Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  thincpropd Structured version   Visualization version   GIF version

Theorem thincpropd 49064
Description: Two structures with the same base, hom-sets and composition operation are either both thin categories or neither. (Contributed by Zhi Wang, 16-Oct-2025.)
Hypotheses
Ref Expression
thincpropd.1 (𝜑 → (Homf𝐶) = (Homf𝐷))
thincpropd.2 (𝜑 → (compf𝐶) = (compf𝐷))
thincpropd.3 (𝜑𝐶𝑉)
thincpropd.4 (𝜑𝐷𝑊)
Assertion
Ref Expression
thincpropd (𝜑 → (𝐶 ∈ ThinCat ↔ 𝐷 ∈ ThinCat))

Proof of Theorem thincpropd
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 thincpropd.1 . . . 4 (𝜑 → (Homf𝐶) = (Homf𝐷))
2 thincpropd.2 . . . 4 (𝜑 → (compf𝐶) = (compf𝐷))
3 thincpropd.3 . . . 4 (𝜑𝐶𝑉)
4 thincpropd.4 . . . 4 (𝜑𝐷𝑊)
51, 2, 3, 4catpropd 17748 . . 3 (𝜑 → (𝐶 ∈ Cat ↔ 𝐷 ∈ Cat))
6 eqid 2736 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
7 eqid 2736 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
8 eqid 2736 . . . . . . . 8 (Hom ‘𝐷) = (Hom ‘𝐷)
91adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (Homf𝐶) = (Homf𝐷))
10 simprl 771 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
11 simprr 773 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
126, 7, 8, 9, 10, 11homfeqval 17736 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘𝐷)𝑦))
1312eleq2d 2826 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)))
1413mobidv 2548 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ ∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)))
15142ralbidva 3218 . . . 4 (𝜑 → (∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)))
161homfeqbas 17735 . . . . 5 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
1716raleqdv 3325 . . . . 5 (𝜑 → (∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ↔ ∀𝑦 ∈ (Base‘𝐷)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)))
1816, 17raleqbidv 3345 . . . 4 (𝜑 → (∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ↔ ∀𝑥 ∈ (Base‘𝐷)∀𝑦 ∈ (Base‘𝐷)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)))
1915, 18bitrd 279 . . 3 (𝜑 → (∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ ∀𝑥 ∈ (Base‘𝐷)∀𝑦 ∈ (Base‘𝐷)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)))
205, 19anbi12d 632 . 2 (𝜑 → ((𝐶 ∈ Cat ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ↔ (𝐷 ∈ Cat ∧ ∀𝑥 ∈ (Base‘𝐷)∀𝑦 ∈ (Base‘𝐷)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦))))
216, 7isthinc 49042 . 2 (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)))
22 eqid 2736 . . 3 (Base‘𝐷) = (Base‘𝐷)
2322, 8isthinc 49042 . 2 (𝐷 ∈ ThinCat ↔ (𝐷 ∈ Cat ∧ ∀𝑥 ∈ (Base‘𝐷)∀𝑦 ∈ (Base‘𝐷)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)))
2420, 21, 233bitr4g 314 1 (𝜑 → (𝐶 ∈ ThinCat ↔ 𝐷 ∈ ThinCat))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  ∃*wmo 2537  wral 3060  cfv 6559  (class class class)co 7429  Basecbs 17243  Hom chom 17304  Catccat 17703  Homf chomf 17705  compfccomf 17706  ThinCatcthinc 49040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5277  ax-sep 5294  ax-nul 5304  ax-pow 5363  ax-pr 5430  ax-un 7751
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4906  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5224  df-id 5576  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-iota 6512  df-fun 6561  df-fn 6562  df-f 6563  df-f1 6564  df-fo 6565  df-f1o 6566  df-fv 6567  df-ov 7432  df-oprab 7433  df-mpo 7434  df-1st 8010  df-2nd 8011  df-cat 17707  df-homf 17709  df-comf 17710  df-thinc 49041
This theorem is referenced by:  termcpropd  49108
  Copyright terms: Public domain W3C validator