Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnreeu Structured version   Visualization version   GIF version

Theorem cnreeu 42446
Description: The reals in the expression given by cnre 11287 uniquely define a complex number. (Contributed by SN, 27-Jun-2024.)
Hypotheses
Ref Expression
cnreeu.r (𝜑𝑟 ∈ ℝ)
cnreeu.s (𝜑𝑠 ∈ ℝ)
cnreeu.t (𝜑𝑡 ∈ ℝ)
cnreeu.u (𝜑𝑢 ∈ ℝ)
Assertion
Ref Expression
cnreeu (𝜑 → ((𝑟 + (i · 𝑠)) = (𝑡 + (i · 𝑢)) ↔ (𝑟 = 𝑡𝑠 = 𝑢)))

Proof of Theorem cnreeu
StepHypRef Expression
1 oveq1 7455 . . . 4 ((𝑟 + (i · 𝑠)) = (𝑡 + (i · 𝑢)) → ((𝑟 + (i · 𝑠)) + (i · (0 − 𝑠))) = ((𝑡 + (i · 𝑢)) + (i · (0 − 𝑠))))
21oveq2d 7464 . . 3 ((𝑟 + (i · 𝑠)) = (𝑡 + (i · 𝑢)) → ((0 − 𝑡) + ((𝑟 + (i · 𝑠)) + (i · (0 − 𝑠)))) = ((0 − 𝑡) + ((𝑡 + (i · 𝑢)) + (i · (0 − 𝑠)))))
3 cnreeu.r . . . . . . . . . . 11 (𝜑𝑟 ∈ ℝ)
43recnd 11318 . . . . . . . . . 10 (𝜑𝑟 ∈ ℂ)
5 ax-icn 11243 . . . . . . . . . . . 12 i ∈ ℂ
65a1i 11 . . . . . . . . . . 11 (𝜑 → i ∈ ℂ)
7 cnreeu.s . . . . . . . . . . . 12 (𝜑𝑠 ∈ ℝ)
87recnd 11318 . . . . . . . . . . 11 (𝜑𝑠 ∈ ℂ)
96, 8mulcld 11310 . . . . . . . . . 10 (𝜑 → (i · 𝑠) ∈ ℂ)
10 rernegcl 42347 . . . . . . . . . . . . 13 (𝑠 ∈ ℝ → (0 − 𝑠) ∈ ℝ)
117, 10syl 17 . . . . . . . . . . . 12 (𝜑 → (0 − 𝑠) ∈ ℝ)
1211recnd 11318 . . . . . . . . . . 11 (𝜑 → (0 − 𝑠) ∈ ℂ)
136, 12mulcld 11310 . . . . . . . . . 10 (𝜑 → (i · (0 − 𝑠)) ∈ ℂ)
144, 9, 13addassd 11312 . . . . . . . . 9 (𝜑 → ((𝑟 + (i · 𝑠)) + (i · (0 − 𝑠))) = (𝑟 + ((i · 𝑠) + (i · (0 − 𝑠)))))
15 renegid 42349 . . . . . . . . . . . . 13 (𝑠 ∈ ℝ → (𝑠 + (0 − 𝑠)) = 0)
167, 15syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑠 + (0 − 𝑠)) = 0)
1716oveq2d 7464 . . . . . . . . . . 11 (𝜑 → (i · (𝑠 + (0 − 𝑠))) = (i · 0))
186, 8, 12adddid 11314 . . . . . . . . . . 11 (𝜑 → (i · (𝑠 + (0 − 𝑠))) = ((i · 𝑠) + (i · (0 − 𝑠))))
19 sn-it0e0 42391 . . . . . . . . . . . 12 (i · 0) = 0
2019a1i 11 . . . . . . . . . . 11 (𝜑 → (i · 0) = 0)
2117, 18, 203eqtr3d 2788 . . . . . . . . . 10 (𝜑 → ((i · 𝑠) + (i · (0 − 𝑠))) = 0)
2221oveq2d 7464 . . . . . . . . 9 (𝜑 → (𝑟 + ((i · 𝑠) + (i · (0 − 𝑠)))) = (𝑟 + 0))
23 readdrid 42385 . . . . . . . . . 10 (𝑟 ∈ ℝ → (𝑟 + 0) = 𝑟)
243, 23syl 17 . . . . . . . . 9 (𝜑 → (𝑟 + 0) = 𝑟)
2514, 22, 243eqtrd 2784 . . . . . . . 8 (𝜑 → ((𝑟 + (i · 𝑠)) + (i · (0 − 𝑠))) = 𝑟)
2625oveq2d 7464 . . . . . . 7 (𝜑 → ((0 − 𝑡) + ((𝑟 + (i · 𝑠)) + (i · (0 − 𝑠)))) = ((0 − 𝑡) + 𝑟))
27 cnreeu.t . . . . . . . . . . . 12 (𝜑𝑡 ∈ ℝ)
28 rernegcl 42347 . . . . . . . . . . . 12 (𝑡 ∈ ℝ → (0 − 𝑡) ∈ ℝ)
2927, 28syl 17 . . . . . . . . . . 11 (𝜑 → (0 − 𝑡) ∈ ℝ)
3029recnd 11318 . . . . . . . . . 10 (𝜑 → (0 − 𝑡) ∈ ℂ)
3127recnd 11318 . . . . . . . . . 10 (𝜑𝑡 ∈ ℂ)
32 cnreeu.u . . . . . . . . . . . 12 (𝜑𝑢 ∈ ℝ)
3332recnd 11318 . . . . . . . . . . 11 (𝜑𝑢 ∈ ℂ)
346, 33mulcld 11310 . . . . . . . . . 10 (𝜑 → (i · 𝑢) ∈ ℂ)
3530, 31, 34addassd 11312 . . . . . . . . 9 (𝜑 → (((0 − 𝑡) + 𝑡) + (i · 𝑢)) = ((0 − 𝑡) + (𝑡 + (i · 𝑢))))
3635oveq1d 7463 . . . . . . . 8 (𝜑 → ((((0 − 𝑡) + 𝑡) + (i · 𝑢)) + (i · (0 − 𝑠))) = (((0 − 𝑡) + (𝑡 + (i · 𝑢))) + (i · (0 − 𝑠))))
37 sn-addlid 42380 . . . . . . . . . . 11 ((i · 𝑢) ∈ ℂ → (0 + (i · 𝑢)) = (i · 𝑢))
3834, 37syl 17 . . . . . . . . . 10 (𝜑 → (0 + (i · 𝑢)) = (i · 𝑢))
3938oveq1d 7463 . . . . . . . . 9 (𝜑 → ((0 + (i · 𝑢)) + (i · (0 − 𝑠))) = ((i · 𝑢) + (i · (0 − 𝑠))))
40 renegid2 42389 . . . . . . . . . . . 12 (𝑡 ∈ ℝ → ((0 − 𝑡) + 𝑡) = 0)
4127, 40syl 17 . . . . . . . . . . 11 (𝜑 → ((0 − 𝑡) + 𝑡) = 0)
4241oveq1d 7463 . . . . . . . . . 10 (𝜑 → (((0 − 𝑡) + 𝑡) + (i · 𝑢)) = (0 + (i · 𝑢)))
4342oveq1d 7463 . . . . . . . . 9 (𝜑 → ((((0 − 𝑡) + 𝑡) + (i · 𝑢)) + (i · (0 − 𝑠))) = ((0 + (i · 𝑢)) + (i · (0 − 𝑠))))
446, 33, 12adddid 11314 . . . . . . . . 9 (𝜑 → (i · (𝑢 + (0 − 𝑠))) = ((i · 𝑢) + (i · (0 − 𝑠))))
4539, 43, 443eqtr4d 2790 . . . . . . . 8 (𝜑 → ((((0 − 𝑡) + 𝑡) + (i · 𝑢)) + (i · (0 − 𝑠))) = (i · (𝑢 + (0 − 𝑠))))
4631, 34addcld 11309 . . . . . . . . 9 (𝜑 → (𝑡 + (i · 𝑢)) ∈ ℂ)
4730, 46, 13addassd 11312 . . . . . . . 8 (𝜑 → (((0 − 𝑡) + (𝑡 + (i · 𝑢))) + (i · (0 − 𝑠))) = ((0 − 𝑡) + ((𝑡 + (i · 𝑢)) + (i · (0 − 𝑠)))))
4836, 45, 473eqtr3rd 2789 . . . . . . 7 (𝜑 → ((0 − 𝑡) + ((𝑡 + (i · 𝑢)) + (i · (0 − 𝑠)))) = (i · (𝑢 + (0 − 𝑠))))
4926, 48eqeq12d 2756 . . . . . 6 (𝜑 → (((0 − 𝑡) + ((𝑟 + (i · 𝑠)) + (i · (0 − 𝑠)))) = ((0 − 𝑡) + ((𝑡 + (i · 𝑢)) + (i · (0 − 𝑠)))) ↔ ((0 − 𝑡) + 𝑟) = (i · (𝑢 + (0 − 𝑠)))))
5049biimpa 476 . . . . 5 ((𝜑 ∧ ((0 − 𝑡) + ((𝑟 + (i · 𝑠)) + (i · (0 − 𝑠)))) = ((0 − 𝑡) + ((𝑡 + (i · 𝑢)) + (i · (0 − 𝑠))))) → ((0 − 𝑡) + 𝑟) = (i · (𝑢 + (0 − 𝑠))))
51 simpr 484 . . . . . . . 8 ((𝜑 ∧ ((0 − 𝑡) + 𝑟) = (i · (𝑢 + (0 − 𝑠)))) → ((0 − 𝑡) + 𝑟) = (i · (𝑢 + (0 − 𝑠))))
5232adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((0 − 𝑡) + 𝑟) = (i · (𝑢 + (0 − 𝑠)))) → 𝑢 ∈ ℝ)
5311adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((0 − 𝑡) + 𝑟) = (i · (𝑢 + (0 − 𝑠)))) → (0 − 𝑠) ∈ ℝ)
5452, 53readdcld 11319 . . . . . . . . . 10 ((𝜑 ∧ ((0 − 𝑡) + 𝑟) = (i · (𝑢 + (0 − 𝑠)))) → (𝑢 + (0 − 𝑠)) ∈ ℝ)
5529adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ((0 − 𝑡) + 𝑟) = (i · (𝑢 + (0 − 𝑠)))) → (0 − 𝑡) ∈ ℝ)
563adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ((0 − 𝑡) + 𝑟) = (i · (𝑢 + (0 − 𝑠)))) → 𝑟 ∈ ℝ)
5755, 56readdcld 11319 . . . . . . . . . . 11 ((𝜑 ∧ ((0 − 𝑡) + 𝑟) = (i · (𝑢 + (0 − 𝑠)))) → ((0 − 𝑡) + 𝑟) ∈ ℝ)
5851, 57eqeltrrd 2845 . . . . . . . . . 10 ((𝜑 ∧ ((0 − 𝑡) + 𝑟) = (i · (𝑢 + (0 − 𝑠)))) → (i · (𝑢 + (0 − 𝑠))) ∈ ℝ)
59 sn-itrere 42444 . . . . . . . . . . 11 ((𝑢 + (0 − 𝑠)) ∈ ℝ → ((i · (𝑢 + (0 − 𝑠))) ∈ ℝ ↔ (𝑢 + (0 − 𝑠)) = 0))
6059biimpa 476 . . . . . . . . . 10 (((𝑢 + (0 − 𝑠)) ∈ ℝ ∧ (i · (𝑢 + (0 − 𝑠))) ∈ ℝ) → (𝑢 + (0 − 𝑠)) = 0)
6154, 58, 60syl2anc 583 . . . . . . . . 9 ((𝜑 ∧ ((0 − 𝑡) + 𝑟) = (i · (𝑢 + (0 − 𝑠)))) → (𝑢 + (0 − 𝑠)) = 0)
6261oveq2d 7464 . . . . . . . 8 ((𝜑 ∧ ((0 − 𝑡) + 𝑟) = (i · (𝑢 + (0 − 𝑠)))) → (i · (𝑢 + (0 − 𝑠))) = (i · 0))
6319a1i 11 . . . . . . . 8 ((𝜑 ∧ ((0 − 𝑡) + 𝑟) = (i · (𝑢 + (0 − 𝑠)))) → (i · 0) = 0)
6451, 62, 633eqtrd 2784 . . . . . . 7 ((𝜑 ∧ ((0 − 𝑡) + 𝑟) = (i · (𝑢 + (0 − 𝑠)))) → ((0 − 𝑡) + 𝑟) = 0)
65 oveq2 7456 . . . . . . . . 9 (((0 − 𝑡) + 𝑟) = 0 → (𝑡 + ((0 − 𝑡) + 𝑟)) = (𝑡 + 0))
6665adantl 481 . . . . . . . 8 ((𝜑 ∧ ((0 − 𝑡) + 𝑟) = 0) → (𝑡 + ((0 − 𝑡) + 𝑟)) = (𝑡 + 0))
67 renegid 42349 . . . . . . . . . . . 12 (𝑡 ∈ ℝ → (𝑡 + (0 − 𝑡)) = 0)
6827, 67syl 17 . . . . . . . . . . 11 (𝜑 → (𝑡 + (0 − 𝑡)) = 0)
6968adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((0 − 𝑡) + 𝑟) = 0) → (𝑡 + (0 − 𝑡)) = 0)
7069oveq1d 7463 . . . . . . . . 9 ((𝜑 ∧ ((0 − 𝑡) + 𝑟) = 0) → ((𝑡 + (0 − 𝑡)) + 𝑟) = (0 + 𝑟))
7131adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((0 − 𝑡) + 𝑟) = 0) → 𝑡 ∈ ℂ)
7230adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((0 − 𝑡) + 𝑟) = 0) → (0 − 𝑡) ∈ ℂ)
734adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((0 − 𝑡) + 𝑟) = 0) → 𝑟 ∈ ℂ)
7471, 72, 73addassd 11312 . . . . . . . . 9 ((𝜑 ∧ ((0 − 𝑡) + 𝑟) = 0) → ((𝑡 + (0 − 𝑡)) + 𝑟) = (𝑡 + ((0 − 𝑡) + 𝑟)))
75 readdlid 42379 . . . . . . . . . . 11 (𝑟 ∈ ℝ → (0 + 𝑟) = 𝑟)
763, 75syl 17 . . . . . . . . . 10 (𝜑 → (0 + 𝑟) = 𝑟)
7776adantr 480 . . . . . . . . 9 ((𝜑 ∧ ((0 − 𝑡) + 𝑟) = 0) → (0 + 𝑟) = 𝑟)
7870, 74, 773eqtr3d 2788 . . . . . . . 8 ((𝜑 ∧ ((0 − 𝑡) + 𝑟) = 0) → (𝑡 + ((0 − 𝑡) + 𝑟)) = 𝑟)
7927adantr 480 . . . . . . . . 9 ((𝜑 ∧ ((0 − 𝑡) + 𝑟) = 0) → 𝑡 ∈ ℝ)
80 readdrid 42385 . . . . . . . . 9 (𝑡 ∈ ℝ → (𝑡 + 0) = 𝑡)
8179, 80syl 17 . . . . . . . 8 ((𝜑 ∧ ((0 − 𝑡) + 𝑟) = 0) → (𝑡 + 0) = 𝑡)
8266, 78, 813eqtr3d 2788 . . . . . . 7 ((𝜑 ∧ ((0 − 𝑡) + 𝑟) = 0) → 𝑟 = 𝑡)
8364, 82syldan 590 . . . . . 6 ((𝜑 ∧ ((0 − 𝑡) + 𝑟) = (i · (𝑢 + (0 − 𝑠)))) → 𝑟 = 𝑡)
8433, 12, 8addassd 11312 . . . . . . . . . 10 (𝜑 → ((𝑢 + (0 − 𝑠)) + 𝑠) = (𝑢 + ((0 − 𝑠) + 𝑠)))
