| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hashimarni | Structured version Visualization version GIF version | ||
| Description: If the size of the image of a one-to-one function 𝐸 under the range of a function 𝐹 which is a one-to-one function into the domain of 𝐸 is a nonnegative integer, the size of the function 𝐹 is the same nonnegative integer. (Contributed by Alexander van der Vekens, 4-Feb-2018.) |
| Ref | Expression |
|---|---|
| hashimarni | ⊢ ((𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝐸 ∈ 𝑉) → ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 ∧ 𝑃 = (𝐸 “ ran 𝐹) ∧ (♯‘𝑃) = 𝑁) → (♯‘𝐹) = 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveqeq2 6867 | . . . . . . . 8 ⊢ (𝑃 = (𝐸 “ ran 𝐹) → ((♯‘𝑃) = 𝑁 ↔ (♯‘(𝐸 “ ran 𝐹)) = 𝑁)) | |
| 2 | 1 | adantl 481 | . . . . . . 7 ⊢ (((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 ∧ (𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝐸 ∈ 𝑉)) ∧ 𝑃 = (𝐸 “ ran 𝐹)) → ((♯‘𝑃) = 𝑁 ↔ (♯‘(𝐸 “ ran 𝐹)) = 𝑁)) |
| 3 | hashimarn 14405 | . . . . . . . . . . 11 ⊢ ((𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝐸 ∈ 𝑉) → (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 → (♯‘(𝐸 “ ran 𝐹)) = (♯‘𝐹))) | |
| 4 | 3 | impcom 407 | . . . . . . . . . 10 ⊢ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 ∧ (𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝐸 ∈ 𝑉)) → (♯‘(𝐸 “ ran 𝐹)) = (♯‘𝐹)) |
| 5 | id 22 | . . . . . . . . . 10 ⊢ ((♯‘(𝐸 “ ran 𝐹)) = 𝑁 → (♯‘(𝐸 “ ran 𝐹)) = 𝑁) | |
| 6 | 4, 5 | sylan9req 2785 | . . . . . . . . 9 ⊢ (((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 ∧ (𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝐸 ∈ 𝑉)) ∧ (♯‘(𝐸 “ ran 𝐹)) = 𝑁) → (♯‘𝐹) = 𝑁) |
| 7 | 6 | ex 412 | . . . . . . . 8 ⊢ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 ∧ (𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝐸 ∈ 𝑉)) → ((♯‘(𝐸 “ ran 𝐹)) = 𝑁 → (♯‘𝐹) = 𝑁)) |
| 8 | 7 | adantr 480 | . . . . . . 7 ⊢ (((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 ∧ (𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝐸 ∈ 𝑉)) ∧ 𝑃 = (𝐸 “ ran 𝐹)) → ((♯‘(𝐸 “ ran 𝐹)) = 𝑁 → (♯‘𝐹) = 𝑁)) |
| 9 | 2, 8 | sylbid 240 | . . . . . 6 ⊢ (((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 ∧ (𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝐸 ∈ 𝑉)) ∧ 𝑃 = (𝐸 “ ran 𝐹)) → ((♯‘𝑃) = 𝑁 → (♯‘𝐹) = 𝑁)) |
| 10 | 9 | exp31 419 | . . . . 5 ⊢ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 → ((𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝐸 ∈ 𝑉) → (𝑃 = (𝐸 “ ran 𝐹) → ((♯‘𝑃) = 𝑁 → (♯‘𝐹) = 𝑁)))) |
| 11 | 10 | com23 86 | . . . 4 ⊢ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 → (𝑃 = (𝐸 “ ran 𝐹) → ((𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝐸 ∈ 𝑉) → ((♯‘𝑃) = 𝑁 → (♯‘𝐹) = 𝑁)))) |
| 12 | 11 | com34 91 | . . 3 ⊢ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 → (𝑃 = (𝐸 “ ran 𝐹) → ((♯‘𝑃) = 𝑁 → ((𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝐸 ∈ 𝑉) → (♯‘𝐹) = 𝑁)))) |
| 13 | 12 | 3imp 1110 | . 2 ⊢ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 ∧ 𝑃 = (𝐸 “ ran 𝐹) ∧ (♯‘𝑃) = 𝑁) → ((𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝐸 ∈ 𝑉) → (♯‘𝐹) = 𝑁)) |
| 14 | 13 | com12 32 | 1 ⊢ ((𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝐸 ∈ 𝑉) → ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 ∧ 𝑃 = (𝐸 “ ran 𝐹) ∧ (♯‘𝑃) = 𝑁) → (♯‘𝐹) = 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 dom cdm 5638 ran crn 5639 “ cima 5641 –1-1→wf1 6508 ‘cfv 6511 (class class class)co 7387 0cc0 11068 ..^cfzo 13615 ♯chash 14295 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-hash 14296 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |