| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ishaus3 | Structured version Visualization version GIF version | ||
| Description: A topological space is Hausdorff iff it is both T0 and R1 (where R1 means that any two topologically distinct points are separated by neighborhoods). (Contributed by Mario Carneiro, 25-Aug-2015.) |
| Ref | Expression |
|---|---|
| ishaus3 | ⊢ (𝐽 ∈ Haus ↔ (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ Haus)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | haust1 23295 | . . 3 ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Fre) | |
| 2 | t1t0 23291 | . . 3 ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Kol2) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Kol2) |
| 4 | haushmph 23735 | . 2 ⊢ (𝐽 ≃ (KQ‘𝐽) → (𝐽 ∈ Haus → (KQ‘𝐽) ∈ Haus)) | |
| 5 | haushmph 23735 | . 2 ⊢ ((KQ‘𝐽) ≃ 𝐽 → ((KQ‘𝐽) ∈ Haus → 𝐽 ∈ Haus)) | |
| 6 | 3, 4, 5 | ist1-5lem 23763 | 1 ⊢ (𝐽 ∈ Haus ↔ (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ Haus)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ‘cfv 6536 Kol2ct0 23249 Frect1 23250 Hauscha 23251 KQckq 23636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-1o 8485 df-map 8847 df-topgen 17462 df-qtop 17526 df-top 22837 df-topon 22854 df-cld 22962 df-cn 23170 df-t0 23256 df-t1 23257 df-haus 23258 df-kq 23637 df-hmeo 23698 df-hmph 23699 |
| This theorem is referenced by: reghaus 23768 |
| Copyright terms: Public domain | W3C validator |