Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > qndenserrn | Structured version Visualization version GIF version |
Description: n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
qndenserrn.i | ⊢ (𝜑 → 𝐼 ∈ Fin) |
qndenserrn.j | ⊢ 𝐽 = (TopOpen‘(ℝ^‘𝐼)) |
Ref | Expression |
---|---|
qndenserrn | ⊢ (𝜑 → ((cls‘𝐽)‘(ℚ ↑m 𝐼)) = (ℝ ↑m 𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qndenserrn.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ Fin) | |
2 | qndenserrn.j | . . . . . 6 ⊢ 𝐽 = (TopOpen‘(ℝ^‘𝐼)) | |
3 | 2 | rrxtop 43720 | . . . . 5 ⊢ (𝐼 ∈ Fin → 𝐽 ∈ Top) |
4 | 1, 3 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Top) |
5 | reex 10893 | . . . . . . 7 ⊢ ℝ ∈ V | |
6 | qssre 12628 | . . . . . . 7 ⊢ ℚ ⊆ ℝ | |
7 | mapss 8635 | . . . . . . 7 ⊢ ((ℝ ∈ V ∧ ℚ ⊆ ℝ) → (ℚ ↑m 𝐼) ⊆ (ℝ ↑m 𝐼)) | |
8 | 5, 6, 7 | mp2an 688 | . . . . . 6 ⊢ (ℚ ↑m 𝐼) ⊆ (ℝ ↑m 𝐼) |
9 | 8 | a1i 11 | . . . . 5 ⊢ (𝜑 → (ℚ ↑m 𝐼) ⊆ (ℝ ↑m 𝐼)) |
10 | eqid 2738 | . . . . . . . 8 ⊢ (ℝ^‘𝐼) = (ℝ^‘𝐼) | |
11 | eqid 2738 | . . . . . . . 8 ⊢ (Base‘(ℝ^‘𝐼)) = (Base‘(ℝ^‘𝐼)) | |
12 | 1, 10, 11 | rrxbasefi 24479 | . . . . . . 7 ⊢ (𝜑 → (Base‘(ℝ^‘𝐼)) = (ℝ ↑m 𝐼)) |
13 | 12 | eqcomd 2744 | . . . . . 6 ⊢ (𝜑 → (ℝ ↑m 𝐼) = (Base‘(ℝ^‘𝐼))) |
14 | rrxtps 43717 | . . . . . . 7 ⊢ (𝐼 ∈ Fin → (ℝ^‘𝐼) ∈ TopSp) | |
15 | eqid 2738 | . . . . . . . 8 ⊢ (TopOpen‘(ℝ^‘𝐼)) = (TopOpen‘(ℝ^‘𝐼)) | |
16 | 11, 15 | tpsuni 21993 | . . . . . . 7 ⊢ ((ℝ^‘𝐼) ∈ TopSp → (Base‘(ℝ^‘𝐼)) = ∪ (TopOpen‘(ℝ^‘𝐼))) |
17 | 1, 14, 16 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → (Base‘(ℝ^‘𝐼)) = ∪ (TopOpen‘(ℝ^‘𝐼))) |
18 | 2 | unieqi 4849 | . . . . . . . 8 ⊢ ∪ 𝐽 = ∪ (TopOpen‘(ℝ^‘𝐼)) |
19 | 18 | eqcomi 2747 | . . . . . . 7 ⊢ ∪ (TopOpen‘(ℝ^‘𝐼)) = ∪ 𝐽 |
20 | 19 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ∪ (TopOpen‘(ℝ^‘𝐼)) = ∪ 𝐽) |
21 | 13, 17, 20 | 3eqtrd 2782 | . . . . 5 ⊢ (𝜑 → (ℝ ↑m 𝐼) = ∪ 𝐽) |
22 | 9, 21 | sseqtrd 3957 | . . . 4 ⊢ (𝜑 → (ℚ ↑m 𝐼) ⊆ ∪ 𝐽) |
23 | eqid 2738 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
24 | 23 | clsss3 22118 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (ℚ ↑m 𝐼) ⊆ ∪ 𝐽) → ((cls‘𝐽)‘(ℚ ↑m 𝐼)) ⊆ ∪ 𝐽) |
25 | 4, 22, 24 | syl2anc 583 | . . 3 ⊢ (𝜑 → ((cls‘𝐽)‘(ℚ ↑m 𝐼)) ⊆ ∪ 𝐽) |
26 | 21 | eqcomd 2744 | . . 3 ⊢ (𝜑 → ∪ 𝐽 = (ℝ ↑m 𝐼)) |
27 | 25, 26 | sseqtrd 3957 | . 2 ⊢ (𝜑 → ((cls‘𝐽)‘(ℚ ↑m 𝐼)) ⊆ (ℝ ↑m 𝐼)) |
28 | 1 | ad2antrr 722 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) → 𝐼 ∈ Fin) |
29 | id 22 | . . . . . . . . . . . 12 ⊢ (𝑣 ∈ 𝐽 → 𝑣 ∈ 𝐽) | |
30 | 29, 2 | eleqtrdi 2849 | . . . . . . . . . . 11 ⊢ (𝑣 ∈ 𝐽 → 𝑣 ∈ (TopOpen‘(ℝ^‘𝐼))) |
31 | 30 | ad2antlr 723 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) → 𝑣 ∈ (TopOpen‘(ℝ^‘𝐼))) |
32 | ne0i 4265 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ 𝑣 → 𝑣 ≠ ∅) | |
33 | 32 | adantl 481 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) → 𝑣 ≠ ∅) |
34 | 28, 15, 31, 33 | qndenserrnopn 43729 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ 𝑣) |
35 | df-rex 3069 | . . . . . . . . 9 ⊢ (∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ 𝑣 ↔ ∃𝑦(𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ 𝑣)) | |
36 | 34, 35 | sylib 217 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) → ∃𝑦(𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ 𝑣)) |
37 | simpr 484 | . . . . . . . . . . 11 ⊢ ((𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ 𝑣) → 𝑦 ∈ 𝑣) | |
38 | simpl 482 | . . . . . . . . . . 11 ⊢ ((𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ 𝑣) → 𝑦 ∈ (ℚ ↑m 𝐼)) | |
39 | 37, 38 | elind 4124 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ 𝑣) → 𝑦 ∈ (𝑣 ∩ (ℚ ↑m 𝐼))) |
40 | 39 | a1i 11 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) → ((𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ 𝑣) → 𝑦 ∈ (𝑣 ∩ (ℚ ↑m 𝐼)))) |
41 | 40 | eximdv 1921 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) → (∃𝑦(𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ 𝑣) → ∃𝑦 𝑦 ∈ (𝑣 ∩ (ℚ ↑m 𝐼)))) |
42 | 36, 41 | mpd 15 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) → ∃𝑦 𝑦 ∈ (𝑣 ∩ (ℚ ↑m 𝐼))) |
43 | n0 4277 | . . . . . . 7 ⊢ ((𝑣 ∩ (ℚ ↑m 𝐼)) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (𝑣 ∩ (ℚ ↑m 𝐼))) | |
44 | 42, 43 | sylibr 233 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) → (𝑣 ∩ (ℚ ↑m 𝐼)) ≠ ∅) |
45 | 44 | ex 412 | . . . . 5 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐽) → (𝑥 ∈ 𝑣 → (𝑣 ∩ (ℚ ↑m 𝐼)) ≠ ∅)) |
46 | 45 | adantlr 711 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ (ℝ ↑m 𝐼)) ∧ 𝑣 ∈ 𝐽) → (𝑥 ∈ 𝑣 → (𝑣 ∩ (ℚ ↑m 𝐼)) ≠ ∅)) |
47 | 46 | ralrimiva 3107 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ↑m 𝐼)) → ∀𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 → (𝑣 ∩ (ℚ ↑m 𝐼)) ≠ ∅)) |
48 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ↑m 𝐼)) → 𝐽 ∈ Top) |
49 | 22 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ↑m 𝐼)) → (ℚ ↑m 𝐼) ⊆ ∪ 𝐽) |
50 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ↑m 𝐼)) → 𝑥 ∈ (ℝ ↑m 𝐼)) | |
51 | 21 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ↑m 𝐼)) → (ℝ ↑m 𝐼) = ∪ 𝐽) |
52 | 50, 51 | eleqtrd 2841 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ↑m 𝐼)) → 𝑥 ∈ ∪ 𝐽) |
53 | 23 | elcls 22132 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (ℚ ↑m 𝐼) ⊆ ∪ 𝐽 ∧ 𝑥 ∈ ∪ 𝐽) → (𝑥 ∈ ((cls‘𝐽)‘(ℚ ↑m 𝐼)) ↔ ∀𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 → (𝑣 ∩ (ℚ ↑m 𝐼)) ≠ ∅))) |
54 | 48, 49, 52, 53 | syl3anc 1369 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ↑m 𝐼)) → (𝑥 ∈ ((cls‘𝐽)‘(ℚ ↑m 𝐼)) ↔ ∀𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 → (𝑣 ∩ (ℚ ↑m 𝐼)) ≠ ∅))) |
55 | 47, 54 | mpbird 256 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ↑m 𝐼)) → 𝑥 ∈ ((cls‘𝐽)‘(ℚ ↑m 𝐼))) |
56 | 27, 55 | eqelssd 3938 | 1 ⊢ (𝜑 → ((cls‘𝐽)‘(ℚ ↑m 𝐼)) = (ℝ ↑m 𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 Vcvv 3422 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 ∪ cuni 4836 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 Fincfn 8691 ℝcr 10801 ℚcq 12617 Basecbs 16840 TopOpenctopn 17049 Topctop 21950 TopSpctps 21989 clsccl 22077 ℝ^crrx 24452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ico 13014 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-prds 17075 df-pws 17077 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-ghm 18747 df-cntz 18838 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-dvr 19840 df-rnghom 19874 df-drng 19908 df-field 19909 df-subrg 19937 df-abv 19992 df-staf 20020 df-srng 20021 df-lmod 20040 df-lss 20109 df-lmhm 20199 df-lvec 20280 df-sra 20349 df-rgmod 20350 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-cnfld 20511 df-refld 20722 df-phl 20743 df-dsmm 20849 df-frlm 20864 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-xms 23381 df-ms 23382 df-nm 23644 df-ngp 23645 df-tng 23646 df-nrg 23647 df-nlm 23648 df-clm 24132 df-cph 24237 df-tcph 24238 df-rrx 24454 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |