| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tmdlactcn | Structured version Visualization version GIF version | ||
| Description: The left group action of element 𝐴 in a topological monoid 𝐺 is a continuous function. (Contributed by FL, 18-Mar-2008.) (Revised by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| tgplacthmeo.1 | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝑥)) |
| tgplacthmeo.2 | ⊢ 𝑋 = (Base‘𝐺) |
| tgplacthmeo.3 | ⊢ + = (+g‘𝐺) |
| tgplacthmeo.4 | ⊢ 𝐽 = (TopOpen‘𝐺) |
| Ref | Expression |
|---|---|
| tmdlactcn | ⊢ ((𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋) → 𝐹 ∈ (𝐽 Cn 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgplacthmeo.1 | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝑥)) | |
| 2 | tgplacthmeo.4 | . . 3 ⊢ 𝐽 = (TopOpen‘𝐺) | |
| 3 | tgplacthmeo.3 | . . 3 ⊢ + = (+g‘𝐺) | |
| 4 | simpl 482 | . . 3 ⊢ ((𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋) → 𝐺 ∈ TopMnd) | |
| 5 | tgplacthmeo.2 | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
| 6 | 2, 5 | tmdtopon 24001 | . . . 4 ⊢ (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘𝑋)) |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
| 8 | simpr 484 | . . . 4 ⊢ ((𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
| 9 | 7, 7, 8 | cnmptc 23582 | . . 3 ⊢ ((𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋) → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐽)) |
| 10 | 7 | cnmptid 23581 | . . 3 ⊢ ((𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋) → (𝑥 ∈ 𝑋 ↦ 𝑥) ∈ (𝐽 Cn 𝐽)) |
| 11 | 2, 3, 4, 7, 9, 10 | cnmpt1plusg 24007 | . 2 ⊢ ((𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋) → (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝑥)) ∈ (𝐽 Cn 𝐽)) |
| 12 | 1, 11 | eqeltrid 2832 | 1 ⊢ ((𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋) → 𝐹 ∈ (𝐽 Cn 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5183 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 +gcplusg 17196 TopOpenctopn 17360 TopOnctopon 22830 Cn ccn 23144 TopMndctmd 23990 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-map 8778 df-topgen 17382 df-plusf 18548 df-top 22814 df-topon 22831 df-topsp 22853 df-bases 22866 df-cn 23147 df-cnp 23148 df-tx 23482 df-tmd 23992 |
| This theorem is referenced by: tgplacthmeo 24023 ghmcnp 24035 |
| Copyright terms: Public domain | W3C validator |