 ++ cconcat 14201 prefix cpfx 14311 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-concat 14202 df-substr 14282 df-pfx 14312 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |