Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  thincpropd Structured version   Visualization version   GIF version

Theorem thincpropd 49404
Description: Two structures with the same base, hom-sets and composition operation are either both thin categories or neither. (Contributed by Zhi Wang, 16-Oct-2025.)
Hypotheses
Ref Expression
thincpropd.1 (𝜑 → (Homf𝐶) = (Homf𝐷))
thincpropd.2 (𝜑 → (compf𝐶) = (compf𝐷))
thincpropd.3 (𝜑𝐶𝑉)
thincpropd.4 (𝜑𝐷𝑊)
Assertion
Ref Expression
thincpropd (𝜑 → (𝐶 ∈ ThinCat ↔ 𝐷 ∈ ThinCat))

Proof of Theorem thincpropd
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 thincpropd.1 . . . 4 (𝜑 → (Homf𝐶) = (Homf𝐷))
2 thincpropd.2 . . . 4 (𝜑 → (compf𝐶) = (compf𝐷))
3 thincpropd.3 . . . 4 (𝜑𝐶𝑉)
4 thincpropd.4 . . . 4 (𝜑𝐷𝑊)
51, 2, 3, 4catpropd 17646 . . 3 (𝜑 → (𝐶 ∈ Cat ↔ 𝐷 ∈ Cat))
6 eqid 2729 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
7 eqid 2729 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
8 eqid 2729 . . . . . . . 8 (Hom ‘𝐷) = (Hom ‘𝐷)
91adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (Homf𝐶) = (Homf𝐷))
10 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
11 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
126, 7, 8, 9, 10, 11homfeqval 17634 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘𝐷)𝑦))
1312eleq2d 2814 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)))
1413mobidv 2542 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ ∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)))
15142ralbidva 3197 . . . 4 (𝜑 → (∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)))
161homfeqbas 17633 . . . . 5 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
1716raleqdv 3296 . . . . 5 (𝜑 → (∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ↔ ∀𝑦 ∈ (Base‘𝐷)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)))
1816, 17raleqbidv 3316 . . . 4 (𝜑 → (∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ↔ ∀𝑥 ∈ (Base‘𝐷)∀𝑦 ∈ (Base‘𝐷)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)))
1915, 18bitrd 279 . . 3 (𝜑 → (∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ ∀𝑥 ∈ (Base‘𝐷)∀𝑦 ∈ (Base‘𝐷)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)))
205, 19anbi12d 632 . 2 (𝜑 → ((𝐶 ∈ Cat ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ↔ (𝐷 ∈ Cat ∧ ∀𝑥 ∈ (Base‘𝐷)∀𝑦 ∈ (Base‘𝐷)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦))))
216, 7isthinc 49381 . 2 (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)))
22 eqid 2729 . . 3 (Base‘𝐷) = (Base‘𝐷)
2322, 8isthinc 49381 . 2 (𝐷 ∈ ThinCat ↔ (𝐷 ∈ Cat ∧ ∀𝑥 ∈ (Base‘𝐷)∀𝑦 ∈ (Base‘𝐷)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)))
2420, 21, 233bitr4g 314 1 (𝜑 → (𝐶 ∈ ThinCat ↔ 𝐷 ∈ ThinCat))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  ∃*wmo 2531  wral 3044  cfv 6499  (class class class)co 7369  Basecbs 17155  Hom chom 17207  Catccat 17601  Homf chomf 17603  compfccomf 17604  ThinCatcthinc 49379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-cat 17605  df-homf 17607  df-comf 17608  df-thinc 49380
This theorem is referenced by:  termcpropd  49465
  Copyright terms: Public domain W3C validator