MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmdlactcn Structured version   Visualization version   GIF version

Theorem tmdlactcn 23989
Description: The left group action of element 𝐴 in a topological monoid 𝐺 is a continuous function. (Contributed by FL, 18-Mar-2008.) (Revised by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
tgplacthmeo.1 𝐹 = (𝑥𝑋 ↦ (𝐴 + 𝑥))
tgplacthmeo.2 𝑋 = (Base‘𝐺)
tgplacthmeo.3 + = (+g𝐺)
tgplacthmeo.4 𝐽 = (TopOpen‘𝐺)
Assertion
Ref Expression
tmdlactcn ((𝐺 ∈ TopMnd ∧ 𝐴𝑋) → 𝐹 ∈ (𝐽 Cn 𝐽))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥,𝐽   𝑥, +   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem tmdlactcn
StepHypRef Expression
1 tgplacthmeo.1 . 2 𝐹 = (𝑥𝑋 ↦ (𝐴 + 𝑥))
2 tgplacthmeo.4 . . 3 𝐽 = (TopOpen‘𝐺)
3 tgplacthmeo.3 . . 3 + = (+g𝐺)
4 simpl 482 . . 3 ((𝐺 ∈ TopMnd ∧ 𝐴𝑋) → 𝐺 ∈ TopMnd)
5 tgplacthmeo.2 . . . . 5 𝑋 = (Base‘𝐺)
62, 5tmdtopon 23968 . . . 4 (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘𝑋))
76adantr 480 . . 3 ((𝐺 ∈ TopMnd ∧ 𝐴𝑋) → 𝐽 ∈ (TopOn‘𝑋))
8 simpr 484 . . . 4 ((𝐺 ∈ TopMnd ∧ 𝐴𝑋) → 𝐴𝑋)
97, 7, 8cnmptc 23549 . . 3 ((𝐺 ∈ TopMnd ∧ 𝐴𝑋) → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐽))
107cnmptid 23548 . . 3 ((𝐺 ∈ TopMnd ∧ 𝐴𝑋) → (𝑥𝑋𝑥) ∈ (𝐽 Cn 𝐽))
112, 3, 4, 7, 9, 10cnmpt1plusg 23974 . 2 ((𝐺 ∈ TopMnd ∧ 𝐴𝑋) → (𝑥𝑋 ↦ (𝐴 + 𝑥)) ∈ (𝐽 Cn 𝐽))
121, 11eqeltrid 2832 1 ((𝐺 ∈ TopMnd ∧ 𝐴𝑋) → 𝐹 ∈ (𝐽 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cmpt 5188  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  TopOpenctopn 17384  TopOnctopon 22797   Cn ccn 23111  TopMndctmd 23957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801  df-topgen 17406  df-plusf 18566  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cn 23114  df-cnp 23115  df-tx 23449  df-tmd 23959
This theorem is referenced by:  tgplacthmeo  23990  ghmcnp  24002
  Copyright terms: Public domain W3C validator