MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmdlactcn Structured version   Visualization version   GIF version

Theorem tmdlactcn 23253
Description: The left group action of element 𝐴 in a topological monoid 𝐺 is a continuous function. (Contributed by FL, 18-Mar-2008.) (Revised by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
tgplacthmeo.1 𝐹 = (𝑥𝑋 ↦ (𝐴 + 𝑥))
tgplacthmeo.2 𝑋 = (Base‘𝐺)
tgplacthmeo.3 + = (+g𝐺)
tgplacthmeo.4 𝐽 = (TopOpen‘𝐺)
Assertion
Ref Expression
tmdlactcn ((𝐺 ∈ TopMnd ∧ 𝐴𝑋) → 𝐹 ∈ (𝐽 Cn 𝐽))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥,𝐽   𝑥, +   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem tmdlactcn
StepHypRef Expression
1 tgplacthmeo.1 . 2 𝐹 = (𝑥𝑋 ↦ (𝐴 + 𝑥))
2 tgplacthmeo.4 . . 3 𝐽 = (TopOpen‘𝐺)
3 tgplacthmeo.3 . . 3 + = (+g𝐺)
4 simpl 483 . . 3 ((𝐺 ∈ TopMnd ∧ 𝐴𝑋) → 𝐺 ∈ TopMnd)
5 tgplacthmeo.2 . . . . 5 𝑋 = (Base‘𝐺)
62, 5tmdtopon 23232 . . . 4 (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘𝑋))
76adantr 481 . . 3 ((𝐺 ∈ TopMnd ∧ 𝐴𝑋) → 𝐽 ∈ (TopOn‘𝑋))
8 simpr 485 . . . 4 ((𝐺 ∈ TopMnd ∧ 𝐴𝑋) → 𝐴𝑋)
97, 7, 8cnmptc 22813 . . 3 ((𝐺 ∈ TopMnd ∧ 𝐴𝑋) → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐽))
107cnmptid 22812 . . 3 ((𝐺 ∈ TopMnd ∧ 𝐴𝑋) → (𝑥𝑋𝑥) ∈ (𝐽 Cn 𝐽))
112, 3, 4, 7, 9, 10cnmpt1plusg 23238 . 2 ((𝐺 ∈ TopMnd ∧ 𝐴𝑋) → (𝑥𝑋 ↦ (𝐴 + 𝑥)) ∈ (𝐽 Cn 𝐽))
121, 11eqeltrid 2843 1 ((𝐺 ∈ TopMnd ∧ 𝐴𝑋) → 𝐹 ∈ (𝐽 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  cmpt 5157  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  TopOpenctopn 17132  TopOnctopon 22059   Cn ccn 22375  TopMndctmd 23221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-map 8617  df-topgen 17154  df-plusf 18325  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cn 22378  df-cnp 22379  df-tx 22713  df-tmd 23223
This theorem is referenced by:  tgplacthmeo  23254  ghmcnp  23266
  Copyright terms: Public domain W3C validator