Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qndenserrn Structured version   Visualization version   GIF version

Theorem qndenserrn 46314
Description: n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
qndenserrn.i (𝜑𝐼 ∈ Fin)
qndenserrn.j 𝐽 = (TopOpen‘(ℝ^‘𝐼))
Assertion
Ref Expression
qndenserrn (𝜑 → ((cls‘𝐽)‘(ℚ ↑m 𝐼)) = (ℝ ↑m 𝐼))

Proof of Theorem qndenserrn
Dummy variables 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qndenserrn.i . . . . 5 (𝜑𝐼 ∈ Fin)
2 qndenserrn.j . . . . . 6 𝐽 = (TopOpen‘(ℝ^‘𝐼))
32rrxtop 46304 . . . . 5 (𝐼 ∈ Fin → 𝐽 ∈ Top)
41, 3syl 17 . . . 4 (𝜑𝐽 ∈ Top)
5 reex 11246 . . . . . . 7 ℝ ∈ V
6 qssre 13001 . . . . . . 7 ℚ ⊆ ℝ
7 mapss 8929 . . . . . . 7 ((ℝ ∈ V ∧ ℚ ⊆ ℝ) → (ℚ ↑m 𝐼) ⊆ (ℝ ↑m 𝐼))
85, 6, 7mp2an 692 . . . . . 6 (ℚ ↑m 𝐼) ⊆ (ℝ ↑m 𝐼)
98a1i 11 . . . . 5 (𝜑 → (ℚ ↑m 𝐼) ⊆ (ℝ ↑m 𝐼))
10 eqid 2737 . . . . . . . 8 (ℝ^‘𝐼) = (ℝ^‘𝐼)
11 eqid 2737 . . . . . . . 8 (Base‘(ℝ^‘𝐼)) = (Base‘(ℝ^‘𝐼))
121, 10, 11rrxbasefi 25444 . . . . . . 7 (𝜑 → (Base‘(ℝ^‘𝐼)) = (ℝ ↑m 𝐼))
1312eqcomd 2743 . . . . . 6 (𝜑 → (ℝ ↑m 𝐼) = (Base‘(ℝ^‘𝐼)))
14 rrxtps 46301 . . . . . . 7 (𝐼 ∈ Fin → (ℝ^‘𝐼) ∈ TopSp)
15 eqid 2737 . . . . . . . 8 (TopOpen‘(ℝ^‘𝐼)) = (TopOpen‘(ℝ^‘𝐼))
1611, 15tpsuni 22942 . . . . . . 7 ((ℝ^‘𝐼) ∈ TopSp → (Base‘(ℝ^‘𝐼)) = (TopOpen‘(ℝ^‘𝐼)))
171, 14, 163syl 18 . . . . . 6 (𝜑 → (Base‘(ℝ^‘𝐼)) = (TopOpen‘(ℝ^‘𝐼)))
182unieqi 4919 . . . . . . . 8 𝐽 = (TopOpen‘(ℝ^‘𝐼))
1918eqcomi 2746 . . . . . . 7 (TopOpen‘(ℝ^‘𝐼)) = 𝐽
2019a1i 11 . . . . . 6 (𝜑 (TopOpen‘(ℝ^‘𝐼)) = 𝐽)
2113, 17, 203eqtrd 2781 . . . . 5 (𝜑 → (ℝ ↑m 𝐼) = 𝐽)
229, 21sseqtrd 4020 . . . 4 (𝜑 → (ℚ ↑m 𝐼) ⊆ 𝐽)
23 eqid 2737 . . . . 5 𝐽 = 𝐽
2423clsss3 23067 . . . 4 ((𝐽 ∈ Top ∧ (ℚ ↑m 𝐼) ⊆ 𝐽) → ((cls‘𝐽)‘(ℚ ↑m 𝐼)) ⊆ 𝐽)
254, 22, 24syl2anc 584 . . 3 (𝜑 → ((cls‘𝐽)‘(ℚ ↑m 𝐼)) ⊆ 𝐽)
2621eqcomd 2743 . . 3 (𝜑 𝐽 = (ℝ ↑m 𝐼))
2725, 26sseqtrd 4020 . 2 (𝜑 → ((cls‘𝐽)‘(ℚ ↑m 𝐼)) ⊆ (ℝ ↑m 𝐼))
281ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑣𝐽) ∧ 𝑥𝑣) → 𝐼 ∈ Fin)
29 id 22 . . . . . . . . . . . 12 (𝑣𝐽𝑣𝐽)
3029, 2eleqtrdi 2851 . . . . . . . . . . 11 (𝑣𝐽𝑣 ∈ (TopOpen‘(ℝ^‘𝐼)))
3130ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑣𝐽) ∧ 𝑥𝑣) → 𝑣 ∈ (TopOpen‘(ℝ^‘𝐼)))
32 ne0i 4341 . . . . . . . . . . 11 (𝑥𝑣𝑣 ≠ ∅)
3332adantl 481 . . . . . . . . . 10 (((𝜑𝑣𝐽) ∧ 𝑥𝑣) → 𝑣 ≠ ∅)
3428, 15, 31, 33qndenserrnopn 46313 . . . . . . . . 9 (((𝜑𝑣𝐽) ∧ 𝑥𝑣) → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦𝑣)
35 df-rex 3071 . . . . . . . . 9 (∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦𝑣 ↔ ∃𝑦(𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦𝑣))
3634, 35sylib 218 . . . . . . . 8 (((𝜑𝑣𝐽) ∧ 𝑥𝑣) → ∃𝑦(𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦𝑣))
37 simpr 484 . . . . . . . . . . 11 ((𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦𝑣) → 𝑦𝑣)
38 simpl 482 . . . . . . . . . . 11 ((𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦𝑣) → 𝑦 ∈ (ℚ ↑m 𝐼))
3937, 38elind 4200 . . . . . . . . . 10 ((𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦𝑣) → 𝑦 ∈ (𝑣 ∩ (ℚ ↑m 𝐼)))
4039a1i 11 . . . . . . . . 9 (((𝜑𝑣𝐽) ∧ 𝑥𝑣) → ((𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦𝑣) → 𝑦 ∈ (𝑣 ∩ (ℚ ↑m 𝐼))))
4140eximdv 1917 . . . . . . . 8 (((𝜑𝑣𝐽) ∧ 𝑥𝑣) → (∃𝑦(𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦𝑣) → ∃𝑦 𝑦 ∈ (𝑣 ∩ (ℚ ↑m 𝐼))))
4236, 41mpd 15 . . . . . . 7 (((𝜑𝑣𝐽) ∧ 𝑥𝑣) → ∃𝑦 𝑦 ∈ (𝑣 ∩ (ℚ ↑m 𝐼)))
43 n0 4353 . . . . . . 7 ((𝑣 ∩ (ℚ ↑m 𝐼)) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (𝑣 ∩ (ℚ ↑m 𝐼)))
4442, 43sylibr 234 . . . . . 6 (((𝜑𝑣𝐽) ∧ 𝑥𝑣) → (𝑣 ∩ (ℚ ↑m 𝐼)) ≠ ∅)
4544ex 412 . . . . 5 ((𝜑𝑣𝐽) → (𝑥𝑣 → (𝑣 ∩ (ℚ ↑m 𝐼)) ≠ ∅))
4645adantlr 715 . . . 4 (((𝜑𝑥 ∈ (ℝ ↑m 𝐼)) ∧ 𝑣𝐽) → (𝑥𝑣 → (𝑣 ∩ (ℚ ↑m 𝐼)) ≠ ∅))
4746ralrimiva 3146 . . 3 ((𝜑𝑥 ∈ (ℝ ↑m 𝐼)) → ∀𝑣𝐽 (𝑥𝑣 → (𝑣 ∩ (ℚ ↑m 𝐼)) ≠ ∅))
484adantr 480 . . . 4 ((𝜑𝑥 ∈ (ℝ ↑m 𝐼)) → 𝐽 ∈ Top)
4922adantr 480 . . . 4 ((𝜑𝑥 ∈ (ℝ ↑m 𝐼)) → (ℚ ↑m 𝐼) ⊆ 𝐽)
50 simpr 484 . . . . 5 ((𝜑𝑥 ∈ (ℝ ↑m 𝐼)) → 𝑥 ∈ (ℝ ↑m 𝐼))
5121adantr 480 . . . . 5 ((𝜑𝑥 ∈ (ℝ ↑m 𝐼)) → (ℝ ↑m 𝐼) = 𝐽)
5250, 51eleqtrd 2843 . . . 4 ((𝜑𝑥 ∈ (ℝ ↑m 𝐼)) → 𝑥 𝐽)
5323elcls 23081 . . . 4 ((𝐽 ∈ Top ∧ (ℚ ↑m 𝐼) ⊆ 𝐽𝑥 𝐽) → (𝑥 ∈ ((cls‘𝐽)‘(ℚ ↑m 𝐼)) ↔ ∀𝑣𝐽 (𝑥𝑣 → (𝑣 ∩ (ℚ ↑m 𝐼)) ≠ ∅)))
5448, 49, 52, 53syl3anc 1373 . . 3 ((𝜑𝑥 ∈ (ℝ ↑m 𝐼)) → (𝑥 ∈ ((cls‘𝐽)‘(ℚ ↑m 𝐼)) ↔ ∀𝑣𝐽 (𝑥𝑣 → (𝑣 ∩ (ℚ ↑m 𝐼)) ≠ ∅)))
5547, 54mpbird 257 . 2 ((𝜑𝑥 ∈ (ℝ ↑m 𝐼)) → 𝑥 ∈ ((cls‘𝐽)‘(ℚ ↑m 𝐼)))
5627, 55eqelssd 4005 1 (𝜑 → ((cls‘𝐽)‘(ℚ ↑m 𝐼)) = (ℝ ↑m 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  wne 2940  wral 3061  wrex 3070  Vcvv 3480  cin 3950  wss 3951  c0 4333   cuni 4907  cfv 6561  (class class class)co 7431  m cmap 8866  Fincfn 8985  cr 11154  cq 12990  Basecbs 17247  TopOpenctopn 17466  Topctop 22899  TopSpctps 22938  clsccl 23026  ℝ^crrx 25417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ico 13393  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-prds 17492  df-pws 17494  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-ghm 19231  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-dvr 20401  df-rhm 20472  df-subrng 20546  df-subrg 20570  df-drng 20731  df-field 20732  df-abv 20810  df-staf 20840  df-srng 20841  df-lmod 20860  df-lss 20930  df-lmhm 21021  df-lvec 21102  df-sra 21172  df-rgmod 21173  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-cnfld 21365  df-refld 21623  df-phl 21644  df-dsmm 21752  df-frlm 21767  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-xms 24330  df-ms 24331  df-nm 24595  df-ngp 24596  df-tng 24597  df-nrg 24598  df-nlm 24599  df-clm 25096  df-cph 25202  df-tcph 25203  df-rrx 25419
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator