Proof of Theorem cnreeu
| Step | Hyp | Ref
| Expression |
| 1 | | oveq1 7417 |
. . . 4
⊢ ((𝑟 + (i · 𝑠)) = (𝑡 + (i · 𝑢)) → ((𝑟 + (i · 𝑠)) + (i · (0 −ℝ
𝑠))) = ((𝑡 + (i · 𝑢)) + (i · (0 −ℝ
𝑠)))) |
| 2 | 1 | oveq2d 7426 |
. . 3
⊢ ((𝑟 + (i · 𝑠)) = (𝑡 + (i · 𝑢)) → ((0 −ℝ 𝑡) + ((𝑟 + (i · 𝑠)) + (i · (0 −ℝ
𝑠)))) = ((0
−ℝ 𝑡) + ((𝑡 + (i · 𝑢)) + (i · (0 −ℝ
𝑠))))) |
| 3 | | cnreeu.r |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑟 ∈ ℝ) |
| 4 | 3 | recnd 11268 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑟 ∈ ℂ) |
| 5 | | ax-icn 11193 |
. . . . . . . . . . . 12
⊢ i ∈
ℂ |
| 6 | 5 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → i ∈
ℂ) |
| 7 | | cnreeu.s |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑠 ∈ ℝ) |
| 8 | 7 | recnd 11268 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑠 ∈ ℂ) |
| 9 | 6, 8 | mulcld 11260 |
. . . . . . . . . 10
⊢ (𝜑 → (i · 𝑠) ∈
ℂ) |
| 10 | | rernegcl 42381 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈ ℝ → (0
−ℝ 𝑠) ∈ ℝ) |
| 11 | 7, 10 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (0
−ℝ 𝑠) ∈ ℝ) |
| 12 | 11 | recnd 11268 |
. . . . . . . . . . 11
⊢ (𝜑 → (0
−ℝ 𝑠) ∈ ℂ) |
| 13 | 6, 12 | mulcld 11260 |
. . . . . . . . . 10
⊢ (𝜑 → (i · (0
−ℝ 𝑠)) ∈ ℂ) |
| 14 | 4, 9, 13 | addassd 11262 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑟 + (i · 𝑠)) + (i · (0 −ℝ
𝑠))) = (𝑟 + ((i · 𝑠) + (i · (0 −ℝ
𝑠))))) |
| 15 | | renegid 42383 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈ ℝ → (𝑠 + (0 −ℝ
𝑠)) = 0) |
| 16 | 7, 15 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑠 + (0 −ℝ 𝑠)) = 0) |
| 17 | 16 | oveq2d 7426 |
. . . . . . . . . . 11
⊢ (𝜑 → (i · (𝑠 + (0 −ℝ
𝑠))) = (i ·
0)) |
| 18 | 6, 8, 12 | adddid 11264 |
. . . . . . . . . . 11
⊢ (𝜑 → (i · (𝑠 + (0 −ℝ
𝑠))) = ((i · 𝑠) + (i · (0
−ℝ 𝑠)))) |
| 19 | | sn-it0e0 42425 |
. . . . . . . . . . . 12
⊢ (i
· 0) = 0 |
| 20 | 19 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → (i · 0) =
0) |
| 21 | 17, 18, 20 | 3eqtr3d 2779 |
. . . . . . . . . 10
⊢ (𝜑 → ((i · 𝑠) + (i · (0
−ℝ 𝑠))) = 0) |
| 22 | 21 | oveq2d 7426 |
. . . . . . . . 9
⊢ (𝜑 → (𝑟 + ((i · 𝑠) + (i · (0 −ℝ
𝑠)))) = (𝑟 + 0)) |
| 23 | | readdrid 42419 |
. . . . . . . . . 10
⊢ (𝑟 ∈ ℝ → (𝑟 + 0) = 𝑟) |
