MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsdif Structured version   Visualization version   GIF version

Theorem clsdif 23083
Description: A closure of a complement is the complement of the interior. (Contributed by Jeff Hankins, 31-Aug-2009.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
clsdif ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((cls‘𝐽)‘(𝑋𝐴)) = (𝑋 ∖ ((int‘𝐽)‘𝐴)))

Proof of Theorem clsdif
StepHypRef Expression
1 difss 4147 . . . 4 (𝑋𝐴) ⊆ 𝑋
2 clscld.1 . . . . 5 𝑋 = 𝐽
32clsval2 23080 . . . 4 ((𝐽 ∈ Top ∧ (𝑋𝐴) ⊆ 𝑋) → ((cls‘𝐽)‘(𝑋𝐴)) = (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ (𝑋𝐴)))))
41, 3mpan2 691 . . 3 (𝐽 ∈ Top → ((cls‘𝐽)‘(𝑋𝐴)) = (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ (𝑋𝐴)))))
54adantr 480 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((cls‘𝐽)‘(𝑋𝐴)) = (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ (𝑋𝐴)))))
6 simpr 484 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋) → 𝐴𝑋)
7 dfss4 4276 . . . . 5 (𝐴𝑋 ↔ (𝑋 ∖ (𝑋𝐴)) = 𝐴)
86, 7sylib 218 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝑋 ∖ (𝑋𝐴)) = 𝐴)
98fveq2d 6915 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((int‘𝐽)‘(𝑋 ∖ (𝑋𝐴))) = ((int‘𝐽)‘𝐴))
109difeq2d 4137 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ (𝑋𝐴)))) = (𝑋 ∖ ((int‘𝐽)‘𝐴)))
115, 10eqtrd 2776 1 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((cls‘𝐽)‘(𝑋𝐴)) = (𝑋 ∖ ((int‘𝐽)‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1538  wcel 2107  cdif 3961  wss 3964   cuni 4913  cfv 6566  Topctop 22921  intcnt 23047  clsccl 23048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5286  ax-sep 5303  ax-nul 5313  ax-pow 5372  ax-pr 5439  ax-un 7758
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3435  df-v 3481  df-sbc 3793  df-csb 3910  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-nul 4341  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-int 4953  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5584  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-iota 6519  df-fun 6568  df-fn 6569  df-f 6570  df-f1 6571  df-fo 6572  df-f1o 6573  df-fv 6574  df-top 22922  df-cld 23049  df-ntr 23050  df-cls 23051
This theorem is referenced by:  maxlp  23177  topbnd  36319
  Copyright terms: Public domain W3C validator