Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashimarni Structured version   Visualization version   GIF version

Theorem hashimarni 13802
 Description: If the size of the image of a one-to-one function 𝐸 under the range of a function 𝐹 which is a one-to-one function into the domain of 𝐸 is a nonnegative integer, the size of the function 𝐹 is the same nonnegative integer. (Contributed by Alexander van der Vekens, 4-Feb-2018.)
Assertion
Ref Expression
hashimarni ((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) → ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸𝑃 = (𝐸 “ ran 𝐹) ∧ (♯‘𝑃) = 𝑁) → (♯‘𝐹) = 𝑁))

Proof of Theorem hashimarni
StepHypRef Expression
1 fveqeq2 6658 . . . . . . . 8 (𝑃 = (𝐸 “ ran 𝐹) → ((♯‘𝑃) = 𝑁 ↔ (♯‘(𝐸 “ ran 𝐹)) = 𝑁))
21adantl 485 . . . . . . 7 (((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 ∧ (𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉)) ∧ 𝑃 = (𝐸 “ ran 𝐹)) → ((♯‘𝑃) = 𝑁 ↔ (♯‘(𝐸 “ ran 𝐹)) = 𝑁))
3 hashimarn 13801 . . . . . . . . . . 11 ((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) → (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 → (♯‘(𝐸 “ ran 𝐹)) = (♯‘𝐹)))
43impcom 411 . . . . . . . . . 10 ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 ∧ (𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉)) → (♯‘(𝐸 “ ran 𝐹)) = (♯‘𝐹))
5 id 22 . . . . . . . . . 10 ((♯‘(𝐸 “ ran 𝐹)) = 𝑁 → (♯‘(𝐸 “ ran 𝐹)) = 𝑁)
64, 5sylan9req 2857 . . . . . . . . 9 (((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 ∧ (𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉)) ∧ (♯‘(𝐸 “ ran 𝐹)) = 𝑁) → (♯‘𝐹) = 𝑁)
76ex 416 . . . . . . . 8 ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 ∧ (𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉)) → ((♯‘(𝐸 “ ran 𝐹)) = 𝑁 → (♯‘𝐹) = 𝑁))
87adantr 484 . . . . . . 7 (((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 ∧ (𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉)) ∧ 𝑃 = (𝐸 “ ran 𝐹)) → ((♯‘(𝐸 “ ran 𝐹)) = 𝑁 → (♯‘𝐹) = 𝑁))
92, 8sylbid 243 . . . . . 6 (((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 ∧ (𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉)) ∧ 𝑃 = (𝐸 “ ran 𝐹)) → ((♯‘𝑃) = 𝑁 → (♯‘𝐹) = 𝑁))
109exp31 423 . . . . 5 (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 → ((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) → (𝑃 = (𝐸 “ ran 𝐹) → ((♯‘𝑃) = 𝑁 → (♯‘𝐹) = 𝑁))))
1110com23 86 . . . 4 (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 → (𝑃 = (𝐸 “ ran 𝐹) → ((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) → ((♯‘𝑃) = 𝑁 → (♯‘𝐹) = 𝑁))))
1211com34 91 . . 3 (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 → (𝑃 = (𝐸 “ ran 𝐹) → ((♯‘𝑃) = 𝑁 → ((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) → (♯‘𝐹) = 𝑁))))
13123imp 1108 . 2 ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸𝑃 = (𝐸 “ ran 𝐹) ∧ (♯‘𝑃) = 𝑁) → ((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) → (♯‘𝐹) = 𝑁))
1413com12 32 1 ((𝐸:dom 𝐸1-1→ran 𝐸𝐸𝑉) → ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸𝑃 = (𝐸 “ ran 𝐹) ∧ (♯‘𝑃) = 𝑁) → (♯‘𝐹) = 𝑁))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2112  dom cdm 5523  ran crn 5524   “ cima 5526  –1-1→wf1 6325  ‘cfv 6328  (class class class)co 7139  0cc0 10530  ..^cfzo 13032  ♯chash 13690 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-n0 11890  df-z 11974  df-uz 12236  df-hash 13691 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator