![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashimarni | Structured version Visualization version GIF version |
Description: If the size of the image of a one-to-one function πΈ under the range of a function πΉ which is a one-to-one function into the domain of πΈ is a nonnegative integer, the size of the function πΉ is the same nonnegative integer. (Contributed by Alexander van der Vekens, 4-Feb-2018.) |
Ref | Expression |
---|---|
hashimarni | β’ ((πΈ:dom πΈβ1-1βran πΈ β§ πΈ β π) β ((πΉ:(0..^(β―βπΉ))β1-1βdom πΈ β§ π = (πΈ β ran πΉ) β§ (β―βπ) = π) β (β―βπΉ) = π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveqeq2 6900 | . . . . . . . 8 β’ (π = (πΈ β ran πΉ) β ((β―βπ) = π β (β―β(πΈ β ran πΉ)) = π)) | |
2 | 1 | adantl 482 | . . . . . . 7 β’ (((πΉ:(0..^(β―βπΉ))β1-1βdom πΈ β§ (πΈ:dom πΈβ1-1βran πΈ β§ πΈ β π)) β§ π = (πΈ β ran πΉ)) β ((β―βπ) = π β (β―β(πΈ β ran πΉ)) = π)) |
3 | hashimarn 14399 | . . . . . . . . . . 11 β’ ((πΈ:dom πΈβ1-1βran πΈ β§ πΈ β π) β (πΉ:(0..^(β―βπΉ))β1-1βdom πΈ β (β―β(πΈ β ran πΉ)) = (β―βπΉ))) | |
4 | 3 | impcom 408 | . . . . . . . . . 10 β’ ((πΉ:(0..^(β―βπΉ))β1-1βdom πΈ β§ (πΈ:dom πΈβ1-1βran πΈ β§ πΈ β π)) β (β―β(πΈ β ran πΉ)) = (β―βπΉ)) |
5 | id 22 | . . . . . . . . . 10 β’ ((β―β(πΈ β ran πΉ)) = π β (β―β(πΈ β ran πΉ)) = π) | |
6 | 4, 5 | sylan9req 2793 | . . . . . . . . 9 β’ (((πΉ:(0..^(β―βπΉ))β1-1βdom πΈ β§ (πΈ:dom πΈβ1-1βran πΈ β§ πΈ β π)) β§ (β―β(πΈ β ran πΉ)) = π) β (β―βπΉ) = π) |
7 | 6 | ex 413 | . . . . . . . 8 β’ ((πΉ:(0..^(β―βπΉ))β1-1βdom πΈ β§ (πΈ:dom πΈβ1-1βran πΈ β§ πΈ β π)) β ((β―β(πΈ β ran πΉ)) = π β (β―βπΉ) = π)) |
8 | 7 | adantr 481 | . . . . . . 7 β’ (((πΉ:(0..^(β―βπΉ))β1-1βdom πΈ β§ (πΈ:dom πΈβ1-1βran πΈ β§ πΈ β π)) β§ π = (πΈ β ran πΉ)) β ((β―β(πΈ β ran πΉ)) = π β (β―βπΉ) = π)) |
9 | 2, 8 | sylbid 239 | . . . . . 6 β’ (((πΉ:(0..^(β―βπΉ))β1-1βdom πΈ β§ (πΈ:dom πΈβ1-1βran πΈ β§ πΈ β π)) β§ π = (πΈ β ran πΉ)) β ((β―βπ) = π β (β―βπΉ) = π)) |
10 | 9 | exp31 420 | . . . . 5 β’ (πΉ:(0..^(β―βπΉ))β1-1βdom πΈ β ((πΈ:dom πΈβ1-1βran πΈ β§ πΈ β π) β (π = (πΈ β ran πΉ) β ((β―βπ) = π β (β―βπΉ) = π)))) |
11 | 10 | com23 86 | . . . 4 β’ (πΉ:(0..^(β―βπΉ))β1-1βdom πΈ β (π = (πΈ β ran πΉ) β ((πΈ:dom πΈβ1-1βran πΈ β§ πΈ β π) β ((β―βπ) = π β (β―βπΉ) = π)))) |
12 | 11 | com34 91 | . . 3 β’ (πΉ:(0..^(β―βπΉ))β1-1βdom πΈ β (π = (πΈ β ran πΉ) β ((β―βπ) = π β ((πΈ:dom πΈβ1-1βran πΈ β§ πΈ β π) β (β―βπΉ) = π)))) |
13 | 12 | 3imp 1111 | . 2 β’ ((πΉ:(0..^(β―βπΉ))β1-1βdom πΈ β§ π = (πΈ β ran πΉ) β§ (β―βπ) = π) β ((πΈ:dom πΈβ1-1βran πΈ β§ πΈ β π) β (β―βπΉ) = π)) |
14 | 13 | com12 32 | 1 β’ ((πΈ:dom πΈβ1-1βran πΈ β§ πΈ β π) β ((πΉ:(0..^(β―βπΉ))β1-1βdom πΈ β§ π = (πΈ β ran πΉ) β§ (β―βπ) = π) β (β―βπΉ) = π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 dom cdm 5676 ran crn 5677 β cima 5679 β1-1βwf1 6540 βcfv 6543 (class class class)co 7408 0cc0 11109 ..^cfzo 13626 β―chash 14289 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-n0 12472 df-z 12558 df-uz 12822 df-hash 14290 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |