![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashimarni | Structured version Visualization version GIF version |
Description: If the size of the image of a one-to-one function 𝐸 under the range of a function 𝐹 which is a one-to-one function into the domain of 𝐸 is a nonnegative integer, the size of the function 𝐹 is the same nonnegative integer. (Contributed by Alexander van der Vekens, 4-Feb-2018.) |
Ref | Expression |
---|---|
hashimarni | ⊢ ((𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝐸 ∈ 𝑉) → ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 ∧ 𝑃 = (𝐸 “ ran 𝐹) ∧ (♯‘𝑃) = 𝑁) → (♯‘𝐹) = 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveqeq2 6505 | . . . . . . . 8 ⊢ (𝑃 = (𝐸 “ ran 𝐹) → ((♯‘𝑃) = 𝑁 ↔ (♯‘(𝐸 “ ran 𝐹)) = 𝑁)) | |
2 | 1 | adantl 474 | . . . . . . 7 ⊢ (((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 ∧ (𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝐸 ∈ 𝑉)) ∧ 𝑃 = (𝐸 “ ran 𝐹)) → ((♯‘𝑃) = 𝑁 ↔ (♯‘(𝐸 “ ran 𝐹)) = 𝑁)) |
3 | hashimarn 13612 | . . . . . . . . . . 11 ⊢ ((𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝐸 ∈ 𝑉) → (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 → (♯‘(𝐸 “ ran 𝐹)) = (♯‘𝐹))) | |
4 | 3 | impcom 399 | . . . . . . . . . 10 ⊢ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 ∧ (𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝐸 ∈ 𝑉)) → (♯‘(𝐸 “ ran 𝐹)) = (♯‘𝐹)) |
5 | id 22 | . . . . . . . . . 10 ⊢ ((♯‘(𝐸 “ ran 𝐹)) = 𝑁 → (♯‘(𝐸 “ ran 𝐹)) = 𝑁) | |
6 | 4, 5 | sylan9req 2828 | . . . . . . . . 9 ⊢ (((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 ∧ (𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝐸 ∈ 𝑉)) ∧ (♯‘(𝐸 “ ran 𝐹)) = 𝑁) → (♯‘𝐹) = 𝑁) |
7 | 6 | ex 405 | . . . . . . . 8 ⊢ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 ∧ (𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝐸 ∈ 𝑉)) → ((♯‘(𝐸 “ ran 𝐹)) = 𝑁 → (♯‘𝐹) = 𝑁)) |
8 | 7 | adantr 473 | . . . . . . 7 ⊢ (((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 ∧ (𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝐸 ∈ 𝑉)) ∧ 𝑃 = (𝐸 “ ran 𝐹)) → ((♯‘(𝐸 “ ran 𝐹)) = 𝑁 → (♯‘𝐹) = 𝑁)) |
9 | 2, 8 | sylbid 232 | . . . . . 6 ⊢ (((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 ∧ (𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝐸 ∈ 𝑉)) ∧ 𝑃 = (𝐸 “ ran 𝐹)) → ((♯‘𝑃) = 𝑁 → (♯‘𝐹) = 𝑁)) |
10 | 9 | exp31 412 | . . . . 5 ⊢ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 → ((𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝐸 ∈ 𝑉) → (𝑃 = (𝐸 “ ran 𝐹) → ((♯‘𝑃) = 𝑁 → (♯‘𝐹) = 𝑁)))) |
11 | 10 | com23 86 | . . . 4 ⊢ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 → (𝑃 = (𝐸 “ ran 𝐹) → ((𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝐸 ∈ 𝑉) → ((♯‘𝑃) = 𝑁 → (♯‘𝐹) = 𝑁)))) |
12 | 11 | com34 91 | . . 3 ⊢ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 → (𝑃 = (𝐸 “ ran 𝐹) → ((♯‘𝑃) = 𝑁 → ((𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝐸 ∈ 𝑉) → (♯‘𝐹) = 𝑁)))) |
13 | 12 | 3imp 1092 | . 2 ⊢ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 ∧ 𝑃 = (𝐸 “ ran 𝐹) ∧ (♯‘𝑃) = 𝑁) → ((𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝐸 ∈ 𝑉) → (♯‘𝐹) = 𝑁)) |
14 | 13 | com12 32 | 1 ⊢ ((𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝐸 ∈ 𝑉) → ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 ∧ 𝑃 = (𝐸 “ ran 𝐹) ∧ (♯‘𝑃) = 𝑁) → (♯‘𝐹) = 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 ∧ w3a 1069 = wceq 1508 ∈ wcel 2051 dom cdm 5403 ran crn 5404 “ cima 5406 –1-1→wf1 6182 ‘cfv 6185 (class class class)co 6974 0cc0 10333 ..^cfzo 12847 ♯chash 13503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 ax-pre-mulgt0 10410 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-nel 3067 df-ral 3086 df-rex 3087 df-reu 3088 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-pss 3838 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-int 4746 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-om 7395 df-2nd 7500 df-wrecs 7748 df-recs 7810 df-rdg 7848 df-1o 7903 df-er 8087 df-en 8305 df-dom 8306 df-sdom 8307 df-fin 8308 df-card 9160 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-sub 10670 df-neg 10671 df-nn 11438 df-n0 11706 df-z 11792 df-uz 12057 df-hash 13504 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |