| Step | Hyp | Ref
| Expression |
| 1 | | thincpropd.1 |
. . . 4
⊢ (𝜑 → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
| 2 | | thincpropd.2 |
. . . 4
⊢ (𝜑 →
(compf‘𝐶) = (compf‘𝐷)) |
| 3 | | thincpropd.3 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| 4 | | thincpropd.4 |
. . . 4
⊢ (𝜑 → 𝐷 ∈ 𝑊) |
| 5 | 1, 2, 3, 4 | catpropd 17748 |
. . 3
⊢ (𝜑 → (𝐶 ∈ Cat ↔ 𝐷 ∈ Cat)) |
| 6 | | eqid 2736 |
. . . . . . . 8
⊢
(Base‘𝐶) =
(Base‘𝐶) |
| 7 | | eqid 2736 |
. . . . . . . 8
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
| 8 | | eqid 2736 |
. . . . . . . 8
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
| 9 | 1 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
| 10 | | simprl 771 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶)) |
| 11 | | simprr 773 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶)) |
| 12 | 6, 7, 8, 9, 10, 11 | homfeqval 17736 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘𝐷)𝑦)) |
| 13 | 12 | eleq2d 2826 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦))) |
| 14 | 13 | mobidv 2548 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ ∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦))) |
| 15 | 14 | 2ralbidva 3218 |
. . . 4
⊢ (𝜑 → (∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦))) |
| 16 | 1 | homfeqbas 17735 |
. . . . 5
⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) |
| 17 | 16 | raleqdv 3325 |
. . . . 5
⊢ (𝜑 → (∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ↔ ∀𝑦 ∈ (Base‘𝐷)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦))) |
| 18 | 16, 17 | raleqbidv 3345 |
. . . 4
⊢ (𝜑 → (∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ↔ ∀𝑥 ∈ (Base‘𝐷)∀𝑦 ∈ (Base‘𝐷)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦))) |
| 19 | 15, 18 | bitrd 279 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ ∀𝑥 ∈ (Base‘𝐷)∀𝑦 ∈ (Base‘𝐷)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦))) |
| 20 | 5, 19 | anbi12d 632 |
. 2
⊢ (𝜑 → ((𝐶 ∈ Cat ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ↔ (𝐷 ∈ Cat ∧ ∀𝑥 ∈ (Base‘𝐷)∀𝑦 ∈ (Base‘𝐷)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)))) |
| 21 | 6, 7 | isthinc 49042 |
. 2
⊢ (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) |
| 22 | | eqid 2736 |
. . 3
⊢
(Base‘𝐷) =
(Base‘𝐷) |
| 23 | 22, 8 | isthinc 49042 |
. 2
⊢ (𝐷 ∈ ThinCat ↔ (𝐷 ∈ Cat ∧ ∀𝑥 ∈ (Base‘𝐷)∀𝑦 ∈ (Base‘𝐷)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦))) |
| 24 | 20, 21, 23 | 3bitr4g 314 |
1
⊢ (𝜑 → (𝐶 ∈ ThinCat ↔ 𝐷 ∈ ThinCat)) |