| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > qndenserrn | Structured version Visualization version GIF version | ||
| Description: n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| Ref | Expression |
|---|---|
| qndenserrn.i | ⊢ (𝜑 → 𝐼 ∈ Fin) |
| qndenserrn.j | ⊢ 𝐽 = (TopOpen‘(ℝ^‘𝐼)) |
| Ref | Expression |
|---|---|
| qndenserrn | ⊢ (𝜑 → ((cls‘𝐽)‘(ℚ ↑m 𝐼)) = (ℝ ↑m 𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qndenserrn.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ Fin) | |
| 2 | qndenserrn.j | . . . . . 6 ⊢ 𝐽 = (TopOpen‘(ℝ^‘𝐼)) | |
| 3 | 2 | rrxtop 46274 | . . . . 5 ⊢ (𝐼 ∈ Fin → 𝐽 ∈ Top) |
| 4 | 1, 3 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Top) |
| 5 | reex 11119 | . . . . . . 7 ⊢ ℝ ∈ V | |
| 6 | qssre 12878 | . . . . . . 7 ⊢ ℚ ⊆ ℝ | |
| 7 | mapss 8823 | . . . . . . 7 ⊢ ((ℝ ∈ V ∧ ℚ ⊆ ℝ) → (ℚ ↑m 𝐼) ⊆ (ℝ ↑m 𝐼)) | |
| 8 | 5, 6, 7 | mp2an 692 | . . . . . 6 ⊢ (ℚ ↑m 𝐼) ⊆ (ℝ ↑m 𝐼) |
| 9 | 8 | a1i 11 | . . . . 5 ⊢ (𝜑 → (ℚ ↑m 𝐼) ⊆ (ℝ ↑m 𝐼)) |
| 10 | eqid 2729 | . . . . . . . 8 ⊢ (ℝ^‘𝐼) = (ℝ^‘𝐼) | |
| 11 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘(ℝ^‘𝐼)) = (Base‘(ℝ^‘𝐼)) | |
| 12 | 1, 10, 11 | rrxbasefi 25326 | . . . . . . 7 ⊢ (𝜑 → (Base‘(ℝ^‘𝐼)) = (ℝ ↑m 𝐼)) |
| 13 | 12 | eqcomd 2735 | . . . . . 6 ⊢ (𝜑 → (ℝ ↑m 𝐼) = (Base‘(ℝ^‘𝐼))) |
| 14 | rrxtps 46271 | . . . . . . 7 ⊢ (𝐼 ∈ Fin → (ℝ^‘𝐼) ∈ TopSp) | |
| 15 | eqid 2729 | . . . . . . . 8 ⊢ (TopOpen‘(ℝ^‘𝐼)) = (TopOpen‘(ℝ^‘𝐼)) | |
| 16 | 11, 15 | tpsuni 22839 | . . . . . . 7 ⊢ ((ℝ^‘𝐼) ∈ TopSp → (Base‘(ℝ^‘𝐼)) = ∪ (TopOpen‘(ℝ^‘𝐼))) |
| 17 | 1, 14, 16 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → (Base‘(ℝ^‘𝐼)) = ∪ (TopOpen‘(ℝ^‘𝐼))) |
| 18 | 2 | unieqi 4873 | . . . . . . . 8 ⊢ ∪ 𝐽 = ∪ (TopOpen‘(ℝ^‘𝐼)) |
| 19 | 18 | eqcomi 2738 | . . . . . . 7 ⊢ ∪ (TopOpen‘(ℝ^‘𝐼)) = ∪ 𝐽 |
| 20 | 19 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ∪ (TopOpen‘(ℝ^‘𝐼)) = ∪ 𝐽) |
| 21 | 13, 17, 20 | 3eqtrd 2768 | . . . . 5 ⊢ (𝜑 → (ℝ ↑m 𝐼) = ∪ 𝐽) |
| 22 | 9, 21 | sseqtrd 3974 | . . . 4 ⊢ (𝜑 → (ℚ ↑m 𝐼) ⊆ ∪ 𝐽) |
| 23 | eqid 2729 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 24 | 23 | clsss3 22962 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (ℚ ↑m 𝐼) ⊆ ∪ 𝐽) → ((cls‘𝐽)‘(ℚ ↑m 𝐼)) ⊆ ∪ 𝐽) |
| 25 | 4, 22, 24 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((cls‘𝐽)‘(ℚ ↑m 𝐼)) ⊆ ∪ 𝐽) |
| 26 | 21 | eqcomd 2735 | . . 3 ⊢ (𝜑 → ∪ 𝐽 = (ℝ ↑m 𝐼)) |
| 27 | 25, 26 | sseqtrd 3974 | . 2 ⊢ (𝜑 → ((cls‘𝐽)‘(ℚ ↑m 𝐼)) ⊆ (ℝ ↑m 𝐼)) |
| 28 | 1 | ad2antrr 726 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) → 𝐼 ∈ Fin) |
| 29 | id 22 | . . . . . . . . . . . 12 ⊢ (𝑣 ∈ 𝐽 → 𝑣 ∈ 𝐽) | |
| 30 | 29, 2 | eleqtrdi 2838 | . . . . . . . . . . 11 ⊢ (𝑣 ∈ 𝐽 → 𝑣 ∈ (TopOpen‘(ℝ^‘𝐼))) |
| 31 | 30 | ad2antlr 727 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) → 𝑣 ∈ (TopOpen‘(ℝ^‘𝐼))) |
| 32 | ne0i 4294 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ 𝑣 → 𝑣 ≠ ∅) | |
| 33 | 32 | adantl 481 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) → 𝑣 ≠ ∅) |
| 34 | 28, 15, 31, 33 | qndenserrnopn 46283 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ 𝑣) |
| 35 | df-rex 3054 | . . . . . . . . 9 ⊢ (∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ 𝑣 ↔ ∃𝑦(𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ 𝑣)) | |
| 36 | 34, 35 | sylib 218 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) → ∃𝑦(𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ 𝑣)) |
| 37 | simpr 484 | . . . . . . . . . . 11 ⊢ ((𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ 𝑣) → 𝑦 ∈ 𝑣) | |
| 38 | simpl 482 | . . . . . . . . . . 11 ⊢ ((𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ 𝑣) → 𝑦 ∈ (ℚ ↑m 𝐼)) | |
| 39 | 37, 38 | elind 4153 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ 𝑣) → 𝑦 ∈ (𝑣 ∩ (ℚ ↑m 𝐼))) |
| 40 | 39 | a1i 11 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) → ((𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ 𝑣) → 𝑦 ∈ (𝑣 ∩ (ℚ ↑m 𝐼)))) |
| 41 | 40 | eximdv 1917 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) → (∃𝑦(𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ 𝑣) → ∃𝑦 𝑦 ∈ (𝑣 ∩ (ℚ ↑m 𝐼)))) |
| 42 | 36, 41 | mpd 15 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) → ∃𝑦 𝑦 ∈ (𝑣 ∩ (ℚ ↑m 𝐼))) |
| 43 | n0 4306 | . . . . . . 7 ⊢ ((𝑣 ∩ (ℚ ↑m 𝐼)) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (𝑣 ∩ (ℚ ↑m 𝐼))) | |
| 44 | 42, 43 | sylibr 234 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) → (𝑣 ∩ (ℚ ↑m 𝐼)) ≠ ∅) |
| 45 | 44 | ex 412 | . . . . 5 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐽) → (𝑥 ∈ 𝑣 → (𝑣 ∩ (ℚ ↑m 𝐼)) ≠ ∅)) |
| 46 | 45 | adantlr 715 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ (ℝ ↑m 𝐼)) ∧ 𝑣 ∈ 𝐽) → (𝑥 ∈ 𝑣 → (𝑣 ∩ (ℚ ↑m 𝐼)) ≠ ∅)) |
| 47 | 46 | ralrimiva 3121 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ↑m 𝐼)) → ∀𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 → (𝑣 ∩ (ℚ ↑m 𝐼)) ≠ ∅)) |
| 48 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ↑m 𝐼)) → 𝐽 ∈ Top) |
| 49 | 22 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ↑m 𝐼)) → (ℚ ↑m 𝐼) ⊆ ∪ 𝐽) |
| 50 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ↑m 𝐼)) → 𝑥 ∈ (ℝ ↑m 𝐼)) | |
