![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clsdif | Structured version Visualization version GIF version |
Description: A closure of a complement is the complement of the interior. (Contributed by Jeff Hankins, 31-Aug-2009.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
clsdif | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘(𝑋 ∖ 𝐴)) = (𝑋 ∖ ((int‘𝐽)‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 4147 | . . . 4 ⊢ (𝑋 ∖ 𝐴) ⊆ 𝑋 | |
2 | clscld.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 2 | clsval2 23080 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝑋 ∖ 𝐴) ⊆ 𝑋) → ((cls‘𝐽)‘(𝑋 ∖ 𝐴)) = (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝐴))))) |
4 | 1, 3 | mpan2 691 | . . 3 ⊢ (𝐽 ∈ Top → ((cls‘𝐽)‘(𝑋 ∖ 𝐴)) = (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝐴))))) |
5 | 4 | adantr 480 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘(𝑋 ∖ 𝐴)) = (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝐴))))) |
6 | simpr 484 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ 𝑋) | |
7 | dfss4 4276 | . . . . 5 ⊢ (𝐴 ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ 𝐴)) = 𝐴) | |
8 | 6, 7 | sylib 218 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (𝑋 ∖ (𝑋 ∖ 𝐴)) = 𝐴) |
9 | 8 | fveq2d 6915 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((int‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝐴))) = ((int‘𝐽)‘𝐴)) |
10 | 9 | difeq2d 4137 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝐴)))) = (𝑋 ∖ ((int‘𝐽)‘𝐴))) |
11 | 5, 10 | eqtrd 2776 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘(𝑋 ∖ 𝐴)) = (𝑋 ∖ ((int‘𝐽)‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1538 ∈ wcel 2107 ∖ cdif 3961 ⊆ wss 3964 ∪ cuni 4913 ‘cfv 6566 Topctop 22921 intcnt 23047 clsccl 23048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5286 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-int 4953 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5584 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-top 22922 df-cld 23049 df-ntr 23050 df-cls 23051 |
This theorem is referenced by: maxlp 23177 topbnd 36319 |
Copyright terms: Public domain | W3C validator |