MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsdif Structured version   Visualization version   GIF version

Theorem clsdif 22112
Description: A closure of a complement is the complement of the interior. (Contributed by Jeff Hankins, 31-Aug-2009.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
clsdif ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((cls‘𝐽)‘(𝑋𝐴)) = (𝑋 ∖ ((int‘𝐽)‘𝐴)))

Proof of Theorem clsdif
StepHypRef Expression
1 difss 4062 . . . 4 (𝑋𝐴) ⊆ 𝑋
2 clscld.1 . . . . 5 𝑋 = 𝐽
32clsval2 22109 . . . 4 ((𝐽 ∈ Top ∧ (𝑋𝐴) ⊆ 𝑋) → ((cls‘𝐽)‘(𝑋𝐴)) = (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ (𝑋𝐴)))))
41, 3mpan2 687 . . 3 (𝐽 ∈ Top → ((cls‘𝐽)‘(𝑋𝐴)) = (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ (𝑋𝐴)))))
54adantr 480 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((cls‘𝐽)‘(𝑋𝐴)) = (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ (𝑋𝐴)))))
6 simpr 484 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋) → 𝐴𝑋)
7 dfss4 4189 . . . . 5 (𝐴𝑋 ↔ (𝑋 ∖ (𝑋𝐴)) = 𝐴)
86, 7sylib 217 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝑋 ∖ (𝑋𝐴)) = 𝐴)
98fveq2d 6760 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((int‘𝐽)‘(𝑋 ∖ (𝑋𝐴))) = ((int‘𝐽)‘𝐴))
109difeq2d 4053 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ (𝑋𝐴)))) = (𝑋 ∖ ((int‘𝐽)‘𝐴)))
115, 10eqtrd 2778 1 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((cls‘𝐽)‘(𝑋𝐴)) = (𝑋 ∖ ((int‘𝐽)‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cdif 3880  wss 3883   cuni 4836  cfv 6418  Topctop 21950  intcnt 22076  clsccl 22077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-top 21951  df-cld 22078  df-ntr 22079  df-cls 22080
This theorem is referenced by:  maxlp  22206  topbnd  34440
  Copyright terms: Public domain W3C validator