85 renegid2 42389 . . . . . . . . . . . 12 (𝑠 ∈ ℝ → ((0 − 𝑠) + 𝑠) = 0)
867, 85syl 17 . . . . . . . . . . 11 (𝜑 → ((0 − 𝑠) + 𝑠) = 0)
8786oveq2d 7464 . . . . . . . . . 10 (𝜑 → (𝑢 + ((0 − 𝑠) + 𝑠)) = (𝑢 + 0))
88 readdrid 42385 . . . . . . . . . . 11 (𝑢 ∈ ℝ → (𝑢 + 0) = 𝑢)
8932, 88syl 17 . . . . . . . . . 10 (𝜑 → (𝑢 + 0) = 𝑢)
9084, 87, 893eqtrd 2784 . . . . . . . . 9 (𝜑 → ((𝑢 + (0 − 𝑠)) + 𝑠) = 𝑢)
91 oveq1 7455 . . . . . . . . 9 ((𝑢 + (0 − 𝑠)) = 0 → ((𝑢 + (0 − 𝑠)) + 𝑠) = (0 + 𝑠))
9290, 91sylan9req 2801 . . . . . . . 8 ((𝜑 ∧ (𝑢 + (0 − 𝑠)) = 0) → 𝑢 = (0 + 𝑠))
93 readdlid 42379 . . . . . . . . . 10 (𝑠 ∈ ℝ → (0 + 𝑠) = 𝑠)
947, 93syl 17 . . . . . . . . 9 (𝜑 → (0 + 𝑠) = 𝑠)
9594adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑢 + (0 − 𝑠)) = 0) → (0 + 𝑠) = 𝑠)
9692, 95eqtr2d 2781 . . . . . . 7 ((𝜑 ∧ (𝑢 + (0 − 𝑠)) = 0) → 𝑠 = 𝑢)
9761, 96syldan 590 . . . . . 6 ((𝜑 ∧ ((0 − 𝑡) + 𝑟) = (i · (𝑢 + (0 − 𝑠)))) → 𝑠 = 𝑢)
9883, 97jca 511 . . . . 5 ((𝜑 ∧ ((0 − 𝑡) + 𝑟) = (i · (𝑢 + (0 − 𝑠)))) → (𝑟 = 𝑡𝑠 = 𝑢))
9950, 98syldan 590 . . . 4 ((𝜑 ∧ ((0 − 𝑡) + ((𝑟 + (i · 𝑠)) + (i · (0 − 𝑠)))) = ((0 − 𝑡) + ((𝑡 + (i · 𝑢)) + (i · (0 − 𝑠))))) → (𝑟 = 𝑡𝑠 = 𝑢))
10099ex 412 . . 3 (𝜑 → (((0 − 𝑡) + ((𝑟 + (i · 𝑠)) + (i · (0 − 𝑠)))) = ((0 − 𝑡) + ((𝑡 + (i · 𝑢)) + (i · (0 − 𝑠)))) → (𝑟 = 𝑡𝑠 = 𝑢)))
1012, 100syl5 34 . 2 (𝜑 → ((𝑟 + (i · 𝑠)) = (𝑡 + (i · 𝑢)) → (𝑟 = 𝑡𝑠 = 𝑢)))
102 id 22 . . 3 (𝑟 = 𝑡𝑟 = 𝑡)
103 oveq2 7456 . . 3 (𝑠 = 𝑢 → (i · 𝑠) = (i · 𝑢))
104102, 103oveqan12d 7467 . 2 ((𝑟 = 𝑡𝑠 = 𝑢) → (𝑟 + (i · 𝑠)) = (𝑡 + (i · 𝑢)))
105101, 104impbid1 225 1 (𝜑 → ((𝑟 + (i · 𝑠)) = (𝑡 + (i · 𝑢)) ↔ (𝑟 = 𝑡𝑠 = 𝑢)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  ici 11186   + caddc 11187   · cmul 11189   cresub 42341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-ltxr 11329  df-2 12356  df-3 12357  df-resub 42342
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator