| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > qndenserrn | Structured version Visualization version GIF version | ||
| Description: n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| Ref | Expression |
|---|---|
| qndenserrn.i | ⊢ (𝜑 → 𝐼 ∈ Fin) |
| qndenserrn.j | ⊢ 𝐽 = (TopOpen‘(ℝ^‘𝐼)) |
| Ref | Expression |
|---|---|
| qndenserrn | ⊢ (𝜑 → ((cls‘𝐽)‘(ℚ ↑m 𝐼)) = (ℝ ↑m 𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qndenserrn.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ Fin) | |
| 2 | qndenserrn.j | . . . . . 6 ⊢ 𝐽 = (TopOpen‘(ℝ^‘𝐼)) | |
| 3 | 2 | rrxtop 46294 | . . . . 5 ⊢ (𝐼 ∈ Fin → 𝐽 ∈ Top) |
| 4 | 1, 3 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Top) |
| 5 | reex 11166 | . . . . . . 7 ⊢ ℝ ∈ V | |
| 6 | qssre 12925 | . . . . . . 7 ⊢ ℚ ⊆ ℝ | |
| 7 | mapss 8865 | . . . . . . 7 ⊢ ((ℝ ∈ V ∧ ℚ ⊆ ℝ) → (ℚ ↑m 𝐼) ⊆ (ℝ ↑m 𝐼)) | |
| 8 | 5, 6, 7 | mp2an 692 | . . . . . 6 ⊢ (ℚ ↑m 𝐼) ⊆ (ℝ ↑m 𝐼) |
| 9 | 8 | a1i 11 | . . . . 5 ⊢ (𝜑 → (ℚ ↑m 𝐼) ⊆ (ℝ ↑m 𝐼)) |
| 10 | eqid 2730 | . . . . . . . 8 ⊢ (ℝ^‘𝐼) = (ℝ^‘𝐼) | |
| 11 | eqid 2730 | . . . . . . . 8 ⊢ (Base‘(ℝ^‘𝐼)) = (Base‘(ℝ^‘𝐼)) | |
| 12 | 1, 10, 11 | rrxbasefi 25317 | . . . . . . 7 ⊢ (𝜑 → (Base‘(ℝ^‘𝐼)) = (ℝ ↑m 𝐼)) |
| 13 | 12 | eqcomd 2736 | . . . . . 6 ⊢ (𝜑 → (ℝ ↑m 𝐼) = (Base‘(ℝ^‘𝐼))) |
| 14 | rrxtps 46291 | . . . . . . 7 ⊢ (𝐼 ∈ Fin → (ℝ^‘𝐼) ∈ TopSp) | |
| 15 | eqid 2730 | . . . . . . . 8 ⊢ (TopOpen‘(ℝ^‘𝐼)) = (TopOpen‘(ℝ^‘𝐼)) | |
| 16 | 11, 15 | tpsuni 22830 | . . . . . . 7 ⊢ ((ℝ^‘𝐼) ∈ TopSp → (Base‘(ℝ^‘𝐼)) = ∪ (TopOpen‘(ℝ^‘𝐼))) |
| 17 | 1, 14, 16 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → (Base‘(ℝ^‘𝐼)) = ∪ (TopOpen‘(ℝ^‘𝐼))) |
| 18 | 2 | unieqi 4886 | . . . . . . . 8 ⊢ ∪ 𝐽 = ∪ (TopOpen‘(ℝ^‘𝐼)) |
| 19 | 18 | eqcomi 2739 | . . . . . . 7 ⊢ ∪ (TopOpen‘(ℝ^‘𝐼)) = ∪ 𝐽 |
| 20 | 19 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ∪ (TopOpen‘(ℝ^‘𝐼)) = ∪ 𝐽) |
| 21 | 13, 17, 20 | 3eqtrd 2769 | . . . . 5 ⊢ (𝜑 → (ℝ ↑m 𝐼) = ∪ 𝐽) |
| 22 | 9, 21 | sseqtrd 3986 | . . . 4 ⊢ (𝜑 → (ℚ ↑m 𝐼) ⊆ ∪ 𝐽) |
| 23 | eqid 2730 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 24 | 23 | clsss3 22953 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (ℚ ↑m 𝐼) ⊆ ∪ 𝐽) → ((cls‘𝐽)‘(ℚ ↑m 𝐼)) ⊆ ∪ 𝐽) |
| 25 | 4, 22, 24 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((cls‘𝐽)‘(ℚ ↑m 𝐼)) ⊆ ∪ 𝐽) |
| 26 | 21 | eqcomd 2736 | . . 3 ⊢ (𝜑 → ∪ 𝐽 = (ℝ ↑m 𝐼)) |
| 27 | 25, 26 | sseqtrd 3986 | . 2 ⊢ (𝜑 → ((cls‘𝐽)‘(ℚ ↑m 𝐼)) ⊆ (ℝ ↑m 𝐼)) |
| 28 | 1 | ad2antrr 726 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) → 𝐼 ∈ Fin) |
| 29 | id 22 | . . . . . . . . . . . 12 ⊢ (𝑣 ∈ 𝐽 → 𝑣 ∈ 𝐽) | |
| 30 | 29, 2 | eleqtrdi 2839 | . . . . . . . . . . 11 ⊢ (𝑣 ∈ 𝐽 → 𝑣 ∈ (TopOpen‘(ℝ^‘𝐼))) |
| 31 | 30 | ad2antlr 727 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) → 𝑣 ∈ (TopOpen‘(ℝ^‘𝐼))) |
| 32 | ne0i 4307 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ 𝑣 → 𝑣 ≠ ∅) | |
| 33 | 32 | adantl 481 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) → 𝑣 ≠ ∅) |
| 34 | 28, 15, 31, 33 | qndenserrnopn 46303 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ 𝑣) |
| 35 | df-rex 3055 | . . . . . . . . 9 ⊢ (∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ 𝑣 ↔ ∃𝑦(𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ 𝑣)) | |
| 36 | 34, 35 | sylib 218 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) → ∃𝑦(𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ 𝑣)) |
| 37 | simpr 484 | . . . . . . . . . . 11 ⊢ ((𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ 𝑣) → 𝑦 ∈ 𝑣) | |
| 38 | simpl 482 | . . . . . . . . . . 11 ⊢ ((𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ 𝑣) → 𝑦 ∈ (ℚ ↑m 𝐼)) | |
