MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmdlactcn Structured version   Visualization version   GIF version

Theorem tmdlactcn 23605
Description: The left group action of element 𝐴 in a topological monoid 𝐺 is a continuous function. (Contributed by FL, 18-Mar-2008.) (Revised by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
tgplacthmeo.1 𝐹 = (π‘₯ ∈ 𝑋 ↦ (𝐴 + π‘₯))
tgplacthmeo.2 𝑋 = (Baseβ€˜πΊ)
tgplacthmeo.3 + = (+gβ€˜πΊ)
tgplacthmeo.4 𝐽 = (TopOpenβ€˜πΊ)
Assertion
Ref Expression
tmdlactcn ((𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋) β†’ 𝐹 ∈ (𝐽 Cn 𝐽))
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝐺   π‘₯,𝐽   π‘₯, +   π‘₯,𝑋
Allowed substitution hint:   𝐹(π‘₯)

Proof of Theorem tmdlactcn
StepHypRef Expression
1 tgplacthmeo.1 . 2 𝐹 = (π‘₯ ∈ 𝑋 ↦ (𝐴 + π‘₯))
2 tgplacthmeo.4 . . 3 𝐽 = (TopOpenβ€˜πΊ)
3 tgplacthmeo.3 . . 3 + = (+gβ€˜πΊ)
4 simpl 483 . . 3 ((𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋) β†’ 𝐺 ∈ TopMnd)
5 tgplacthmeo.2 . . . . 5 𝑋 = (Baseβ€˜πΊ)
62, 5tmdtopon 23584 . . . 4 (𝐺 ∈ TopMnd β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
76adantr 481 . . 3 ((𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋) β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
8 simpr 485 . . . 4 ((𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋) β†’ 𝐴 ∈ 𝑋)
97, 7, 8cnmptc 23165 . . 3 ((𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋) β†’ (π‘₯ ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐽))
107cnmptid 23164 . . 3 ((𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋) β†’ (π‘₯ ∈ 𝑋 ↦ π‘₯) ∈ (𝐽 Cn 𝐽))
112, 3, 4, 7, 9, 10cnmpt1plusg 23590 . 2 ((𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋) β†’ (π‘₯ ∈ 𝑋 ↦ (𝐴 + π‘₯)) ∈ (𝐽 Cn 𝐽))
121, 11eqeltrid 2837 1 ((𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋) β†’ 𝐹 ∈ (𝐽 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106   ↦ cmpt 5231  β€˜cfv 6543  (class class class)co 7408  Basecbs 17143  +gcplusg 17196  TopOpenctopn 17366  TopOnctopon 22411   Cn ccn 22727  TopMndctmd 23573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-1st 7974  df-2nd 7975  df-map 8821  df-topgen 17388  df-plusf 18559  df-top 22395  df-topon 22412  df-topsp 22434  df-bases 22448  df-cn 22730  df-cnp 22731  df-tx 23065  df-tmd 23575
This theorem is referenced by:  tgplacthmeo  23606  ghmcnp  23618
  Copyright terms: Public domain W3C validator