MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  t1r0 Structured version   Visualization version   GIF version

Theorem t1r0 22880
Description: A T1 space is R0. That is, the Kolmogorov quotient of a T1 space is also T1 (because they are homeomorphic). (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
t1r0 (𝐽 ∈ Fre → (KQ‘𝐽) ∈ Fre)

Proof of Theorem t1r0
StepHypRef Expression
1 t1t0 22407 . . 3 (𝐽 ∈ Fre → 𝐽 ∈ Kol2)
2 kqhmph 22878 . . 3 (𝐽 ∈ Kol2 ↔ 𝐽 ≃ (KQ‘𝐽))
31, 2sylib 217 . 2 (𝐽 ∈ Fre → 𝐽 ≃ (KQ‘𝐽))
4 t1hmph 22850 . 2 (𝐽 ≃ (KQ‘𝐽) → (𝐽 ∈ Fre → (KQ‘𝐽) ∈ Fre))
53, 4mpcom 38 1 (𝐽 ∈ Fre → (KQ‘𝐽) ∈ Fre)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108   class class class wbr 5070  cfv 6418  Kol2ct0 22365  Frect1 22366  KQckq 22752  chmph 22813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-1o 8267  df-map 8575  df-topgen 17071  df-qtop 17135  df-top 21951  df-topon 21968  df-cld 22078  df-cn 22286  df-t0 22372  df-t1 22373  df-kq 22753  df-hmeo 22814  df-hmph 22815
This theorem is referenced by:  nrmreg  22883
  Copyright terms: Public domain W3C validator