Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ccatcan2d | Structured version Visualization version GIF version |
Description: Cancellation law for concatenation. (Contributed by SN, 6-Sep-2023.) |
Ref | Expression |
---|---|
ccatcan2d.a | ⊢ (𝜑 → 𝐴 ∈ Word 𝑉) |
ccatcan2d.b | ⊢ (𝜑 → 𝐵 ∈ Word 𝑉) |
ccatcan2d.c | ⊢ (𝜑 → 𝐶 ∈ Word 𝑉) |
Ref | Expression |
---|---|
ccatcan2d | ⊢ (𝜑 → ((𝐴 ++ 𝐶) = (𝐵 ++ 𝐶) ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 ++ 𝐶) = (𝐵 ++ 𝐶)) → (𝐴 ++ 𝐶) = (𝐵 ++ 𝐶)) | |
2 | ccatcan2d.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ Word 𝑉) | |
3 | lencl 14236 | . . . . . . . . 9 ⊢ (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0) | |
4 | 2, 3 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (♯‘𝐴) ∈ ℕ0) |
5 | 4 | nn0cnd 12295 | . . . . . . 7 ⊢ (𝜑 → (♯‘𝐴) ∈ ℂ) |
6 | 5 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 ++ 𝐶) = (𝐵 ++ 𝐶)) → (♯‘𝐴) ∈ ℂ) |
7 | ccatcan2d.b | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ Word 𝑉) | |
8 | lencl 14236 | . . . . . . . . 9 ⊢ (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℕ0) | |
9 | 7, 8 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (♯‘𝐵) ∈ ℕ0) |
10 | 9 | nn0cnd 12295 | . . . . . . 7 ⊢ (𝜑 → (♯‘𝐵) ∈ ℂ) |
11 | 10 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 ++ 𝐶) = (𝐵 ++ 𝐶)) → (♯‘𝐵) ∈ ℂ) |
12 | ccatcan2d.c | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ Word 𝑉) | |
13 | lencl 14236 | . . . . . . . . 9 ⊢ (𝐶 ∈ Word 𝑉 → (♯‘𝐶) ∈ ℕ0) | |
14 | 12, 13 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (♯‘𝐶) ∈ ℕ0) |
15 | 14 | nn0cnd 12295 | . . . . . . 7 ⊢ (𝜑 → (♯‘𝐶) ∈ ℂ) |
16 | 15 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 ++ 𝐶) = (𝐵 ++ 𝐶)) → (♯‘𝐶) ∈ ℂ) |
17 | ccatlen 14278 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐶 ∈ Word 𝑉) → (♯‘(𝐴 ++ 𝐶)) = ((♯‘𝐴) + (♯‘𝐶))) | |
18 | 2, 12, 17 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → (♯‘(𝐴 ++ 𝐶)) = ((♯‘𝐴) + (♯‘𝐶))) |
19 | fveq2 6774 | . . . . . . . 8 ⊢ ((𝐴 ++ 𝐶) = (𝐵 ++ 𝐶) → (♯‘(𝐴 ++ 𝐶)) = (♯‘(𝐵 ++ 𝐶))) | |
20 | 18, 19 | sylan9req 2799 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐴 ++ 𝐶) = (𝐵 ++ 𝐶)) → ((♯‘𝐴) + (♯‘𝐶)) = (♯‘(𝐵 ++ 𝐶))) |
21 | ccatlen 14278 | . . . . . . . . 9 ⊢ ((𝐵 ∈ Word 𝑉 ∧ 𝐶 ∈ Word 𝑉) → (♯‘(𝐵 ++ 𝐶)) = ((♯‘𝐵) + (♯‘𝐶))) | |
22 | 7, 12, 21 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → (♯‘(𝐵 ++ 𝐶)) = ((♯‘𝐵) + (♯‘𝐶))) |
23 | 22 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐴 ++ 𝐶) = (𝐵 ++ 𝐶)) → (♯‘(𝐵 ++ 𝐶)) = ((♯‘𝐵) + (♯‘𝐶))) |
24 | 20, 23 | eqtrd 2778 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 ++ 𝐶) = (𝐵 ++ 𝐶)) → ((♯‘𝐴) + (♯‘𝐶)) = ((♯‘𝐵) + (♯‘𝐶))) |
25 | 6, 11, 16, 24 | addcan2ad 11181 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 ++ 𝐶) = (𝐵 ++ 𝐶)) → (♯‘𝐴) = (♯‘𝐵)) |
26 | 1, 25 | oveq12d 7293 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ++ 𝐶) = (𝐵 ++ 𝐶)) → ((𝐴 ++ 𝐶) prefix (♯‘𝐴)) = ((𝐵 ++ 𝐶) prefix (♯‘𝐵))) |
27 | 26 | ex 413 | . . 3 ⊢ (𝜑 → ((𝐴 ++ 𝐶) = (𝐵 ++ 𝐶) → ((𝐴 ++ 𝐶) prefix (♯‘𝐴)) = ((𝐵 ++ 𝐶) prefix (♯‘𝐵)))) |
28 | pfxccat1 14415 | . . . . 5 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐶 ∈ Word 𝑉) → ((𝐴 ++ 𝐶) prefix (♯‘𝐴)) = 𝐴) | |
29 | 2, 12, 28 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐴 ++ 𝐶) prefix (♯‘𝐴)) = 𝐴) |
30 | pfxccat1 14415 | . . . . 5 ⊢ ((𝐵 ∈ Word 𝑉 ∧ 𝐶 ∈ Word 𝑉) → ((𝐵 ++ 𝐶) prefix (♯‘𝐵)) = 𝐵) | |
31 | 7, 12, 30 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐵 ++ 𝐶) prefix (♯‘𝐵)) = 𝐵) |
32 | 29, 31 | eqeq12d 2754 | . . 3 ⊢ (𝜑 → (((𝐴 ++ 𝐶) prefix (♯‘𝐴)) = ((𝐵 ++ 𝐶) prefix (♯‘𝐵)) ↔ 𝐴 = 𝐵)) |
33 | 27, 32 | sylibd 238 | . 2 ⊢ (𝜑 → ((𝐴 ++ 𝐶) = (𝐵 ++ 𝐶) → 𝐴 = 𝐵)) |
34 | oveq1 7282 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ++ 𝐶) = (𝐵 ++ 𝐶)) | |
35 | 33, 34 | impbid1 224 | 1 ⊢ (𝜑 → ((𝐴 ++ 𝐶) = (𝐵 ++ 𝐶) ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 + caddc 10874 ℕ0cn0 12233 ♯chash 14044 Word cword 14217 ++ cconcat 14273 prefix cpfx 14383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-hash 14045 df-word 14218 df-concat 14274 df-substr 14354 df-pfx 14384 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |