| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hashimarni | Structured version Visualization version GIF version | ||
| Description: If the size of the image of a one-to-one function 𝐸 under the range of a function 𝐹 which is a one-to-one function into the domain of 𝐸 is a nonnegative integer, the size of the function 𝐹 is the same nonnegative integer. (Contributed by Alexander van der Vekens, 4-Feb-2018.) |
| Ref | Expression |
|---|---|
| hashimarni | ⊢ ((𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝐸 ∈ 𝑉) → ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 ∧ 𝑃 = (𝐸 “ ran 𝐹) ∧ (♯‘𝑃) = 𝑁) → (♯‘𝐹) = 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveqeq2 6826 | . . . . . . . 8 ⊢ (𝑃 = (𝐸 “ ran 𝐹) → ((♯‘𝑃) = 𝑁 ↔ (♯‘(𝐸 “ ran 𝐹)) = 𝑁)) | |
| 2 | 1 | adantl 481 | . . . . . . 7 ⊢ (((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 ∧ (𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝐸 ∈ 𝑉)) ∧ 𝑃 = (𝐸 “ ran 𝐹)) → ((♯‘𝑃) = 𝑁 ↔ (♯‘(𝐸 “ ran 𝐹)) = 𝑁)) |
| 3 | hashimarn 14342 | . . . . . . . . . . 11 ⊢ ((𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝐸 ∈ 𝑉) → (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 → (♯‘(𝐸 “ ran 𝐹)) = (♯‘𝐹))) | |
| 4 | 3 | impcom 407 | . . . . . . . . . 10 ⊢ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 ∧ (𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝐸 ∈ 𝑉)) → (♯‘(𝐸 “ ran 𝐹)) = (♯‘𝐹)) |
| 5 | id 22 | . . . . . . . . . 10 ⊢ ((♯‘(𝐸 “ ran 𝐹)) = 𝑁 → (♯‘(𝐸 “ ran 𝐹)) = 𝑁) | |
| 6 | 4, 5 | sylan9req 2787 | . . . . . . . . 9 ⊢ (((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 ∧ (𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝐸 ∈ 𝑉)) ∧ (♯‘(𝐸 “ ran 𝐹)) = 𝑁) → (♯‘𝐹) = 𝑁) |
| 7 | 6 | ex 412 | . . . . . . . 8 ⊢ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 ∧ (𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝐸 ∈ 𝑉)) → ((♯‘(𝐸 “ ran 𝐹)) = 𝑁 → (♯‘𝐹) = 𝑁)) |
| 8 | 7 | adantr 480 | . . . . . . 7 ⊢ (((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 ∧ (𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝐸 ∈ 𝑉)) ∧ 𝑃 = (𝐸 “ ran 𝐹)) → ((♯‘(𝐸 “ ran 𝐹)) = 𝑁 → (♯‘𝐹) = 𝑁)) |
| 9 | 2, 8 | sylbid 240 | . . . . . 6 ⊢ (((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 ∧ (𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝐸 ∈ 𝑉)) ∧ 𝑃 = (𝐸 “ ran 𝐹)) → ((♯‘𝑃) = 𝑁 → (♯‘𝐹) = 𝑁)) |
| 10 | 9 | exp31 419 | . . . . 5 ⊢ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 → ((𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝐸 ∈ 𝑉) → (𝑃 = (𝐸 “ ran 𝐹) → ((♯‘𝑃) = 𝑁 → (♯‘𝐹) = 𝑁)))) |
| 11 | 10 | com23 86 | . . . 4 ⊢ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 → (𝑃 = (𝐸 “ ran 𝐹) → ((𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝐸 ∈ 𝑉) → ((♯‘𝑃) = 𝑁 → (♯‘𝐹) = 𝑁)))) |
| 12 | 11 | com34 91 | . . 3 ⊢ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 → (𝑃 = (𝐸 “ ran 𝐹) → ((♯‘𝑃) = 𝑁 → ((𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝐸 ∈ 𝑉) → (♯‘𝐹) = 𝑁)))) |
| 13 | 12 | 3imp 1110 | . 2 ⊢ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 ∧ 𝑃 = (𝐸 “ ran 𝐹) ∧ (♯‘𝑃) = 𝑁) → ((𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝐸 ∈ 𝑉) → (♯‘𝐹) = 𝑁)) |
| 14 | 13 | com12 32 | 1 ⊢ ((𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝐸 ∈ 𝑉) → ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 ∧ 𝑃 = (𝐸 “ ran 𝐹) ∧ (♯‘𝑃) = 𝑁) → (♯‘𝐹) = 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 dom cdm 5611 ran crn 5612 “ cima 5614 –1-1→wf1 6473 ‘cfv 6476 (class class class)co 7341 0cc0 11001 ..^cfzo 13549 ♯chash 14232 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-n0 12377 df-z 12464 df-uz 12728 df-hash 14233 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |