Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tmdlactcn | Structured version Visualization version GIF version |
Description: The left group action of element 𝐴 in a topological monoid 𝐺 is a continuous function. (Contributed by FL, 18-Mar-2008.) (Revised by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
tgplacthmeo.1 | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝑥)) |
tgplacthmeo.2 | ⊢ 𝑋 = (Base‘𝐺) |
tgplacthmeo.3 | ⊢ + = (+g‘𝐺) |
tgplacthmeo.4 | ⊢ 𝐽 = (TopOpen‘𝐺) |
Ref | Expression |
---|---|
tmdlactcn | ⊢ ((𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋) → 𝐹 ∈ (𝐽 Cn 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgplacthmeo.1 | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝑥)) | |
2 | tgplacthmeo.4 | . . 3 ⊢ 𝐽 = (TopOpen‘𝐺) | |
3 | tgplacthmeo.3 | . . 3 ⊢ + = (+g‘𝐺) | |
4 | simpl 483 | . . 3 ⊢ ((𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋) → 𝐺 ∈ TopMnd) | |
5 | tgplacthmeo.2 | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
6 | 2, 5 | tmdtopon 23338 | . . . 4 ⊢ (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘𝑋)) |
7 | 6 | adantr 481 | . . 3 ⊢ ((𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
8 | simpr 485 | . . . 4 ⊢ ((𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
9 | 7, 7, 8 | cnmptc 22919 | . . 3 ⊢ ((𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋) → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐽)) |
10 | 7 | cnmptid 22918 | . . 3 ⊢ ((𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋) → (𝑥 ∈ 𝑋 ↦ 𝑥) ∈ (𝐽 Cn 𝐽)) |
11 | 2, 3, 4, 7, 9, 10 | cnmpt1plusg 23344 | . 2 ⊢ ((𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋) → (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝑥)) ∈ (𝐽 Cn 𝐽)) |
12 | 1, 11 | eqeltrid 2841 | 1 ⊢ ((𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋) → 𝐹 ∈ (𝐽 Cn 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ↦ cmpt 5175 ‘cfv 6479 (class class class)co 7337 Basecbs 17009 +gcplusg 17059 TopOpenctopn 17229 TopOnctopon 22165 Cn ccn 22481 TopMndctmd 23327 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-ov 7340 df-oprab 7341 df-mpo 7342 df-1st 7899 df-2nd 7900 df-map 8688 df-topgen 17251 df-plusf 18422 df-top 22149 df-topon 22166 df-topsp 22188 df-bases 22202 df-cn 22484 df-cnp 22485 df-tx 22819 df-tmd 23329 |
This theorem is referenced by: tgplacthmeo 23360 ghmcnp 23372 |
Copyright terms: Public domain | W3C validator |