Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reghaus | Structured version Visualization version GIF version |
Description: A regular T0 space is Hausdorff. In other words, a T3 space is T2 . A regular Hausdorff or T0 space is also known as a T3 space. (Contributed by Mario Carneiro, 24-Aug-2015.) |
Ref | Expression |
---|---|
reghaus | ⊢ (𝐽 ∈ Reg → (𝐽 ∈ Haus ↔ 𝐽 ∈ Kol2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | haust1 22411 | . . 3 ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Fre) | |
2 | t1t0 22407 | . . 3 ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Kol2) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Kol2) |
4 | regr1 22809 | . . . . 5 ⊢ (𝐽 ∈ Reg → (KQ‘𝐽) ∈ Haus) | |
5 | 4 | anim2i 616 | . . . 4 ⊢ ((𝐽 ∈ Kol2 ∧ 𝐽 ∈ Reg) → (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ Haus)) |
6 | ishaus3 22882 | . . . 4 ⊢ (𝐽 ∈ Haus ↔ (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ Haus)) | |
7 | 5, 6 | sylibr 233 | . . 3 ⊢ ((𝐽 ∈ Kol2 ∧ 𝐽 ∈ Reg) → 𝐽 ∈ Haus) |
8 | 7 | expcom 413 | . 2 ⊢ (𝐽 ∈ Reg → (𝐽 ∈ Kol2 → 𝐽 ∈ Haus)) |
9 | 3, 8 | impbid2 225 | 1 ⊢ (𝐽 ∈ Reg → (𝐽 ∈ Haus ↔ 𝐽 ∈ Kol2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ‘cfv 6418 Kol2ct0 22365 Frect1 22366 Hauscha 22367 Regcreg 22368 KQckq 22752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-1o 8267 df-map 8575 df-topgen 17071 df-qtop 17135 df-top 21951 df-topon 21968 df-cld 22078 df-cls 22080 df-cn 22286 df-t0 22372 df-t1 22373 df-haus 22374 df-reg 22375 df-kq 22753 df-hmeo 22814 df-hmph 22815 |
This theorem is referenced by: nrmhaus 22885 |
Copyright terms: Public domain | W3C validator |