| 24 | 3, 23 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑟 + 0) = 𝑟) |
| 25 | 14, 22, 24 | 3eqtrd 2775 |
. . . . . . . 8
⊢ (𝜑 → ((𝑟 + (i · 𝑠)) + (i · (0 −ℝ
𝑠))) = 𝑟) |
| 26 | 25 | oveq2d 7426 |
. . . . . . 7
⊢ (𝜑 → ((0
−ℝ 𝑡) + ((𝑟 + (i · 𝑠)) + (i · (0 −ℝ
𝑠)))) = ((0
−ℝ 𝑡) + 𝑟)) |
| 27 | | cnreeu.t |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑡 ∈ ℝ) |
| 28 | | rernegcl 42381 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ ℝ → (0
−ℝ 𝑡) ∈ ℝ) |
| 29 | 27, 28 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (0
−ℝ 𝑡) ∈ ℝ) |
| 30 | 29 | recnd 11268 |
. . . . . . . . . 10
⊢ (𝜑 → (0
−ℝ 𝑡) ∈ ℂ) |
| 31 | 27 | recnd 11268 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑡 ∈ ℂ) |
| 32 | | cnreeu.u |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑢 ∈ ℝ) |
| 33 | 32 | recnd 11268 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑢 ∈ ℂ) |
| 34 | 6, 33 | mulcld 11260 |
. . . . . . . . . 10
⊢ (𝜑 → (i · 𝑢) ∈
ℂ) |
| 35 | 30, 31, 34 | addassd 11262 |
. . . . . . . . 9
⊢ (𝜑 → (((0
−ℝ 𝑡) + 𝑡) + (i · 𝑢)) = ((0 −ℝ 𝑡) + (𝑡 + (i · 𝑢)))) |
| 36 | 35 | oveq1d 7425 |
. . . . . . . 8
⊢ (𝜑 → ((((0
−ℝ 𝑡) + 𝑡) + (i · 𝑢)) + (i · (0 −ℝ
𝑠))) = (((0
−ℝ 𝑡) + (𝑡 + (i · 𝑢))) + (i · (0
−ℝ 𝑠)))) |
| 37 | | sn-addlid 42414 |
. . . . . . . . . . 11
⊢ ((i
· 𝑢) ∈ ℂ
→ (0 + (i · 𝑢))
= (i · 𝑢)) |
| 38 | 34, 37 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (0 + (i · 𝑢)) = (i · 𝑢)) |
| 39 | 38 | oveq1d 7425 |
. . . . . . . . 9
⊢ (𝜑 → ((0 + (i · 𝑢)) + (i · (0
−ℝ 𝑠))) = ((i · 𝑢) + (i · (0 −ℝ
𝑠)))) |
| 40 | | renegid2 42423 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ ℝ → ((0
−ℝ 𝑡) + 𝑡) = 0) |
| 41 | 27, 40 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → ((0
−ℝ 𝑡) + 𝑡) = 0) |
| 42 | 41 | oveq1d 7425 |
. . . . . . . . . 10
⊢ (𝜑 → (((0
−ℝ 𝑡) + 𝑡) + (i · 𝑢)) = (0 + (i · 𝑢))) |
| 43 | 42 | oveq1d 7425 |
. . . . . . . . 9
⊢ (𝜑 → ((((0
−ℝ 𝑡) + 𝑡) + (i · 𝑢)) + (i · (0 −ℝ
𝑠))) = ((0 + (i ·
𝑢)) + (i · (0
−ℝ 𝑠)))) |
| 44 | 6, 33, 12 | adddid 11264 |
. . . . . . . . 9
⊢ (𝜑 → (i · (𝑢 + (0 −ℝ
𝑠))) = ((i · 𝑢) + (i · (0
−ℝ 𝑠)))) |
| 45 | 39, 43, 44 | 3eqtr4d 2781 |
. . . . . . . 8
⊢ (𝜑 → ((((0
−ℝ 𝑡) + 𝑡) + (i · 𝑢)) + (i · (0 −ℝ
𝑠))) = (i · (𝑢 + (0 −ℝ
𝑠)))) |
| 46 | 31, 34 | addcld 11259 |
. . . . . . . . 9
⊢ (𝜑 → (𝑡 + (i · 𝑢)) ∈ ℂ) |
| 47 | 30, 46, 13 | addassd 11262 |
. . . . . . . 8
⊢ (𝜑 → (((0
−ℝ 𝑡) + (𝑡 + (i · 𝑢))) + (i · (0
−ℝ 𝑠))) = ((0 −ℝ 𝑡) + ((𝑡 + (i · 𝑢)) + (i · (0 −ℝ
𝑠))))) |
| 48 | 36, 45, 47 | 3eqtr3rd 2780 |
. . . . . . 7
⊢ (𝜑 → ((0
−ℝ 𝑡) + ((𝑡 + (i · 𝑢)) + (i · (0 −ℝ
𝑠)))) = (i · (𝑢 + (0 −ℝ
𝑠)))) |
| 49 | 26, 48 | eqeq12d 2752 |
. . . . . 6
⊢ (𝜑 → (((0
−ℝ 𝑡) + ((𝑟 + (i · 𝑠)) + (i · (0 −ℝ
𝑠)))) = ((0
−ℝ 𝑡) + ((𝑡 + (i · 𝑢)) + (i · (0 −ℝ
𝑠)))) ↔ ((0
−ℝ 𝑡) + 𝑟) = (i · (𝑢 + (0 −ℝ 𝑠))))) |
| 50 | 49 | biimpa 476 |
. . . . 5
⊢ ((𝜑 ∧ ((0
−ℝ 𝑡) + ((𝑟 + (i · 𝑠)) + (i · (0 −ℝ
𝑠)))) = ((0
−ℝ 𝑡) + ((𝑡 + (i · 𝑢)) + (i · (0 −ℝ
𝑠))))) → ((0
−ℝ 𝑡) + 𝑟) = (i · (𝑢 + (0 −ℝ 𝑠)))) |
| 51 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((0
−ℝ 𝑡) + 𝑟) = (i · (𝑢 + (0 −ℝ 𝑠)))) → ((0
−ℝ 𝑡) + 𝑟) = (i · (𝑢 + (0 −ℝ 𝑠)))) |
| 52 | 32 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((0
−ℝ 𝑡) + 𝑟) = (i · (𝑢 + (0 −ℝ 𝑠)))) → 𝑢 ∈ ℝ) |
| 53 | 11 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((0
−ℝ 𝑡) + 𝑟) = (i · (𝑢 + (0 −ℝ 𝑠)))) → (0
−ℝ 𝑠) ∈ ℝ) |
| 54 | 52, 53 | readdcld 11269 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((0
−ℝ 𝑡) + 𝑟) = (i · (𝑢 + (0 −ℝ 𝑠)))) → (𝑢 + (0 −ℝ 𝑠)) ∈
ℝ) |
| 55 | 29 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((0
−ℝ 𝑡) + 𝑟) = (i · (𝑢 + (0 −ℝ 𝑠)))) → (0
−ℝ 𝑡) ∈ ℝ) |
| 56 | 3 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((0
−ℝ 𝑡) + 𝑟) = (i · (𝑢 + (0 −ℝ 𝑠)))) → 𝑟 ∈ ℝ) |
| 57 | 55, 56 | readdcld 11269 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((0
−ℝ 𝑡) + 𝑟) = (i · (𝑢 + (0 −ℝ 𝑠)))) → ((0
−ℝ 𝑡) + 𝑟) ∈ ℝ) |
| 58 | 51, 57 | eqeltrrd 2836 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((0
−ℝ 𝑡) + 𝑟) = (i · (𝑢 + (0 −ℝ 𝑠)))) → (i · (𝑢 + (0 −ℝ
𝑠))) ∈
ℝ) |
| 59 | | sn-itrere 42478 |
. . . . . . . . . . 11
⊢ ((𝑢 + (0 −ℝ
𝑠)) ∈ ℝ →
((i · (𝑢 + (0
−ℝ 𝑠))) ∈ ℝ ↔ (𝑢 + (0 −ℝ 𝑠)) = 0)) |
| 60 | 59 | biimpa 476 |
. . . . . . . . . 10
⊢ (((𝑢 + (0 −ℝ
𝑠)) ∈ ℝ ∧ (i
· (𝑢 + (0
−ℝ 𝑠))) ∈ ℝ) → (𝑢 + (0 −ℝ
𝑠)) = 0) |
| 61 | 54, 58, 60 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((0
−ℝ 𝑡) + 𝑟) = (i · (𝑢 + (0 −ℝ 𝑠)))) → (𝑢 + (0 −ℝ 𝑠)) = 0) |
| 62 | 61 | oveq2d 7426 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((0
−ℝ 𝑡) + 𝑟) = (i · (𝑢 + (0 −ℝ 𝑠)))) → (i · (𝑢 + (0 −ℝ
𝑠))) = (i ·
0)) |
| 63 | 19 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((0
−ℝ 𝑡) + 𝑟) = (i · (𝑢 + (0 −ℝ 𝑠)))) → (i · 0) =
0) |
| 64 | 51, 62, 63 | 3eqtrd 2775 |
. . . . . . 7
⊢ ((𝜑 ∧ ((0
−ℝ 𝑡) + 𝑟) = (i · (𝑢 + (0 −ℝ 𝑠)))) → ((0
−ℝ 𝑡) + 𝑟) = 0) |
| 65 | | oveq2 7418 |
. . . . . . . . 9
⊢ (((0
−ℝ 𝑡) + 𝑟) = 0 → (𝑡 + ((0 −ℝ 𝑡) + 𝑟)) = (𝑡 + 0)) |
| 66 | 65 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((0
−ℝ 𝑡) + 𝑟) = 0) → (𝑡 + ((0 −ℝ 𝑡) + 𝑟)) = (𝑡 + 0)) |
| 67 | | renegid 42383 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ ℝ → (𝑡 + (0 −ℝ
𝑡)) = 0) |
| 68 | 27, 67 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑡 + (0 −ℝ 𝑡)) = 0) |
| 69 | 68 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((0
−ℝ 𝑡) + 𝑟) = 0) → (𝑡 + (0 −ℝ 𝑡)) = 0) |
| 70 | 69 | oveq1d 7425 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((0
−ℝ 𝑡) + 𝑟) = 0) → ((𝑡 + (0 −ℝ 𝑡)) + 𝑟) = (0 + 𝑟)) |
| 71 | 31 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((0
−ℝ 𝑡) + 𝑟) = 0) → 𝑡 ∈ ℂ) |
| 72 | 30 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((0
−ℝ 𝑡) + 𝑟) = 0) → (0 −ℝ
𝑡) ∈
ℂ) |
| 73 | 4 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((0
−ℝ 𝑡) + 𝑟) = 0) → 𝑟 ∈ ℂ) |
| 74 | 71, 72, 73 | addassd 11262 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((0
−ℝ 𝑡) + 𝑟) = 0) → ((𝑡 + (0 −ℝ 𝑡)) + 𝑟) = (𝑡 + ((0 −ℝ 𝑡) + 𝑟))) |
| 75 | | readdlid 42413 |
. . . . . . . . . . 11
⊢ (𝑟 ∈ ℝ → (0 +
𝑟) = 𝑟) |
| 76 | 3, 75 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (0 + 𝑟) = 𝑟) |
| 77 | 76 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((0
−ℝ 𝑡) + 𝑟) = 0) → (0 + 𝑟) = 𝑟) |
| 78 | 70, 74, 77 | 3eqtr3d 2779 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((0
−ℝ 𝑡) + 𝑟) = 0) → (𝑡 + ((0 −ℝ 𝑡) + 𝑟)) = 𝑟) |
| 79 | 27 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((0
−ℝ 𝑡) + 𝑟) = 0) → 𝑡 ∈ ℝ) |
| 80 | | readdrid 42419 |
. . . . . . . . 9
⊢ (𝑡 ∈ ℝ → (𝑡 + 0) = 𝑡) |
| 81 | 79, 80 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((0
−ℝ 𝑡) + 𝑟) = 0) → (𝑡 + 0) = 𝑡) |
| 82 | 66, 78, 81 | 3eqtr3d 2779 |
. . . . . . 7
⊢ ((𝜑 ∧ ((0
−ℝ 𝑡) + 𝑟) = 0) → 𝑟 = 𝑡) |
| 83 | 64, 82 | syldan 591 |
. . . . . 6
⊢ ((𝜑 ∧ ((0
−ℝ 𝑡) + 𝑟) = (i · (𝑢 + (0 −ℝ 𝑠)))) → 𝑟 = 𝑡) |
