MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishaus3 Structured version   Visualization version   GIF version

Theorem ishaus3 21997
Description: A topological space is Hausdorff iff it is both T0 and R1 (where R1 means that any two topologically distinct points are separated by neighborhoods). (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
ishaus3 (𝐽 ∈ Haus ↔ (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ Haus))

Proof of Theorem ishaus3
StepHypRef Expression
1 haust1 21527 . . 3 (𝐽 ∈ Haus → 𝐽 ∈ Fre)
2 t1t0 21523 . . 3 (𝐽 ∈ Fre → 𝐽 ∈ Kol2)
31, 2syl 17 . 2 (𝐽 ∈ Haus → 𝐽 ∈ Kol2)
4 haushmph 21966 . 2 (𝐽 ≃ (KQ‘𝐽) → (𝐽 ∈ Haus → (KQ‘𝐽) ∈ Haus))
5 haushmph 21966 . 2 ((KQ‘𝐽) ≃ 𝐽 → ((KQ‘𝐽) ∈ Haus → 𝐽 ∈ Haus))
63, 4, 5ist1-5lem 21994 1 (𝐽 ∈ Haus ↔ (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ Haus))
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 386  wcel 2166  cfv 6123  Kol2ct0 21481  Frect1 21482  Hauscha 21483  KQckq 21867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-1st 7428  df-2nd 7429  df-1o 7826  df-map 8124  df-topgen 16457  df-qtop 16520  df-top 21069  df-topon 21086  df-cld 21194  df-cn 21402  df-t0 21488  df-t1 21489  df-haus 21490  df-kq 21868  df-hmeo 21929  df-hmph 21930
This theorem is referenced by:  reghaus  21999
  Copyright terms: Public domain W3C validator