![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tmdlactcn | Structured version Visualization version GIF version |
Description: The left group action of element 𝐴 in a topological monoid 𝐺 is a continuous function. (Contributed by FL, 18-Mar-2008.) (Revised by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
tgplacthmeo.1 | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝑥)) |
tgplacthmeo.2 | ⊢ 𝑋 = (Base‘𝐺) |
tgplacthmeo.3 | ⊢ + = (+g‘𝐺) |
tgplacthmeo.4 | ⊢ 𝐽 = (TopOpen‘𝐺) |
Ref | Expression |
---|---|
tmdlactcn | ⊢ ((𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋) → 𝐹 ∈ (𝐽 Cn 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgplacthmeo.1 | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝑥)) | |
2 | tgplacthmeo.4 | . . 3 ⊢ 𝐽 = (TopOpen‘𝐺) | |
3 | tgplacthmeo.3 | . . 3 ⊢ + = (+g‘𝐺) | |
4 | simpl 482 | . . 3 ⊢ ((𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋) → 𝐺 ∈ TopMnd) | |
5 | tgplacthmeo.2 | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
6 | 2, 5 | tmdtopon 24110 | . . . 4 ⊢ (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘𝑋)) |
7 | 6 | adantr 480 | . . 3 ⊢ ((𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
8 | simpr 484 | . . . 4 ⊢ ((𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
9 | 7, 7, 8 | cnmptc 23691 | . . 3 ⊢ ((𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋) → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐽)) |
10 | 7 | cnmptid 23690 | . . 3 ⊢ ((𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋) → (𝑥 ∈ 𝑋 ↦ 𝑥) ∈ (𝐽 Cn 𝐽)) |
11 | 2, 3, 4, 7, 9, 10 | cnmpt1plusg 24116 | . 2 ⊢ ((𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋) → (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝑥)) ∈ (𝐽 Cn 𝐽)) |
12 | 1, 11 | eqeltrid 2848 | 1 ⊢ ((𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋) → 𝐹 ∈ (𝐽 Cn 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ↦ cmpt 5249 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 TopOpenctopn 17481 TopOnctopon 22937 Cn ccn 23253 TopMndctmd 24099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-map 8886 df-topgen 17503 df-plusf 18677 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cn 23256 df-cnp 23257 df-tx 23591 df-tmd 24101 |
This theorem is referenced by: tgplacthmeo 24132 ghmcnp 24144 |
Copyright terms: Public domain | W3C validator |