![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tmdlactcn | Structured version Visualization version GIF version |
Description: The left group action of element π΄ in a topological monoid πΊ is a continuous function. (Contributed by FL, 18-Mar-2008.) (Revised by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
tgplacthmeo.1 | β’ πΉ = (π₯ β π β¦ (π΄ + π₯)) |
tgplacthmeo.2 | β’ π = (BaseβπΊ) |
tgplacthmeo.3 | β’ + = (+gβπΊ) |
tgplacthmeo.4 | β’ π½ = (TopOpenβπΊ) |
Ref | Expression |
---|---|
tmdlactcn | β’ ((πΊ β TopMnd β§ π΄ β π) β πΉ β (π½ Cn π½)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgplacthmeo.1 | . 2 β’ πΉ = (π₯ β π β¦ (π΄ + π₯)) | |
2 | tgplacthmeo.4 | . . 3 β’ π½ = (TopOpenβπΊ) | |
3 | tgplacthmeo.3 | . . 3 β’ + = (+gβπΊ) | |
4 | simpl 481 | . . 3 β’ ((πΊ β TopMnd β§ π΄ β π) β πΊ β TopMnd) | |
5 | tgplacthmeo.2 | . . . . 5 β’ π = (BaseβπΊ) | |
6 | 2, 5 | tmdtopon 24001 | . . . 4 β’ (πΊ β TopMnd β π½ β (TopOnβπ)) |
7 | 6 | adantr 479 | . . 3 β’ ((πΊ β TopMnd β§ π΄ β π) β π½ β (TopOnβπ)) |
8 | simpr 483 | . . . 4 β’ ((πΊ β TopMnd β§ π΄ β π) β π΄ β π) | |
9 | 7, 7, 8 | cnmptc 23582 | . . 3 β’ ((πΊ β TopMnd β§ π΄ β π) β (π₯ β π β¦ π΄) β (π½ Cn π½)) |
10 | 7 | cnmptid 23581 | . . 3 β’ ((πΊ β TopMnd β§ π΄ β π) β (π₯ β π β¦ π₯) β (π½ Cn π½)) |
11 | 2, 3, 4, 7, 9, 10 | cnmpt1plusg 24007 | . 2 β’ ((πΊ β TopMnd β§ π΄ β π) β (π₯ β π β¦ (π΄ + π₯)) β (π½ Cn π½)) |
12 | 1, 11 | eqeltrid 2829 | 1 β’ ((πΊ β TopMnd β§ π΄ β π) β πΉ β (π½ Cn π½)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 β¦ cmpt 5224 βcfv 6541 (class class class)co 7414 Basecbs 17177 +gcplusg 17230 TopOpenctopn 17400 TopOnctopon 22828 Cn ccn 23144 TopMndctmd 23990 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5292 ax-nul 5299 ax-pow 5357 ax-pr 5421 ax-un 7736 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5568 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7989 df-2nd 7990 df-map 8843 df-topgen 17422 df-plusf 18596 df-top 22812 df-topon 22829 df-topsp 22851 df-bases 22865 df-cn 23147 df-cnp 23148 df-tx 23482 df-tmd 23992 |
This theorem is referenced by: tgplacthmeo 24023 ghmcnp 24035 |
Copyright terms: Public domain | W3C validator |