![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendof | Structured version Visualization version GIF version |
Description: Functionality of a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.) |
Ref | Expression |
---|---|
tendof.h | β’ π» = (LHypβπΎ) |
tendof.t | β’ π = ((LTrnβπΎ)βπ) |
tendof.e | β’ πΈ = ((TEndoβπΎ)βπ) |
Ref | Expression |
---|---|
tendof | β’ (((πΎ β π β§ π β π») β§ π β πΈ) β π:πβΆπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . . 4 β’ (leβπΎ) = (leβπΎ) | |
2 | tendof.h | . . . 4 β’ π» = (LHypβπΎ) | |
3 | tendof.t | . . . 4 β’ π = ((LTrnβπΎ)βπ) | |
4 | eqid 2733 | . . . 4 β’ ((trLβπΎ)βπ) = ((trLβπΎ)βπ) | |
5 | tendof.e | . . . 4 β’ πΈ = ((TEndoβπΎ)βπ) | |
6 | 1, 2, 3, 4, 5 | istendo 39631 | . . 3 β’ ((πΎ β π β§ π β π») β (π β πΈ β (π:πβΆπ β§ βπ β π βπ β π (πβ(π β π)) = ((πβπ) β (πβπ)) β§ βπ β π (((trLβπΎ)βπ)β(πβπ))(leβπΎ)(((trLβπΎ)βπ)βπ)))) |
7 | simp1 1137 | . . 3 β’ ((π:πβΆπ β§ βπ β π βπ β π (πβ(π β π)) = ((πβπ) β (πβπ)) β§ βπ β π (((trLβπΎ)βπ)β(πβπ))(leβπΎ)(((trLβπΎ)βπ)βπ)) β π:πβΆπ) | |
8 | 6, 7 | syl6bi 253 | . 2 β’ ((πΎ β π β§ π β π») β (π β πΈ β π:πβΆπ)) |
9 | 8 | imp 408 | 1 β’ (((πΎ β π β§ π β π») β§ π β πΈ) β π:πβΆπ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 β§ w3a 1088 = wceq 1542 β wcel 2107 βwral 3062 class class class wbr 5149 β ccom 5681 βΆwf 6540 βcfv 6544 lecple 17204 LHypclh 38855 LTrncltrn 38972 trLctrl 39029 TEndoctendo 39623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-map 8822 df-tendo 39626 |
This theorem is referenced by: tendoeq1 39635 tendocoval 39637 tendocl 39638 tendo1mul 39641 tendo1mulr 39642 tendococl 39643 tendoconid 39700 tendospass 39890 dvhlveclem 39979 dicvscacl 40062 |
Copyright terms: Public domain | W3C validator |