MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmdlactcn Structured version   Visualization version   GIF version

Theorem tmdlactcn 23359
Description: The left group action of element 𝐴 in a topological monoid 𝐺 is a continuous function. (Contributed by FL, 18-Mar-2008.) (Revised by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
tgplacthmeo.1 𝐹 = (𝑥𝑋 ↦ (𝐴 + 𝑥))
tgplacthmeo.2 𝑋 = (Base‘𝐺)
tgplacthmeo.3 + = (+g𝐺)
tgplacthmeo.4 𝐽 = (TopOpen‘𝐺)
Assertion
Ref Expression
tmdlactcn ((𝐺 ∈ TopMnd ∧ 𝐴𝑋) → 𝐹 ∈ (𝐽 Cn 𝐽))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥,𝐽   𝑥, +   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem tmdlactcn
StepHypRef Expression
1 tgplacthmeo.1 . 2 𝐹 = (𝑥𝑋 ↦ (𝐴 + 𝑥))
2 tgplacthmeo.4 . . 3 𝐽 = (TopOpen‘𝐺)
3 tgplacthmeo.3 . . 3 + = (+g𝐺)
4 simpl 483 . . 3 ((𝐺 ∈ TopMnd ∧ 𝐴𝑋) → 𝐺 ∈ TopMnd)
5 tgplacthmeo.2 . . . . 5 𝑋 = (Base‘𝐺)
62, 5tmdtopon 23338 . . . 4 (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘𝑋))
76adantr 481 . . 3 ((𝐺 ∈ TopMnd ∧ 𝐴𝑋) → 𝐽 ∈ (TopOn‘𝑋))
8 simpr 485 . . . 4 ((𝐺 ∈ TopMnd ∧ 𝐴𝑋) → 𝐴𝑋)
97, 7, 8cnmptc 22919 . . 3 ((𝐺 ∈ TopMnd ∧ 𝐴𝑋) → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐽))
107cnmptid 22918 . . 3 ((𝐺 ∈ TopMnd ∧ 𝐴𝑋) → (𝑥𝑋𝑥) ∈ (𝐽 Cn 𝐽))
112, 3, 4, 7, 9, 10cnmpt1plusg 23344 . 2 ((𝐺 ∈ TopMnd ∧ 𝐴𝑋) → (𝑥𝑋 ↦ (𝐴 + 𝑥)) ∈ (𝐽 Cn 𝐽))
121, 11eqeltrid 2841 1 ((𝐺 ∈ TopMnd ∧ 𝐴𝑋) → 𝐹 ∈ (𝐽 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  cmpt 5175  cfv 6479  (class class class)co 7337  Basecbs 17009  +gcplusg 17059  TopOpenctopn 17229  TopOnctopon 22165   Cn ccn 22481  TopMndctmd 23327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-id 5518  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-ov 7340  df-oprab 7341  df-mpo 7342  df-1st 7899  df-2nd 7900  df-map 8688  df-topgen 17251  df-plusf 18422  df-top 22149  df-topon 22166  df-topsp 22188  df-bases 22202  df-cn 22484  df-cnp 22485  df-tx 22819  df-tmd 23329
This theorem is referenced by:  tgplacthmeo  23360  ghmcnp  23372
  Copyright terms: Public domain W3C validator