MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  t1r0 Structured version   Visualization version   GIF version

Theorem t1r0 22972
Description: A T1 space is R0. That is, the Kolmogorov quotient of a T1 space is also T1 (because they are homeomorphic). (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
t1r0 (𝐽 ∈ Fre → (KQ‘𝐽) ∈ Fre)

Proof of Theorem t1r0
StepHypRef Expression
1 t1t0 22499 . . 3 (𝐽 ∈ Fre → 𝐽 ∈ Kol2)
2 kqhmph 22970 . . 3 (𝐽 ∈ Kol2 ↔ 𝐽 ≃ (KQ‘𝐽))
31, 2sylib 217 . 2 (𝐽 ∈ Fre → 𝐽 ≃ (KQ‘𝐽))
4 t1hmph 22942 . 2 (𝐽 ≃ (KQ‘𝐽) → (𝐽 ∈ Fre → (KQ‘𝐽) ∈ Fre))
53, 4mpcom 38 1 (𝐽 ∈ Fre → (KQ‘𝐽) ∈ Fre)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106   class class class wbr 5074  cfv 6433  Kol2ct0 22457  Frect1 22458  KQckq 22844  chmph 22905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-1o 8297  df-map 8617  df-topgen 17154  df-qtop 17218  df-top 22043  df-topon 22060  df-cld 22170  df-cn 22378  df-t0 22464  df-t1 22465  df-kq 22845  df-hmeo 22906  df-hmph 22907
This theorem is referenced by:  nrmreg  22975
  Copyright terms: Public domain W3C validator