| 84 | 33, 12, 8 | addassd 11262 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑢 + (0 −ℝ 𝑠)) + 𝑠) = (𝑢 + ((0 −ℝ 𝑠) + 𝑠))) |
| 85 | | renegid2 42423 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ ℝ → ((0
−ℝ 𝑠) + 𝑠) = 0) |
| 86 | 7, 85 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → ((0
−ℝ 𝑠) + 𝑠) = 0) |
| 87 | 86 | oveq2d 7426 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑢 + ((0 −ℝ 𝑠) + 𝑠)) = (𝑢 + 0)) |
| 88 | | readdrid 42419 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ ℝ → (𝑢 + 0) = 𝑢) |
| 89 | 32, 88 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑢 + 0) = 𝑢) |
| 90 | 84, 87, 89 | 3eqtrd 2775 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑢 + (0 −ℝ 𝑠)) + 𝑠) = 𝑢) |
| 91 | | oveq1 7417 |
. . . . . . . . 9
⊢ ((𝑢 + (0 −ℝ
𝑠)) = 0 → ((𝑢 + (0 −ℝ
𝑠)) + 𝑠) = (0 + 𝑠)) |
| 92 | 90, 91 | sylan9req 2792 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 + (0 −ℝ 𝑠)) = 0) → 𝑢 = (0 + 𝑠)) |
| 93 | | readdlid 42413 |
. . . . . . . . . 10
⊢ (𝑠 ∈ ℝ → (0 +
𝑠) = 𝑠) |
| 94 | 7, 93 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (0 + 𝑠) = 𝑠) |
| 95 | 94 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 + (0 −ℝ 𝑠)) = 0) → (0 + 𝑠) = 𝑠) |
| 96 | 92, 95 | eqtr2d 2772 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 + (0 −ℝ 𝑠)) = 0) → 𝑠 = 𝑢) |
| 97 | 61, 96 | syldan 591 |
. . . . . 6
⊢ ((𝜑 ∧ ((0
−ℝ 𝑡) + 𝑟) = (i · (𝑢 + (0 −ℝ 𝑠)))) → 𝑠 = 𝑢) |
| 98 | 83, 97 | jca 511 |
. . . . 5
⊢ ((𝜑 ∧ ((0
−ℝ 𝑡) + 𝑟) = (i · (𝑢 + (0 −ℝ 𝑠)))) → (𝑟 = 𝑡 ∧ 𝑠 = 𝑢)) |
| 99 | 50, 98 | syldan 591 |
. . . 4
⊢ ((𝜑 ∧ ((0
−ℝ 𝑡) + ((𝑟 + (i · 𝑠)) + (i · (0 −ℝ
𝑠)))) = ((0
−ℝ 𝑡) + ((𝑡 + (i · 𝑢)) + (i · (0 −ℝ
𝑠))))) → (𝑟 = 𝑡 ∧ 𝑠 = 𝑢)) |
| 100 | 99 | ex 412 |
. . 3
⊢ (𝜑 → (((0
−ℝ 𝑡) + ((𝑟 + (i · 𝑠)) + (i · (0 −ℝ
𝑠)))) = ((0
−ℝ 𝑡) + ((𝑡 + (i · 𝑢)) + (i · (0 −ℝ
𝑠)))) → (𝑟 = 𝑡 ∧ 𝑠 = 𝑢))) |
| 101 | 2, 100 | syl5 34 |
. 2
⊢ (𝜑 → ((𝑟 + (i · 𝑠)) = (𝑡 + (i · 𝑢)) → (𝑟 = 𝑡 ∧ 𝑠 = 𝑢))) |
| 102 | | id 22 |
. . 3
⊢ (𝑟 = 𝑡 → 𝑟 = 𝑡) |
| 103 | | oveq2 7418 |
. . 3
⊢ (𝑠 = 𝑢 → (i · 𝑠) = (i · 𝑢)) |
| 104 | 102, 103 | oveqan12d 7429 |
. 2
⊢ ((𝑟 = 𝑡 ∧ 𝑠 = 𝑢) → (𝑟 + (i · 𝑠)) = (𝑡 + (i · 𝑢))) |
| 105 | 101, 104 | impbid1 225 |
1
⊢ (𝜑 → ((𝑟 + (i · 𝑠)) = (𝑡 + (i · 𝑢)) ↔ (𝑟 = 𝑡 ∧ 𝑠 = 𝑢))) |