![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendof | Structured version Visualization version GIF version |
Description: Functionality of a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.) |
Ref | Expression |
---|---|
tendof.h | β’ π» = (LHypβπΎ) |
tendof.t | β’ π = ((LTrnβπΎ)βπ) |
tendof.e | β’ πΈ = ((TEndoβπΎ)βπ) |
Ref | Expression |
---|---|
tendof | β’ (((πΎ β π β§ π β π») β§ π β πΈ) β π:πβΆπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2726 | . . . 4 β’ (leβπΎ) = (leβπΎ) | |
2 | tendof.h | . . . 4 β’ π» = (LHypβπΎ) | |
3 | tendof.t | . . . 4 β’ π = ((LTrnβπΎ)βπ) | |
4 | eqid 2726 | . . . 4 β’ ((trLβπΎ)βπ) = ((trLβπΎ)βπ) | |
5 | tendof.e | . . . 4 β’ πΈ = ((TEndoβπΎ)βπ) | |
6 | 1, 2, 3, 4, 5 | istendo 40142 | . . 3 β’ ((πΎ β π β§ π β π») β (π β πΈ β (π:πβΆπ β§ βπ β π βπ β π (πβ(π β π)) = ((πβπ) β (πβπ)) β§ βπ β π (((trLβπΎ)βπ)β(πβπ))(leβπΎ)(((trLβπΎ)βπ)βπ)))) |
7 | simp1 1133 | . . 3 β’ ((π:πβΆπ β§ βπ β π βπ β π (πβ(π β π)) = ((πβπ) β (πβπ)) β§ βπ β π (((trLβπΎ)βπ)β(πβπ))(leβπΎ)(((trLβπΎ)βπ)βπ)) β π:πβΆπ) | |
8 | 6, 7 | syl6bi 253 | . 2 β’ ((πΎ β π β§ π β π») β (π β πΈ β π:πβΆπ)) |
9 | 8 | imp 406 | 1 β’ (((πΎ β π β§ π β π») β§ π β πΈ) β π:πβΆπ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1084 = wceq 1533 β wcel 2098 βwral 3055 class class class wbr 5141 β ccom 5673 βΆwf 6532 βcfv 6536 lecple 17211 LHypclh 39366 LTrncltrn 39483 trLctrl 39540 TEndoctendo 40134 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7407 df-oprab 7408 df-mpo 7409 df-map 8821 df-tendo 40137 |
This theorem is referenced by: tendoeq1 40146 tendocoval 40148 tendocl 40149 tendo1mul 40152 tendo1mulr 40153 tendococl 40154 tendoconid 40211 tendospass 40401 dvhlveclem 40490 dicvscacl 40573 |
Copyright terms: Public domain | W3C validator |