| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clsdif | Structured version Visualization version GIF version | ||
| Description: A closure of a complement is the complement of the interior. (Contributed by Jeff Hankins, 31-Aug-2009.) |
| Ref | Expression |
|---|---|
| clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| clsdif | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘(𝑋 ∖ 𝐴)) = (𝑋 ∖ ((int‘𝐽)‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss 4118 | . . . 4 ⊢ (𝑋 ∖ 𝐴) ⊆ 𝑋 | |
| 2 | clscld.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | 2 | clsval2 23023 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝑋 ∖ 𝐴) ⊆ 𝑋) → ((cls‘𝐽)‘(𝑋 ∖ 𝐴)) = (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝐴))))) |
| 4 | 1, 3 | mpan2 691 | . . 3 ⊢ (𝐽 ∈ Top → ((cls‘𝐽)‘(𝑋 ∖ 𝐴)) = (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝐴))))) |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘(𝑋 ∖ 𝐴)) = (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝐴))))) |
| 6 | simpr 484 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ 𝑋) | |
| 7 | dfss4 4251 | . . . . 5 ⊢ (𝐴 ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ 𝐴)) = 𝐴) | |
| 8 | 6, 7 | sylib 218 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (𝑋 ∖ (𝑋 ∖ 𝐴)) = 𝐴) |
| 9 | 8 | fveq2d 6891 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((int‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝐴))) = ((int‘𝐽)‘𝐴)) |
| 10 | 9 | difeq2d 4108 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝐴)))) = (𝑋 ∖ ((int‘𝐽)‘𝐴))) |
| 11 | 5, 10 | eqtrd 2769 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘(𝑋 ∖ 𝐴)) = (𝑋 ∖ ((int‘𝐽)‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∖ cdif 3930 ⊆ wss 3933 ∪ cuni 4889 ‘cfv 6542 Topctop 22866 intcnt 22990 clsccl 22991 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-iin 4976 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-top 22867 df-cld 22992 df-ntr 22993 df-cls 22994 |
| This theorem is referenced by: maxlp 23120 topbnd 36266 |
| Copyright terms: Public domain | W3C validator |