| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reghaus | Structured version Visualization version GIF version | ||
| Description: A regular T0 space is Hausdorff. In other words, a T3 space is T2 . A regular Hausdorff or T0 space is also known as a T3 space. (Contributed by Mario Carneiro, 24-Aug-2015.) |
| Ref | Expression |
|---|---|
| reghaus | ⊢ (𝐽 ∈ Reg → (𝐽 ∈ Haus ↔ 𝐽 ∈ Kol2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | haust1 23237 | . . 3 ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Fre) | |
| 2 | t1t0 23233 | . . 3 ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Kol2) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Kol2) |
| 4 | regr1 23635 | . . . . 5 ⊢ (𝐽 ∈ Reg → (KQ‘𝐽) ∈ Haus) | |
| 5 | 4 | anim2i 617 | . . . 4 ⊢ ((𝐽 ∈ Kol2 ∧ 𝐽 ∈ Reg) → (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ Haus)) |
| 6 | ishaus3 23708 | . . . 4 ⊢ (𝐽 ∈ Haus ↔ (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ Haus)) | |
| 7 | 5, 6 | sylibr 234 | . . 3 ⊢ ((𝐽 ∈ Kol2 ∧ 𝐽 ∈ Reg) → 𝐽 ∈ Haus) |
| 8 | 7 | expcom 413 | . 2 ⊢ (𝐽 ∈ Reg → (𝐽 ∈ Kol2 → 𝐽 ∈ Haus)) |
| 9 | 3, 8 | impbid2 226 | 1 ⊢ (𝐽 ∈ Reg → (𝐽 ∈ Haus ↔ 𝐽 ∈ Kol2)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ‘cfv 6482 Kol2ct0 23191 Frect1 23192 Hauscha 23193 Regcreg 23194 KQckq 23578 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-1o 8388 df-map 8755 df-topgen 17347 df-qtop 17411 df-top 22779 df-topon 22796 df-cld 22904 df-cls 22906 df-cn 23112 df-t0 23198 df-t1 23199 df-haus 23200 df-reg 23201 df-kq 23579 df-hmeo 23640 df-hmph 23641 |
| This theorem is referenced by: nrmhaus 23711 |
| Copyright terms: Public domain | W3C validator |