![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reghaus | Structured version Visualization version GIF version |
Description: A regular T0 space is Hausdorff. In other words, a T3 space is T2 . A regular Hausdorff or T0 space is also known as a T3 space. (Contributed by Mario Carneiro, 24-Aug-2015.) |
Ref | Expression |
---|---|
reghaus | ⊢ (𝐽 ∈ Reg → (𝐽 ∈ Haus ↔ 𝐽 ∈ Kol2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | haust1 23381 | . . 3 ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Fre) | |
2 | t1t0 23377 | . . 3 ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Kol2) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Kol2) |
4 | regr1 23779 | . . . . 5 ⊢ (𝐽 ∈ Reg → (KQ‘𝐽) ∈ Haus) | |
5 | 4 | anim2i 616 | . . . 4 ⊢ ((𝐽 ∈ Kol2 ∧ 𝐽 ∈ Reg) → (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ Haus)) |
6 | ishaus3 23852 | . . . 4 ⊢ (𝐽 ∈ Haus ↔ (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ Haus)) | |
7 | 5, 6 | sylibr 234 | . . 3 ⊢ ((𝐽 ∈ Kol2 ∧ 𝐽 ∈ Reg) → 𝐽 ∈ Haus) |
8 | 7 | expcom 413 | . 2 ⊢ (𝐽 ∈ Reg → (𝐽 ∈ Kol2 → 𝐽 ∈ Haus)) |
9 | 3, 8 | impbid2 226 | 1 ⊢ (𝐽 ∈ Reg → (𝐽 ∈ Haus ↔ 𝐽 ∈ Kol2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ‘cfv 6573 Kol2ct0 23335 Frect1 23336 Hauscha 23337 Regcreg 23338 KQckq 23722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-1o 8522 df-map 8886 df-topgen 17503 df-qtop 17567 df-top 22921 df-topon 22938 df-cld 23048 df-cls 23050 df-cn 23256 df-t0 23342 df-t1 23343 df-haus 23344 df-reg 23345 df-kq 23723 df-hmeo 23784 df-hmph 23785 |
This theorem is referenced by: nrmhaus 23855 |
Copyright terms: Public domain | W3C validator |