![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > qndenserrn | Structured version Visualization version GIF version |
Description: n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
qndenserrn.i | ⊢ (𝜑 → 𝐼 ∈ Fin) |
qndenserrn.j | ⊢ 𝐽 = (TopOpen‘(ℝ^‘𝐼)) |
Ref | Expression |
---|---|
qndenserrn | ⊢ (𝜑 → ((cls‘𝐽)‘(ℚ ↑m 𝐼)) = (ℝ ↑m 𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qndenserrn.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ Fin) | |
2 | qndenserrn.j | . . . . . 6 ⊢ 𝐽 = (TopOpen‘(ℝ^‘𝐼)) | |
3 | 2 | rrxtop 46210 | . . . . 5 ⊢ (𝐼 ∈ Fin → 𝐽 ∈ Top) |
4 | 1, 3 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Top) |
5 | reex 11275 | . . . . . . 7 ⊢ ℝ ∈ V | |
6 | qssre 13024 | . . . . . . 7 ⊢ ℚ ⊆ ℝ | |
7 | mapss 8947 | . . . . . . 7 ⊢ ((ℝ ∈ V ∧ ℚ ⊆ ℝ) → (ℚ ↑m 𝐼) ⊆ (ℝ ↑m 𝐼)) | |
8 | 5, 6, 7 | mp2an 691 | . . . . . 6 ⊢ (ℚ ↑m 𝐼) ⊆ (ℝ ↑m 𝐼) |
9 | 8 | a1i 11 | . . . . 5 ⊢ (𝜑 → (ℚ ↑m 𝐼) ⊆ (ℝ ↑m 𝐼)) |
10 | eqid 2740 | . . . . . . . 8 ⊢ (ℝ^‘𝐼) = (ℝ^‘𝐼) | |
11 | eqid 2740 | . . . . . . . 8 ⊢ (Base‘(ℝ^‘𝐼)) = (Base‘(ℝ^‘𝐼)) | |
12 | 1, 10, 11 | rrxbasefi 25463 | . . . . . . 7 ⊢ (𝜑 → (Base‘(ℝ^‘𝐼)) = (ℝ ↑m 𝐼)) |
13 | 12 | eqcomd 2746 | . . . . . 6 ⊢ (𝜑 → (ℝ ↑m 𝐼) = (Base‘(ℝ^‘𝐼))) |
14 | rrxtps 46207 | . . . . . . 7 ⊢ (𝐼 ∈ Fin → (ℝ^‘𝐼) ∈ TopSp) | |
15 | eqid 2740 | . . . . . . . 8 ⊢ (TopOpen‘(ℝ^‘𝐼)) = (TopOpen‘(ℝ^‘𝐼)) | |
16 | 11, 15 | tpsuni 22963 | . . . . . . 7 ⊢ ((ℝ^‘𝐼) ∈ TopSp → (Base‘(ℝ^‘𝐼)) = ∪ (TopOpen‘(ℝ^‘𝐼))) |
17 | 1, 14, 16 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → (Base‘(ℝ^‘𝐼)) = ∪ (TopOpen‘(ℝ^‘𝐼))) |
18 | 2 | unieqi 4943 | . . . . . . . 8 ⊢ ∪ 𝐽 = ∪ (TopOpen‘(ℝ^‘𝐼)) |
19 | 18 | eqcomi 2749 | . . . . . . 7 ⊢ ∪ (TopOpen‘(ℝ^‘𝐼)) = ∪ 𝐽 |
20 | 19 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ∪ (TopOpen‘(ℝ^‘𝐼)) = ∪ 𝐽) |
21 | 13, 17, 20 | 3eqtrd 2784 | . . . . 5 ⊢ (𝜑 → (ℝ ↑m 𝐼) = ∪ 𝐽) |
22 | 9, 21 | sseqtrd 4049 | . . . 4 ⊢ (𝜑 → (ℚ ↑m 𝐼) ⊆ ∪ 𝐽) |
23 | eqid 2740 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
24 | 23 | clsss3 23088 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (ℚ ↑m 𝐼) ⊆ ∪ 𝐽) → ((cls‘𝐽)‘(ℚ ↑m 𝐼)) ⊆ ∪ 𝐽) |
25 | 4, 22, 24 | syl2anc 583 | . . 3 ⊢ (𝜑 → ((cls‘𝐽)‘(ℚ ↑m 𝐼)) ⊆ ∪ 𝐽) |
26 | 21 | eqcomd 2746 | . . 3 ⊢ (𝜑 → ∪ 𝐽 = (ℝ ↑m 𝐼)) |
27 | 25, 26 | sseqtrd 4049 | . 2 ⊢ (𝜑 → ((cls‘𝐽)‘(ℚ ↑m 𝐼)) ⊆ (ℝ ↑m 𝐼)) |
28 | 1 | ad2antrr 725 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) → 𝐼 ∈ Fin) |
29 | id 22 | . . . . . . . . . . . 12 ⊢ (𝑣 ∈ 𝐽 → 𝑣 ∈ 𝐽) | |
30 | 29, 2 | eleqtrdi 2854 | . . . . . . . . . . 11 ⊢ (𝑣 ∈ 𝐽 → 𝑣 ∈ (TopOpen‘(ℝ^‘𝐼))) |
31 | 30 | ad2antlr 726 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) → 𝑣 ∈ (TopOpen‘(ℝ^‘𝐼))) |
32 | ne0i 4364 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ 𝑣 → 𝑣 ≠ ∅) | |
33 | 32 | adantl 481 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) → 𝑣 ≠ ∅) |
34 | 28, 15, 31, 33 | qndenserrnopn 46219 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ 𝑣) |
35 | df-rex 3077 | . . . . . . . . 9 ⊢ (∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ 𝑣 ↔ ∃𝑦(𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ 𝑣)) | |
36 | 34, 35 | sylib 218 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) → ∃𝑦(𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ 𝑣)) |
37 | simpr 484 | . . . . . . . . . . 11 ⊢ ((𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ 𝑣) → 𝑦 ∈ 𝑣) | |
38 | simpl 482 | . . . . . . . . . . 11 ⊢ ((𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ 𝑣) → 𝑦 ∈ (ℚ ↑m 𝐼)) | |
