![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tmdlactcn | Structured version Visualization version GIF version |
Description: The left group action of element π΄ in a topological monoid πΊ is a continuous function. (Contributed by FL, 18-Mar-2008.) (Revised by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
tgplacthmeo.1 | β’ πΉ = (π₯ β π β¦ (π΄ + π₯)) |
tgplacthmeo.2 | β’ π = (BaseβπΊ) |
tgplacthmeo.3 | β’ + = (+gβπΊ) |
tgplacthmeo.4 | β’ π½ = (TopOpenβπΊ) |
Ref | Expression |
---|---|
tmdlactcn | β’ ((πΊ β TopMnd β§ π΄ β π) β πΉ β (π½ Cn π½)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgplacthmeo.1 | . 2 β’ πΉ = (π₯ β π β¦ (π΄ + π₯)) | |
2 | tgplacthmeo.4 | . . 3 β’ π½ = (TopOpenβπΊ) | |
3 | tgplacthmeo.3 | . . 3 β’ + = (+gβπΊ) | |
4 | simpl 483 | . . 3 β’ ((πΊ β TopMnd β§ π΄ β π) β πΊ β TopMnd) | |
5 | tgplacthmeo.2 | . . . . 5 β’ π = (BaseβπΊ) | |
6 | 2, 5 | tmdtopon 23584 | . . . 4 β’ (πΊ β TopMnd β π½ β (TopOnβπ)) |
7 | 6 | adantr 481 | . . 3 β’ ((πΊ β TopMnd β§ π΄ β π) β π½ β (TopOnβπ)) |
8 | simpr 485 | . . . 4 β’ ((πΊ β TopMnd β§ π΄ β π) β π΄ β π) | |
9 | 7, 7, 8 | cnmptc 23165 | . . 3 β’ ((πΊ β TopMnd β§ π΄ β π) β (π₯ β π β¦ π΄) β (π½ Cn π½)) |
10 | 7 | cnmptid 23164 | . . 3 β’ ((πΊ β TopMnd β§ π΄ β π) β (π₯ β π β¦ π₯) β (π½ Cn π½)) |
11 | 2, 3, 4, 7, 9, 10 | cnmpt1plusg 23590 | . 2 β’ ((πΊ β TopMnd β§ π΄ β π) β (π₯ β π β¦ (π΄ + π₯)) β (π½ Cn π½)) |
12 | 1, 11 | eqeltrid 2837 | 1 β’ ((πΊ β TopMnd β§ π΄ β π) β πΉ β (π½ Cn π½)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 β¦ cmpt 5231 βcfv 6543 (class class class)co 7408 Basecbs 17143 +gcplusg 17196 TopOpenctopn 17366 TopOnctopon 22411 Cn ccn 22727 TopMndctmd 23573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 df-map 8821 df-topgen 17388 df-plusf 18559 df-top 22395 df-topon 22412 df-topsp 22434 df-bases 22448 df-cn 22730 df-cnp 22731 df-tx 23065 df-tmd 23575 |
This theorem is referenced by: tgplacthmeo 23606 ghmcnp 23618 |
Copyright terms: Public domain | W3C validator |