| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reghaus | Structured version Visualization version GIF version | ||
| Description: A regular T0 space is Hausdorff. In other words, a T3 space is T2 . A regular Hausdorff or T0 space is also known as a T3 space. (Contributed by Mario Carneiro, 24-Aug-2015.) |
| Ref | Expression |
|---|---|
| reghaus | ⊢ (𝐽 ∈ Reg → (𝐽 ∈ Haus ↔ 𝐽 ∈ Kol2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | haust1 23272 | . . 3 ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Fre) | |
| 2 | t1t0 23268 | . . 3 ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Kol2) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Kol2) |
| 4 | regr1 23670 | . . . . 5 ⊢ (𝐽 ∈ Reg → (KQ‘𝐽) ∈ Haus) | |
| 5 | 4 | anim2i 617 | . . . 4 ⊢ ((𝐽 ∈ Kol2 ∧ 𝐽 ∈ Reg) → (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ Haus)) |
| 6 | ishaus3 23743 | . . . 4 ⊢ (𝐽 ∈ Haus ↔ (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ Haus)) | |
| 7 | 5, 6 | sylibr 234 | . . 3 ⊢ ((𝐽 ∈ Kol2 ∧ 𝐽 ∈ Reg) → 𝐽 ∈ Haus) |
| 8 | 7 | expcom 413 | . 2 ⊢ (𝐽 ∈ Reg → (𝐽 ∈ Kol2 → 𝐽 ∈ Haus)) |
| 9 | 3, 8 | impbid2 226 | 1 ⊢ (𝐽 ∈ Reg → (𝐽 ∈ Haus ↔ 𝐽 ∈ Kol2)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ‘cfv 6499 Kol2ct0 23226 Frect1 23227 Hauscha 23228 Regcreg 23229 KQckq 23613 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-1o 8411 df-map 8778 df-topgen 17382 df-qtop 17446 df-top 22814 df-topon 22831 df-cld 22939 df-cls 22941 df-cn 23147 df-t0 23233 df-t1 23234 df-haus 23235 df-reg 23236 df-kq 23614 df-hmeo 23675 df-hmph 23676 |
| This theorem is referenced by: nrmhaus 23746 |
| Copyright terms: Public domain | W3C validator |