| 39 | 37, 38 | elind 4166 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ 𝑣) → 𝑦 ∈ (𝑣 ∩ (ℚ ↑m 𝐼))) |
| 40 | 39 | a1i 11 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) → ((𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ 𝑣) → 𝑦 ∈ (𝑣 ∩ (ℚ ↑m 𝐼)))) |
| 41 | 40 | eximdv 1917 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) → (∃𝑦(𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ 𝑣) → ∃𝑦 𝑦 ∈ (𝑣 ∩ (ℚ ↑m 𝐼)))) |
| 42 | 36, 41 | mpd 15 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) → ∃𝑦 𝑦 ∈ (𝑣 ∩ (ℚ ↑m 𝐼))) |
| 43 | n0 4319 | . . . . . . 7 ⊢ ((𝑣 ∩ (ℚ ↑m 𝐼)) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (𝑣 ∩ (ℚ ↑m 𝐼))) | |
| 44 | 42, 43 | sylibr 234 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) → (𝑣 ∩ (ℚ ↑m 𝐼)) ≠ ∅) |
| 45 | 44 | ex 412 | . . . . 5 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐽) → (𝑥 ∈ 𝑣 → (𝑣 ∩ (ℚ ↑m 𝐼)) ≠ ∅)) |
| 46 | 45 | adantlr 715 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ (ℝ ↑m 𝐼)) ∧ 𝑣 ∈ 𝐽) → (𝑥 ∈ 𝑣 → (𝑣 ∩ (ℚ ↑m 𝐼)) ≠ ∅)) |
| 47 | 46 | ralrimiva 3126 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ↑m 𝐼)) → ∀𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 → (𝑣 ∩ (ℚ ↑m 𝐼)) ≠ ∅)) |
| 48 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ↑m 𝐼)) → 𝐽 ∈ Top) |
| 49 | 22 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ↑m 𝐼)) → (ℚ ↑m 𝐼) ⊆ ∪ 𝐽) |
| 50 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ↑m 𝐼)) → 𝑥 ∈ (ℝ ↑m 𝐼)) | |
| 51 | 21 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ↑m 𝐼)) → (ℝ ↑m 𝐼) = ∪ 𝐽) |
| 52 | 50, 51 | eleqtrd 2831 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ↑m 𝐼)) → 𝑥 ∈ ∪ 𝐽) |
| 53 | 23 | elcls 22967 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (ℚ ↑m 𝐼) ⊆ ∪ 𝐽 ∧ 𝑥 ∈ ∪ 𝐽) → (𝑥 ∈ ((cls‘𝐽)‘(ℚ ↑m 𝐼)) ↔ ∀𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 → (𝑣 ∩ (ℚ ↑m 𝐼)) ≠ ∅))) |
| 54 | 48, 49, 52, 53 | syl3anc 1373 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ↑m 𝐼)) → (𝑥 ∈ ((cls‘𝐽)‘(ℚ ↑m 𝐼)) ↔ ∀𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 → (𝑣 ∩ (ℚ ↑m 𝐼)) ≠ ∅))) |
| 55 | 47, 54 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ↑m 𝐼)) → 𝑥 ∈ ((cls‘𝐽)‘(ℚ ↑m 𝐼))) |
| 56 | 27, 55 | eqelssd 3971 | 1 ⊢ (𝜑 → ((cls‘𝐽)‘(ℚ ↑m 𝐼)) = (ℝ ↑m 𝐼)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 Vcvv 3450 ∩ cin 3916 ⊆ wss 3917 ∅c0 4299 ∪ cuni 4874 ‘cfv 6514 (class class class)co 7390 ↑m cmap 8802 Fincfn 8921 ℝcr 11074 ℚcq 12914 Basecbs 17186 TopOpenctopn 17391 Topctop 22787 TopSpctps 22826 clsccl 22912 ℝ^crrx 25290 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 ax-mulf 11155 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-ioo 13317 df-ico 13319 df-fz 13476 df-fzo 13623 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-sum 15660 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-rest 17392 df-topn 17393 df-0g 17411 df-gsum 17412 df-topgen 17413 df-prds 17417 df-pws 17419 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-subg 19062 df-ghm 19152 df-cntz 19256 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-dvr 20317 df-rhm 20388 df-subrng 20462 df-subrg 20486 df-drng 20647 df-field 20648 df-abv 20725 df-staf 20755 df-srng 20756 df-lmod 20775 df-lss 20845 df-lmhm 20936 df-lvec 21017 df-sra 21087 df-rgmod 21088 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-cnfld 21272 df-refld 21521 df-phl 21542 df-dsmm 21648 df-frlm 21663 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-cld 22913 df-ntr 22914 df-cls 22915 df-xms 24215 df-ms 24216 df-nm 24477 df-ngp 24478 df-tng 24479 df-nrg 24480 df-nlm 24481 df-clm 24970 df-cph 25075 df-tcph 25076 df-rrx 25292 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |