| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ccatcan2d | Structured version Visualization version GIF version | ||
| Description: Cancellation law for concatenation. (Contributed by SN, 6-Sep-2023.) |
| Ref | Expression |
|---|---|
| ccatcan2d.a | ⊢ (𝜑 → 𝐴 ∈ Word 𝑉) |
| ccatcan2d.b | ⊢ (𝜑 → 𝐵 ∈ Word 𝑉) |
| ccatcan2d.c | ⊢ (𝜑 → 𝐶 ∈ Word 𝑉) |
| Ref | Expression |
|---|---|
| ccatcan2d | ⊢ (𝜑 → ((𝐴 ++ 𝐶) = (𝐵 ++ 𝐶) ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 ++ 𝐶) = (𝐵 ++ 𝐶)) → (𝐴 ++ 𝐶) = (𝐵 ++ 𝐶)) | |
| 2 | ccatcan2d.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ Word 𝑉) | |
| 3 | lencl 14498 | . . . . . . . . 9 ⊢ (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0) | |
| 4 | 2, 3 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (♯‘𝐴) ∈ ℕ0) |
| 5 | 4 | nn0cnd 12505 | . . . . . . 7 ⊢ (𝜑 → (♯‘𝐴) ∈ ℂ) |
| 6 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 ++ 𝐶) = (𝐵 ++ 𝐶)) → (♯‘𝐴) ∈ ℂ) |
| 7 | ccatcan2d.b | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ Word 𝑉) | |
| 8 | lencl 14498 | . . . . . . . . 9 ⊢ (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℕ0) | |
| 9 | 7, 8 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (♯‘𝐵) ∈ ℕ0) |
| 10 | 9 | nn0cnd 12505 | . . . . . . 7 ⊢ (𝜑 → (♯‘𝐵) ∈ ℂ) |
| 11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 ++ 𝐶) = (𝐵 ++ 𝐶)) → (♯‘𝐵) ∈ ℂ) |
| 12 | ccatcan2d.c | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ Word 𝑉) | |
| 13 | lencl 14498 | . . . . . . . . 9 ⊢ (𝐶 ∈ Word 𝑉 → (♯‘𝐶) ∈ ℕ0) | |
| 14 | 12, 13 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (♯‘𝐶) ∈ ℕ0) |
| 15 | 14 | nn0cnd 12505 | . . . . . . 7 ⊢ (𝜑 → (♯‘𝐶) ∈ ℂ) |
| 16 | 15 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 ++ 𝐶) = (𝐵 ++ 𝐶)) → (♯‘𝐶) ∈ ℂ) |
| 17 | ccatlen 14540 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐶 ∈ Word 𝑉) → (♯‘(𝐴 ++ 𝐶)) = ((♯‘𝐴) + (♯‘𝐶))) | |
| 18 | 2, 12, 17 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → (♯‘(𝐴 ++ 𝐶)) = ((♯‘𝐴) + (♯‘𝐶))) |
| 19 | fveq2 6858 | . . . . . . . 8 ⊢ ((𝐴 ++ 𝐶) = (𝐵 ++ 𝐶) → (♯‘(𝐴 ++ 𝐶)) = (♯‘(𝐵 ++ 𝐶))) | |
| 20 | 18, 19 | sylan9req 2785 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐴 ++ 𝐶) = (𝐵 ++ 𝐶)) → ((♯‘𝐴) + (♯‘𝐶)) = (♯‘(𝐵 ++ 𝐶))) |
| 21 | ccatlen 14540 | . . . . . . . . 9 ⊢ ((𝐵 ∈ Word 𝑉 ∧ 𝐶 ∈ Word 𝑉) → (♯‘(𝐵 ++ 𝐶)) = ((♯‘𝐵) + (♯‘𝐶))) | |
| 22 | 7, 12, 21 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → (♯‘(𝐵 ++ 𝐶)) = ((♯‘𝐵) + (♯‘𝐶))) |
| 23 | 22 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐴 ++ 𝐶) = (𝐵 ++ 𝐶)) → (♯‘(𝐵 ++ 𝐶)) = ((♯‘𝐵) + (♯‘𝐶))) |
| 24 | 20, 23 | eqtrd 2764 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 ++ 𝐶) = (𝐵 ++ 𝐶)) → ((♯‘𝐴) + (♯‘𝐶)) = ((♯‘𝐵) + (♯‘𝐶))) |
| 25 | 6, 11, 16, 24 | addcan2ad 11380 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 ++ 𝐶) = (𝐵 ++ 𝐶)) → (♯‘𝐴) = (♯‘𝐵)) |
| 26 | 1, 25 | oveq12d 7405 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ++ 𝐶) = (𝐵 ++ 𝐶)) → ((𝐴 ++ 𝐶) prefix (♯‘𝐴)) = ((𝐵 ++ 𝐶) prefix (♯‘𝐵))) |
| 27 | 26 | ex 412 | . . 3 ⊢ (𝜑 → ((𝐴 ++ 𝐶) = (𝐵 ++ 𝐶) → ((𝐴 ++ 𝐶) prefix (♯‘𝐴)) = ((𝐵 ++ 𝐶) prefix (♯‘𝐵)))) |
| 28 | pfxccat1 14667 | . . . . 5 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐶 ∈ Word 𝑉) → ((𝐴 ++ 𝐶) prefix (♯‘𝐴)) = 𝐴) | |
| 29 | 2, 12, 28 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐴 ++ 𝐶) prefix (♯‘𝐴)) = 𝐴) |
| 30 | pfxccat1 14667 | . . . . 5 ⊢ ((𝐵 ∈ Word 𝑉 ∧ 𝐶 ∈ Word 𝑉) → ((𝐵 ++ 𝐶) prefix (♯‘𝐵)) = 𝐵) | |
| 31 | 7, 12, 30 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐵 ++ 𝐶) prefix (♯‘𝐵)) = 𝐵) |
| 32 | 29, 31 | eqeq12d 2745 | . . 3 ⊢ (𝜑 → (((𝐴 ++ 𝐶) prefix (♯‘𝐴)) = ((𝐵 ++ 𝐶) prefix (♯‘𝐵)) ↔ 𝐴 = 𝐵)) |
| 33 | 27, 32 | sylibd 239 | . 2 ⊢ (𝜑 → ((𝐴 ++ 𝐶) = (𝐵 ++ 𝐶) → 𝐴 = 𝐵)) |
| 34 | oveq1 7394 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ++ 𝐶) = (𝐵 ++ 𝐶)) | |
| 35 | 33, 34 | impbid1 225 | 1 ⊢ (𝜑 → ((𝐴 ++ 𝐶) = (𝐵 ++ 𝐶) ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 + caddc 11071 ℕ0cn0 12442 ♯chash 14295 Word cword 14478 ++ cconcat 14535 prefix cpfx 14635 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-hash 14296 df-word 14479 df-concat 14536 df-substr 14606 df-pfx 14636 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |