Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  thincpropd Structured version   Visualization version   GIF version

Theorem thincpropd 49603
Description: Two structures with the same base, hom-sets and composition operation are either both thin categories or neither. (Contributed by Zhi Wang, 16-Oct-2025.)
Hypotheses
Ref Expression
thincpropd.1 (𝜑 → (Homf𝐶) = (Homf𝐷))
thincpropd.2 (𝜑 → (compf𝐶) = (compf𝐷))
thincpropd.3 (𝜑𝐶𝑉)
thincpropd.4 (𝜑𝐷𝑊)
Assertion
Ref Expression
thincpropd (𝜑 → (𝐶 ∈ ThinCat ↔ 𝐷 ∈ ThinCat))

Proof of Theorem thincpropd
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 thincpropd.1 . . . 4 (𝜑 → (Homf𝐶) = (Homf𝐷))
2 thincpropd.2 . . . 4 (𝜑 → (compf𝐶) = (compf𝐷))
3 thincpropd.3 . . . 4 (𝜑𝐶𝑉)
4 thincpropd.4 . . . 4 (𝜑𝐷𝑊)
51, 2, 3, 4catpropd 17623 . . 3 (𝜑 → (𝐶 ∈ Cat ↔ 𝐷 ∈ Cat))
6 eqid 2733 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
7 eqid 2733 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
8 eqid 2733 . . . . . . . 8 (Hom ‘𝐷) = (Hom ‘𝐷)
91adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (Homf𝐶) = (Homf𝐷))
10 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
11 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
126, 7, 8, 9, 10, 11homfeqval 17611 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘𝐷)𝑦))
1312eleq2d 2819 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)))
1413mobidv 2546 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ ∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)))
15142ralbidva 3195 . . . 4 (𝜑 → (∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)))
161homfeqbas 17610 . . . . 5 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
1716raleqdv 3293 . . . . 5 (𝜑 → (∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ↔ ∀𝑦 ∈ (Base‘𝐷)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)))
1816, 17raleqbidv 3313 . . . 4 (𝜑 → (∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ↔ ∀𝑥 ∈ (Base‘𝐷)∀𝑦 ∈ (Base‘𝐷)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)))
1915, 18bitrd 279 . . 3 (𝜑 → (∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ ∀𝑥 ∈ (Base‘𝐷)∀𝑦 ∈ (Base‘𝐷)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)))
205, 19anbi12d 632 . 2 (𝜑 → ((𝐶 ∈ Cat ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ↔ (𝐷 ∈ Cat ∧ ∀𝑥 ∈ (Base‘𝐷)∀𝑦 ∈ (Base‘𝐷)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦))))
216, 7isthinc 49580 . 2 (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)))
22 eqid 2733 . . 3 (Base‘𝐷) = (Base‘𝐷)
2322, 8isthinc 49580 . 2 (𝐷 ∈ ThinCat ↔ (𝐷 ∈ Cat ∧ ∀𝑥 ∈ (Base‘𝐷)∀𝑦 ∈ (Base‘𝐷)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)))
2420, 21, 233bitr4g 314 1 (𝜑 → (𝐶 ∈ ThinCat ↔ 𝐷 ∈ ThinCat))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  ∃*wmo 2535  wral 3048  cfv 6489  (class class class)co 7355  Basecbs 17127  Hom chom 17179  Catccat 17578  Homf chomf 17580  compfccomf 17581  ThinCatcthinc 49578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-cat 17582  df-homf 17584  df-comf 17585  df-thinc 49579
This theorem is referenced by:  termcpropd  49664
  Copyright terms: Public domain W3C validator