| 51 | 21 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ↑m 𝐼)) → (ℝ ↑m 𝐼) = ∪ 𝐽) |
| 52 | 50, 51 | eleqtrd 2830 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ↑m 𝐼)) → 𝑥 ∈ ∪ 𝐽) |
| 53 | 23 | elcls 22976 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (ℚ ↑m 𝐼) ⊆ ∪ 𝐽 ∧ 𝑥 ∈ ∪ 𝐽) → (𝑥 ∈ ((cls‘𝐽)‘(ℚ ↑m 𝐼)) ↔ ∀𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 → (𝑣 ∩ (ℚ ↑m 𝐼)) ≠ ∅))) |
| 54 | 48, 49, 52, 53 | syl3anc 1373 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ↑m 𝐼)) → (𝑥 ∈ ((cls‘𝐽)‘(ℚ ↑m 𝐼)) ↔ ∀𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 → (𝑣 ∩ (ℚ ↑m 𝐼)) ≠ ∅))) |
| 55 | 47, 54 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ↑m 𝐼)) → 𝑥 ∈ ((cls‘𝐽)‘(ℚ ↑m 𝐼))) |
| 56 | 27, 55 | eqelssd 3959 | 1 ⊢ (𝜑 → ((cls‘𝐽)‘(ℚ ↑m 𝐼)) = (ℝ ↑m 𝐼)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 Vcvv 3438 ∩ cin 3904 ⊆ wss 3905 ∅c0 4286 ∪ cuni 4861 ‘cfv 6486 (class class class)co 7353 ↑m cmap 8760 Fincfn 8879 ℝcr 11027 ℚcq 12867 Basecbs 17138 TopOpenctopn 17343 Topctop 22796 TopSpctps 22835 clsccl 22921 ℝ^crrx 25299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 ax-mulf 11108 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-sup 9351 df-inf 9352 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-ioo 13270 df-ico 13272 df-fz 13429 df-fzo 13576 df-seq 13927 df-exp 13987 df-hash 14256 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-clim 15413 df-sum 15612 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-hom 17203 df-cco 17204 df-rest 17344 df-topn 17345 df-0g 17363 df-gsum 17364 df-topgen 17365 df-prds 17369 df-pws 17371 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-submnd 18676 df-grp 18833 df-minusg 18834 df-sbg 18835 df-subg 19020 df-ghm 19110 df-cntz 19214 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-cring 20139 df-oppr 20240 df-dvdsr 20260 df-unit 20261 df-invr 20291 df-dvr 20304 df-rhm 20375 df-subrng 20449 df-subrg 20473 df-drng 20634 df-field 20635 df-abv 20712 df-staf 20742 df-srng 20743 df-lmod 20783 df-lss 20853 df-lmhm 20944 df-lvec 21025 df-sra 21095 df-rgmod 21096 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-cnfld 21280 df-refld 21530 df-phl 21551 df-dsmm 21657 df-frlm 21672 df-top 22797 df-topon 22814 df-topsp 22836 df-bases 22849 df-cld 22922 df-ntr 22923 df-cls 22924 df-xms 24224 df-ms 24225 df-nm 24486 df-ngp 24487 df-tng 24488 df-nrg 24489 df-nlm 24490 df-clm 24979 df-cph 25084 df-tcph 25085 df-rrx 25301 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |