MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmdlactcn Structured version   Visualization version   GIF version

Theorem tmdlactcn 24022
Description: The left group action of element 𝐴 in a topological monoid 𝐺 is a continuous function. (Contributed by FL, 18-Mar-2008.) (Revised by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
tgplacthmeo.1 𝐹 = (π‘₯ ∈ 𝑋 ↦ (𝐴 + π‘₯))
tgplacthmeo.2 𝑋 = (Baseβ€˜πΊ)
tgplacthmeo.3 + = (+gβ€˜πΊ)
tgplacthmeo.4 𝐽 = (TopOpenβ€˜πΊ)
Assertion
Ref Expression
tmdlactcn ((𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋) β†’ 𝐹 ∈ (𝐽 Cn 𝐽))
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝐺   π‘₯,𝐽   π‘₯, +   π‘₯,𝑋
Allowed substitution hint:   𝐹(π‘₯)

Proof of Theorem tmdlactcn
StepHypRef Expression
1 tgplacthmeo.1 . 2 𝐹 = (π‘₯ ∈ 𝑋 ↦ (𝐴 + π‘₯))
2 tgplacthmeo.4 . . 3 𝐽 = (TopOpenβ€˜πΊ)
3 tgplacthmeo.3 . . 3 + = (+gβ€˜πΊ)
4 simpl 481 . . 3 ((𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋) β†’ 𝐺 ∈ TopMnd)
5 tgplacthmeo.2 . . . . 5 𝑋 = (Baseβ€˜πΊ)
62, 5tmdtopon 24001 . . . 4 (𝐺 ∈ TopMnd β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
76adantr 479 . . 3 ((𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋) β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
8 simpr 483 . . . 4 ((𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋) β†’ 𝐴 ∈ 𝑋)
97, 7, 8cnmptc 23582 . . 3 ((𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋) β†’ (π‘₯ ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐽))
107cnmptid 23581 . . 3 ((𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋) β†’ (π‘₯ ∈ 𝑋 ↦ π‘₯) ∈ (𝐽 Cn 𝐽))
112, 3, 4, 7, 9, 10cnmpt1plusg 24007 . 2 ((𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋) β†’ (π‘₯ ∈ 𝑋 ↦ (𝐴 + π‘₯)) ∈ (𝐽 Cn 𝐽))
121, 11eqeltrid 2829 1 ((𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋) β†’ 𝐹 ∈ (𝐽 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1533   ∈ wcel 2098   ↦ cmpt 5224  β€˜cfv 6541  (class class class)co 7414  Basecbs 17177  +gcplusg 17230  TopOpenctopn 17400  TopOnctopon 22828   Cn ccn 23144  TopMndctmd 23990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5292  ax-nul 5299  ax-pow 5357  ax-pr 5421  ax-un 7736
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4317  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5568  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7989  df-2nd 7990  df-map 8843  df-topgen 17422  df-plusf 18596  df-top 22812  df-topon 22829  df-topsp 22851  df-bases 22865  df-cn 23147  df-cnp 23148  df-tx 23482  df-tmd 23992
This theorem is referenced by:  tgplacthmeo  24023  ghmcnp  24035
  Copyright terms: Public domain W3C validator