| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > thincsect2 | Structured version Visualization version GIF version | ||
| Description: In a thin category, 𝐹 is a section of 𝐺 iff 𝐺 is a section of 𝐹. (Contributed by Zhi Wang, 24-Sep-2024.) |
| Ref | Expression |
|---|---|
| thincsect.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
| thincsect.b | ⊢ 𝐵 = (Base‘𝐶) |
| thincsect.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| thincsect.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| thincsect.s | ⊢ 𝑆 = (Sect‘𝐶) |
| Ref | Expression |
|---|---|
| thincsect2 | ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ 𝐺(𝑌𝑆𝑋)𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 460 | . . 3 ⊢ ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ↔ (𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ↔ (𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌)))) |
| 3 | thincsect.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
| 4 | thincsect.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 5 | thincsect.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | thincsect.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 7 | thincsect.s | . . 3 ⊢ 𝑆 = (Sect‘𝐶) | |
| 8 | eqid 2734 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 9 | 3, 4, 5, 6, 7, 8 | thincsect 49068 | . 2 ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)))) |
| 10 | 3, 4, 6, 5, 7, 8 | thincsect 49068 | . 2 ⊢ (𝜑 → (𝐺(𝑌𝑆𝑋)𝐹 ↔ (𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌)))) |
| 11 | 2, 9, 10 | 3bitr4d 311 | 1 ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ 𝐺(𝑌𝑆𝑋)𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 class class class wbr 5123 ‘cfv 6540 (class class class)co 7412 Basecbs 17228 Hom chom 17283 Sectcsect 17758 ThinCatcthinc 49020 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7995 df-2nd 7996 df-cat 17681 df-cid 17682 df-sect 17761 df-thinc 49021 |
| This theorem is referenced by: thincinv 49070 |
| Copyright terms: Public domain | W3C validator |