Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendof Structured version   Visualization version   GIF version

Theorem tendof 40236
Description: Functionality of a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.)
Hypotheses
Ref Expression
tendof.h 𝐻 = (LHypβ€˜πΎ)
tendof.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
tendof.e 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
tendof (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) β†’ 𝑆:π‘‡βŸΆπ‘‡)

Proof of Theorem tendof
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2728 . . . 4 (leβ€˜πΎ) = (leβ€˜πΎ)
2 tendof.h . . . 4 𝐻 = (LHypβ€˜πΎ)
3 tendof.t . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
4 eqid 2728 . . . 4 ((trLβ€˜πΎ)β€˜π‘Š) = ((trLβ€˜πΎ)β€˜π‘Š)
5 tendof.e . . . 4 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
61, 2, 3, 4, 5istendo 40233 . . 3 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ (𝑆 ∈ 𝐸 ↔ (𝑆:π‘‡βŸΆπ‘‡ ∧ βˆ€π‘“ ∈ 𝑇 βˆ€π‘” ∈ 𝑇 (π‘†β€˜(𝑓 ∘ 𝑔)) = ((π‘†β€˜π‘“) ∘ (π‘†β€˜π‘”)) ∧ βˆ€π‘“ ∈ 𝑇 (((trLβ€˜πΎ)β€˜π‘Š)β€˜(π‘†β€˜π‘“))(leβ€˜πΎ)(((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘“))))
7 simp1 1134 . . 3 ((𝑆:π‘‡βŸΆπ‘‡ ∧ βˆ€π‘“ ∈ 𝑇 βˆ€π‘” ∈ 𝑇 (π‘†β€˜(𝑓 ∘ 𝑔)) = ((π‘†β€˜π‘“) ∘ (π‘†β€˜π‘”)) ∧ βˆ€π‘“ ∈ 𝑇 (((trLβ€˜πΎ)β€˜π‘Š)β€˜(π‘†β€˜π‘“))(leβ€˜πΎ)(((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘“)) β†’ 𝑆:π‘‡βŸΆπ‘‡)
86, 7biimtrdi 252 . 2 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ (𝑆 ∈ 𝐸 β†’ 𝑆:π‘‡βŸΆπ‘‡))
98imp 406 1 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) β†’ 𝑆:π‘‡βŸΆπ‘‡)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1085   = wceq 1534   ∈ wcel 2099  βˆ€wral 3058   class class class wbr 5148   ∘ ccom 5682  βŸΆwf 6544  β€˜cfv 6548  lecple 17240  LHypclh 39457  LTrncltrn 39574  trLctrl 39631  TEndoctendo 40225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-ov 7423  df-oprab 7424  df-mpo 7425  df-map 8847  df-tendo 40228
This theorem is referenced by:  tendoeq1  40237  tendocoval  40239  tendocl  40240  tendo1mul  40243  tendo1mulr  40244  tendococl  40245  tendoconid  40302  tendospass  40492  dvhlveclem  40581  dicvscacl  40664
  Copyright terms: Public domain W3C validator