| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tendof | Structured version Visualization version GIF version | ||
| Description: Functionality of a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.) |
| Ref | Expression |
|---|---|
| tendof.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| tendof.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| tendof.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| tendof | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → 𝑆:𝑇⟶𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 2 | tendof.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | tendof.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 4 | eqid 2731 | . . . 4 ⊢ ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) | |
| 5 | tendof.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 6 | 1, 2, 3, 4, 5 | istendo 40805 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑆 ∈ 𝐸 ↔ (𝑆:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (((trL‘𝐾)‘𝑊)‘(𝑆‘𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓)))) |
| 7 | simp1 1136 | . . 3 ⊢ ((𝑆:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (((trL‘𝐾)‘𝑊)‘(𝑆‘𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓)) → 𝑆:𝑇⟶𝑇) | |
| 8 | 6, 7 | biimtrdi 253 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑆 ∈ 𝐸 → 𝑆:𝑇⟶𝑇)) |
| 9 | 8 | imp 406 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → 𝑆:𝑇⟶𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 class class class wbr 5091 ∘ ccom 5620 ⟶wf 6477 ‘cfv 6481 lecple 17168 LHypclh 40029 LTrncltrn 40146 trLctrl 40203 TEndoctendo 40797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-tendo 40800 |
| This theorem is referenced by: tendoeq1 40809 tendocoval 40811 tendocl 40812 tendo1mul 40815 tendo1mulr 40816 tendococl 40817 tendoconid 40874 tendospass 41064 dvhlveclem 41153 dicvscacl 41236 |
| Copyright terms: Public domain | W3C validator |