Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendospdi1 Structured version   Visualization version   GIF version

Theorem tendospdi1 41002
Description: Forward distributive law for endomorphism scalar product operation. (Contributed by NM, 10-Oct-2013.)
Hypotheses
Ref Expression
tendosp.h 𝐻 = (LHyp‘𝐾)
tendosp.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendosp.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendospdi1 (((𝐾𝑉𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇)) → (𝑈‘(𝐹𝐺)) = ((𝑈𝐹) ∘ (𝑈𝐺)))

Proof of Theorem tendospdi1
StepHypRef Expression
1 simpll 767 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇)) → 𝐾𝑉)
2 simplr 769 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇)) → 𝑊𝐻)
3 simpr1 1193 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇)) → 𝑈𝐸)
4 simpr2 1194 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇)) → 𝐹𝑇)
5 simpr3 1195 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇)) → 𝐺𝑇)
6 tendosp.h . . 3 𝐻 = (LHyp‘𝐾)
7 tendosp.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 tendosp.e . . 3 𝐸 = ((TEndo‘𝐾)‘𝑊)
96, 7, 8tendovalco 40747 . 2 (((𝐾𝑉𝑊𝐻𝑈𝐸) ∧ (𝐹𝑇𝐺𝑇)) → (𝑈‘(𝐹𝐺)) = ((𝑈𝐹) ∘ (𝑈𝐺)))
101, 2, 3, 4, 5, 9syl32anc 1377 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇)) → (𝑈‘(𝐹𝐺)) = ((𝑈𝐹) ∘ (𝑈𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1536  wcel 2105  ccom 5692  cfv 6562  LHypclh 39966  LTrncltrn 40083  TEndoctendo 40734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-map 8866  df-tendo 40737
This theorem is referenced by:  tendocnv  41003  tendospcanN  41005  dvalveclem  41007  dvhlveclem  41090  dihjatcclem4  41403
  Copyright terms: Public domain W3C validator