MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  t1r0 Structured version   Visualization version   GIF version

Theorem t1r0 23729
Description: A T1 space is R0. That is, the Kolmogorov quotient of a T1 space is also T1 (because they are homeomorphic). (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
t1r0 (𝐽 ∈ Fre → (KQ‘𝐽) ∈ Fre)

Proof of Theorem t1r0
StepHypRef Expression
1 t1t0 23256 . . 3 (𝐽 ∈ Fre → 𝐽 ∈ Kol2)
2 kqhmph 23727 . . 3 (𝐽 ∈ Kol2 ↔ 𝐽 ≃ (KQ‘𝐽))
31, 2sylib 218 . 2 (𝐽 ∈ Fre → 𝐽 ≃ (KQ‘𝐽))
4 t1hmph 23699 . 2 (𝐽 ≃ (KQ‘𝐽) → (𝐽 ∈ Fre → (KQ‘𝐽) ∈ Fre))
53, 4mpcom 38 1 (𝐽 ∈ Fre → (KQ‘𝐽) ∈ Fre)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2110   class class class wbr 5089  cfv 6477  Kol2ct0 23214  Frect1 23215  KQckq 23601  chmph 23662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-1o 8380  df-map 8747  df-topgen 17339  df-qtop 17403  df-top 22802  df-topon 22819  df-cld 22927  df-cn 23135  df-t0 23221  df-t1 23222  df-kq 23602  df-hmeo 23663  df-hmph 23664
This theorem is referenced by:  nrmreg  23732
  Copyright terms: Public domain W3C validator