Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reghaus | Structured version Visualization version GIF version |
Description: A regular T0 space is Hausdorff. In other words, a T3 space is T2 . A regular Hausdorff or T0 space is also known as a T3 space. (Contributed by Mario Carneiro, 24-Aug-2015.) |
Ref | Expression |
---|---|
reghaus | ⊢ (𝐽 ∈ Reg → (𝐽 ∈ Haus ↔ 𝐽 ∈ Kol2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | haust1 22499 | . . 3 ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Fre) | |
2 | t1t0 22495 | . . 3 ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Kol2) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Kol2) |
4 | regr1 22897 | . . . . 5 ⊢ (𝐽 ∈ Reg → (KQ‘𝐽) ∈ Haus) | |
5 | 4 | anim2i 617 | . . . 4 ⊢ ((𝐽 ∈ Kol2 ∧ 𝐽 ∈ Reg) → (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ Haus)) |
6 | ishaus3 22970 | . . . 4 ⊢ (𝐽 ∈ Haus ↔ (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ Haus)) | |
7 | 5, 6 | sylibr 233 | . . 3 ⊢ ((𝐽 ∈ Kol2 ∧ 𝐽 ∈ Reg) → 𝐽 ∈ Haus) |
8 | 7 | expcom 414 | . 2 ⊢ (𝐽 ∈ Reg → (𝐽 ∈ Kol2 → 𝐽 ∈ Haus)) |
9 | 3, 8 | impbid2 225 | 1 ⊢ (𝐽 ∈ Reg → (𝐽 ∈ Haus ↔ 𝐽 ∈ Kol2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2110 ‘cfv 6431 Kol2ct0 22453 Frect1 22454 Hauscha 22455 Regcreg 22456 KQckq 22840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-ov 7272 df-oprab 7273 df-mpo 7274 df-1st 7822 df-2nd 7823 df-1o 8286 df-map 8598 df-topgen 17150 df-qtop 17214 df-top 22039 df-topon 22056 df-cld 22166 df-cls 22168 df-cn 22374 df-t0 22460 df-t1 22461 df-haus 22462 df-reg 22463 df-kq 22841 df-hmeo 22902 df-hmph 22903 |
This theorem is referenced by: nrmhaus 22973 |
Copyright terms: Public domain | W3C validator |