MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reghaus Structured version   Visualization version   GIF version

Theorem reghaus 23710
Description: A regular T0 space is Hausdorff. In other words, a T3 space is T2 . A regular Hausdorff or T0 space is also known as a T3 space. (Contributed by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
reghaus (𝐽 ∈ Reg → (𝐽 ∈ Haus ↔ 𝐽 ∈ Kol2))

Proof of Theorem reghaus
StepHypRef Expression
1 haust1 23237 . . 3 (𝐽 ∈ Haus → 𝐽 ∈ Fre)
2 t1t0 23233 . . 3 (𝐽 ∈ Fre → 𝐽 ∈ Kol2)
31, 2syl 17 . 2 (𝐽 ∈ Haus → 𝐽 ∈ Kol2)
4 regr1 23635 . . . . 5 (𝐽 ∈ Reg → (KQ‘𝐽) ∈ Haus)
54anim2i 617 . . . 4 ((𝐽 ∈ Kol2 ∧ 𝐽 ∈ Reg) → (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ Haus))
6 ishaus3 23708 . . . 4 (𝐽 ∈ Haus ↔ (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ Haus))
75, 6sylibr 234 . . 3 ((𝐽 ∈ Kol2 ∧ 𝐽 ∈ Reg) → 𝐽 ∈ Haus)
87expcom 413 . 2 (𝐽 ∈ Reg → (𝐽 ∈ Kol2 → 𝐽 ∈ Haus))
93, 8impbid2 226 1 (𝐽 ∈ Reg → (𝐽 ∈ Haus ↔ 𝐽 ∈ Kol2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  cfv 6482  Kol2ct0 23191  Frect1 23192  Hauscha 23193  Regcreg 23194  KQckq 23578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-1o 8388  df-map 8755  df-topgen 17347  df-qtop 17411  df-top 22779  df-topon 22796  df-cld 22904  df-cls 22906  df-cn 23112  df-t0 23198  df-t1 23199  df-haus 23200  df-reg 23201  df-kq 23579  df-hmeo 23640  df-hmph 23641
This theorem is referenced by:  nrmhaus  23711
  Copyright terms: Public domain W3C validator