39 | 37, 38 | elind 4223 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ 𝑣) → 𝑦 ∈ (𝑣 ∩ (ℚ ↑m 𝐼))) |
40 | 39 | a1i 11 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) → ((𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ 𝑣) → 𝑦 ∈ (𝑣 ∩ (ℚ ↑m 𝐼)))) |
41 | 40 | eximdv 1916 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) → (∃𝑦(𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ 𝑣) → ∃𝑦 𝑦 ∈ (𝑣 ∩ (ℚ ↑m 𝐼)))) |
42 | 36, 41 | mpd 15 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) → ∃𝑦 𝑦 ∈ (𝑣 ∩ (ℚ ↑m 𝐼))) |
43 | n0 4376 | . . . . . . 7 ⊢ ((𝑣 ∩ (ℚ ↑m 𝐼)) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (𝑣 ∩ (ℚ ↑m 𝐼))) | |
44 | 42, 43 | sylibr 234 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) → (𝑣 ∩ (ℚ ↑m 𝐼)) ≠ ∅) |
45 | 44 | ex 412 | . . . . 5 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐽) → (𝑥 ∈ 𝑣 → (𝑣 ∩ (ℚ ↑m 𝐼)) ≠ ∅)) |
46 | 45 | adantlr 714 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ (ℝ ↑m 𝐼)) ∧ 𝑣 ∈ 𝐽) → (𝑥 ∈ 𝑣 → (𝑣 ∩ (ℚ ↑m 𝐼)) ≠ ∅)) |
47 | 46 | ralrimiva 3152 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ↑m 𝐼)) → ∀𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 → (𝑣 ∩ (ℚ ↑m 𝐼)) ≠ ∅)) |
48 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ↑m 𝐼)) → 𝐽 ∈ Top) |
49 | 22 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ↑m 𝐼)) → (ℚ ↑m 𝐼) ⊆ ∪ 𝐽) |
50 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ↑m 𝐼)) → 𝑥 ∈ (ℝ ↑m 𝐼)) | |
51 | 21 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ↑m 𝐼)) → (ℝ ↑m 𝐼) = ∪ 𝐽) |
52 | 50, 51 | eleqtrd 2846 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ↑m 𝐼)) → 𝑥 ∈ ∪ 𝐽) |
53 | 23 | elcls 23102 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (ℚ ↑m 𝐼) ⊆ ∪ 𝐽 ∧ 𝑥 ∈ ∪ 𝐽) → (𝑥 ∈ ((cls‘𝐽)‘(ℚ ↑m 𝐼)) ↔ ∀𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 → (𝑣 ∩ (ℚ ↑m 𝐼)) ≠ ∅))) |
54 | 48, 49, 52, 53 | syl3anc 1371 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ↑m 𝐼)) → (𝑥 ∈ ((cls‘𝐽)‘(ℚ ↑m 𝐼)) ↔ ∀𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 → (𝑣 ∩ (ℚ ↑m 𝐼)) ≠ ∅))) |
55 | 47, 54 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ↑m 𝐼)) → 𝑥 ∈ ((cls‘𝐽)‘(ℚ ↑m 𝐼))) |
56 | 27, 55 | eqelssd 4030 | 1 ⊢ (𝜑 → ((cls‘𝐽)‘(ℚ ↑m 𝐼)) = (ℝ ↑m 𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 ∪ cuni 4931 ‘cfv 6573 (class class class)co 7448 ↑m cmap 8884 Fincfn 9003 ℝcr 11183 ℚcq 13013 Basecbs 17258 TopOpenctopn 17481 Topctop 22920 TopSpctps 22959 clsccl 23047 ℝ^crrx 25436 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 ax-mulf 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-ico 13413 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-sum 15735 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-prds 17507 df-pws 17509 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-ghm 19253 df-cntz 19357 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-dvr 20427 df-rhm 20498 df-subrng 20572 df-subrg 20597 df-drng 20753 df-field 20754 df-abv 20832 df-staf 20862 df-srng 20863 df-lmod 20882 df-lss 20953 df-lmhm 21044 df-lvec 21125 df-sra 21195 df-rgmod 21196 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-cnfld 21388 df-refld 21646 df-phl 21667 df-dsmm 21775 df-frlm 21790 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-xms 24351 df-ms 24352 df-nm 24616 df-ngp 24617 df-tng 24618 df-nrg 24619 df-nlm 24620 df-clm 25115 df-cph 25221 df-tcph 25222 df-rrx 25438 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |