Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendospdi1 Structured version   Visualization version   GIF version

Theorem tendospdi1 40357
Description: Forward distributive law for endomorphism scalar product operation. (Contributed by NM, 10-Oct-2013.)
Hypotheses
Ref Expression
tendosp.h 𝐻 = (LHyp‘𝐾)
tendosp.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendosp.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendospdi1 (((𝐾𝑉𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇)) → (𝑈‘(𝐹𝐺)) = ((𝑈𝐹) ∘ (𝑈𝐺)))

Proof of Theorem tendospdi1
StepHypRef Expression
1 simpll 764 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇)) → 𝐾𝑉)
2 simplr 766 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇)) → 𝑊𝐻)
3 simpr1 1193 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇)) → 𝑈𝐸)
4 simpr2 1194 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇)) → 𝐹𝑇)
5 simpr3 1195 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇)) → 𝐺𝑇)
6 tendosp.h . . 3 𝐻 = (LHyp‘𝐾)
7 tendosp.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 tendosp.e . . 3 𝐸 = ((TEndo‘𝐾)‘𝑊)
96, 7, 8tendovalco 40102 . 2 (((𝐾𝑉𝑊𝐻𝑈𝐸) ∧ (𝐹𝑇𝐺𝑇)) → (𝑈‘(𝐹𝐺)) = ((𝑈𝐹) ∘ (𝑈𝐺)))
101, 2, 3, 4, 5, 9syl32anc 1377 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇)) → (𝑈‘(𝐹𝐺)) = ((𝑈𝐹) ∘ (𝑈𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2105  ccom 5680  cfv 6543  LHypclh 39321  LTrncltrn 39438  TEndoctendo 40089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-map 8828  df-tendo 40092
This theorem is referenced by:  tendocnv  40358  tendospcanN  40360  dvalveclem  40362  dvhlveclem  40445  dihjatcclem4  40758
  Copyright terms: Public domain W3C validator