MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reghaus Structured version   Visualization version   GIF version

Theorem reghaus 23549
Description: A regular T0 space is Hausdorff. In other words, a T3 space is T2 . A regular Hausdorff or T0 space is also known as a T3 space. (Contributed by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
reghaus (𝐽 ∈ Reg → (𝐽 ∈ Haus ↔ 𝐽 ∈ Kol2))

Proof of Theorem reghaus
StepHypRef Expression
1 haust1 23076 . . 3 (𝐽 ∈ Haus → 𝐽 ∈ Fre)
2 t1t0 23072 . . 3 (𝐽 ∈ Fre → 𝐽 ∈ Kol2)
31, 2syl 17 . 2 (𝐽 ∈ Haus → 𝐽 ∈ Kol2)
4 regr1 23474 . . . . 5 (𝐽 ∈ Reg → (KQ‘𝐽) ∈ Haus)
54anim2i 617 . . . 4 ((𝐽 ∈ Kol2 ∧ 𝐽 ∈ Reg) → (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ Haus))
6 ishaus3 23547 . . . 4 (𝐽 ∈ Haus ↔ (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ Haus))
75, 6sylibr 233 . . 3 ((𝐽 ∈ Kol2 ∧ 𝐽 ∈ Reg) → 𝐽 ∈ Haus)
87expcom 414 . 2 (𝐽 ∈ Reg → (𝐽 ∈ Kol2 → 𝐽 ∈ Haus))
93, 8impbid2 225 1 (𝐽 ∈ Reg → (𝐽 ∈ Haus ↔ 𝐽 ∈ Kol2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  cfv 6543  Kol2ct0 23030  Frect1 23031  Hauscha 23032  Regcreg 23033  KQckq 23417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-1o 8468  df-map 8824  df-topgen 17393  df-qtop 17457  df-top 22616  df-topon 22633  df-cld 22743  df-cls 22745  df-cn 22951  df-t0 23037  df-t1 23038  df-haus 23039  df-reg 23040  df-kq 23418  df-hmeo 23479  df-hmph 23480
This theorem is referenced by:  nrmhaus  23550
  Copyright terms: Public domain W3C validator