![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ishaus3 | Structured version Visualization version GIF version |
Description: A topological space is Hausdorff iff it is both T0 and R1 (where R1 means that any two topologically distinct points are separated by neighborhoods). (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
ishaus3 | ⊢ (𝐽 ∈ Haus ↔ (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ Haus)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | haust1 23276 | . . 3 ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Fre) | |
2 | t1t0 23272 | . . 3 ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Kol2) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Kol2) |
4 | haushmph 23716 | . 2 ⊢ (𝐽 ≃ (KQ‘𝐽) → (𝐽 ∈ Haus → (KQ‘𝐽) ∈ Haus)) | |
5 | haushmph 23716 | . 2 ⊢ ((KQ‘𝐽) ≃ 𝐽 → ((KQ‘𝐽) ∈ Haus → 𝐽 ∈ Haus)) | |
6 | 3, 4, 5 | ist1-5lem 23744 | 1 ⊢ (𝐽 ∈ Haus ↔ (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ Haus)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 ∈ wcel 2098 ‘cfv 6553 Kol2ct0 23230 Frect1 23231 Hauscha 23232 KQckq 23617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7429 df-oprab 7430 df-mpo 7431 df-1st 7999 df-2nd 8000 df-1o 8493 df-map 8853 df-topgen 17432 df-qtop 17496 df-top 22816 df-topon 22833 df-cld 22943 df-cn 23151 df-t0 23237 df-t1 23238 df-haus 23239 df-kq 23618 df-hmeo 23679 df-hmph 23680 |
This theorem is referenced by: reghaus 23749 |
Copyright terms: Public domain | W3C validator |