MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishaus3 Structured version   Visualization version   GIF version

Theorem ishaus3 23738
Description: A topological space is Hausdorff iff it is both T0 and R1 (where R1 means that any two topologically distinct points are separated by neighborhoods). (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
ishaus3 (𝐽 ∈ Haus ↔ (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ Haus))

Proof of Theorem ishaus3
StepHypRef Expression
1 haust1 23267 . . 3 (𝐽 ∈ Haus → 𝐽 ∈ Fre)
2 t1t0 23263 . . 3 (𝐽 ∈ Fre → 𝐽 ∈ Kol2)
31, 2syl 17 . 2 (𝐽 ∈ Haus → 𝐽 ∈ Kol2)
4 haushmph 23707 . 2 (𝐽 ≃ (KQ‘𝐽) → (𝐽 ∈ Haus → (KQ‘𝐽) ∈ Haus))
5 haushmph 23707 . 2 ((KQ‘𝐽) ≃ 𝐽 → ((KQ‘𝐽) ∈ Haus → 𝐽 ∈ Haus))
63, 4, 5ist1-5lem 23735 1 (𝐽 ∈ Haus ↔ (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ Haus))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2111  cfv 6481  Kol2ct0 23221  Frect1 23222  Hauscha 23223  KQckq 23608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-1o 8385  df-map 8752  df-topgen 17347  df-qtop 17411  df-top 22809  df-topon 22826  df-cld 22934  df-cn 23142  df-t0 23228  df-t1 23229  df-haus 23230  df-kq 23609  df-hmeo 23670  df-hmph 23671
This theorem is referenced by:  reghaus  23740
  Copyright terms: Public domain W3C validator