| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > esumcocn | Structured version Visualization version GIF version | ||
| Description: Lemma for esummulc2 34066 and co. Composing with a continuous function preserves extended sums. (Contributed by Thierry Arnoux, 29-Jun-2017.) |
| Ref | Expression |
|---|---|
| esumcocn.j | ⊢ 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) |
| esumcocn.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| esumcocn.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
| esumcocn.1 | ⊢ (𝜑 → 𝐶 ∈ (𝐽 Cn 𝐽)) |
| esumcocn.0 | ⊢ (𝜑 → (𝐶‘0) = 0) |
| esumcocn.f | ⊢ ((𝜑 ∧ 𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶‘𝑥) +𝑒 (𝐶‘𝑦))) |
| Ref | Expression |
|---|---|
| esumcocn | ⊢ (𝜑 → (𝐶‘Σ*𝑘 ∈ 𝐴𝐵) = Σ*𝑘 ∈ 𝐴(𝐶‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . . 3 ⊢ Ⅎ𝑘𝜑 | |
| 2 | nfcv 2891 | . . 3 ⊢ Ⅎ𝑘𝐴 | |
| 3 | esumcocn.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 4 | esumcocn.1 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ (𝐽 Cn 𝐽)) | |
| 5 | xrge0tps 33926 | . . . . . . . 8 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp | |
| 6 | xrge0base 17547 | . . . . . . . . 9 ⊢ (0[,]+∞) = (Base‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
| 7 | esumcocn.j | . . . . . . . . . 10 ⊢ 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) | |
| 8 | xrge0topn 33927 | . . . . . . . . . 10 ⊢ (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) | |
| 9 | 7, 8 | eqtr4i 2755 | . . . . . . . . 9 ⊢ 𝐽 = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) |
| 10 | 6, 9 | tpsuni 22857 | . . . . . . . 8 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp → (0[,]+∞) = ∪ 𝐽) |
| 11 | 5, 10 | ax-mp 5 | . . . . . . 7 ⊢ (0[,]+∞) = ∪ 𝐽 |
| 12 | 11, 11 | cnf 23167 | . . . . . 6 ⊢ (𝐶 ∈ (𝐽 Cn 𝐽) → 𝐶:(0[,]+∞)⟶(0[,]+∞)) |
| 13 | 4, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐶:(0[,]+∞)⟶(0[,]+∞)) |
| 14 | 13 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶:(0[,]+∞)⟶(0[,]+∞)) |
| 15 | esumcocn.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
| 16 | 14, 15 | ffvelcdmd 7039 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐶‘𝐵) ∈ (0[,]+∞)) |
| 17 | xrge0cmn 21387 | . . . . . 6 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | |
| 18 | 17 | a1i 11 | . . . . 5 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd) |
| 19 | 5 | a1i 11 | . . . . 5 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp) |
| 20 | cmnmnd 19712 | . . . . . . . 8 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) | |
| 21 | 17, 20 | ax-mp 5 | . . . . . . 7 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd |
| 22 | 21 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) |
| 23 | esumcocn.f | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶‘𝑥) +𝑒 (𝐶‘𝑦))) | |
| 24 | 23 | 3expib 1122 | . . . . . . 7 ⊢ (𝜑 → ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶‘𝑥) +𝑒 (𝐶‘𝑦)))) |
| 25 | 24 | ralrimivv 3176 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶‘𝑥) +𝑒 (𝐶‘𝑦))) |
| 26 | esumcocn.0 | . . . . . 6 ⊢ (𝜑 → (𝐶‘0) = 0) | |
| 27 | xrge0plusg 21382 | . . . . . . . 8 ⊢ +𝑒 = (+g‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
| 28 | xrge00 32999 | . . . . . . . 8 ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
| 29 | 6, 6, 27, 27, 28, 28 | ismhm 18695 | . . . . . . 7 ⊢ (𝐶 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) MndHom (ℝ*𝑠 ↾s (0[,]+∞))) ↔ (((ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd ∧ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) ∧ (𝐶:(0[,]+∞)⟶(0[,]+∞) ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶‘𝑥) +𝑒 (𝐶‘𝑦)) ∧ (𝐶‘0) = 0))) |
| 30 | 29 | biimpri 228 | . . . . . 6 ⊢ ((((ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd ∧ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) ∧ (𝐶:(0[,]+∞)⟶(0[,]+∞) ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶‘𝑥) +𝑒 (𝐶‘𝑦)) ∧ (𝐶‘0) = 0)) → 𝐶 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) MndHom (ℝ*𝑠 ↾s (0[,]+∞)))) |
| 31 | 22, 22, 13, 25, 26, 30 | syl23anc 1379 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) MndHom (ℝ*𝑠 ↾s (0[,]+∞)))) |
| 32 | eqidd 2730 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
| 33 | 32, 15 | fmpt3d 7070 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
| 34 | 1, 2, 3, 15 | esumel 34031 | . . . . 5 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵))) |
| 35 | 6, 9, 9, 18, 19, 18, 19, 31, 4, 3, 33, 34 | tsmsmhm 24067 | . . . 4 ⊢ (𝜑 → (𝐶‘Σ*𝑘 ∈ 𝐴𝐵) ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝐶 ∘ (𝑘 ∈ 𝐴 ↦ 𝐵)))) |
| 36 | 13, 15 | cofmpt 7086 | . . . . 5 ⊢ (𝜑 → (𝐶 ∘ (𝑘 ∈ 𝐴 ↦ 𝐵)) = (𝑘 ∈ 𝐴 ↦ (𝐶‘𝐵))) |
| 37 | 36 | oveq2d 7385 | . . . 4 ⊢ (𝜑 → ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝐶 ∘ (𝑘 ∈ 𝐴 ↦ 𝐵))) = ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ (𝐶‘𝐵)))) |
| 38 | 35, 37 | eleqtrd 2830 | . . 3 ⊢ (𝜑 → (𝐶‘Σ*𝑘 ∈ 𝐴𝐵) ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ (𝐶‘𝐵)))) |
| 39 | 1, 2, 3, 16, 38 | esumid 34028 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴(𝐶‘𝐵) = (𝐶‘Σ*𝑘 ∈ 𝐴𝐵)) |
| 40 | 39 | eqcomd 2735 | 1 ⊢ (𝜑 → (𝐶‘Σ*𝑘 ∈ 𝐴𝐵) = Σ*𝑘 ∈ 𝐴(𝐶‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∪ cuni 4867 ↦ cmpt 5183 ∘ ccom 5635 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 0cc0 11046 +∞cpnf 11183 ≤ cle 11187 +𝑒 cxad 13048 [,]cicc 13287 ↾s cress 17177 ↾t crest 17360 TopOpenctopn 17361 ordTopcordt 17439 ℝ*𝑠cxrs 17440 Mndcmnd 18644 MndHom cmhm 18691 CMndccmn 19695 TopSpctps 22853 Cn ccn 23145 tsums ctsu 24047 Σ*cesum 34011 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 ax-pre-sup 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-fi 9338 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9870 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-div 11814 df-nn 12165 df-2 12227 df-3 12228 df-4 12229 df-5 12230 df-6 12231 df-7 12232 df-8 12233 df-9 12234 df-n0 12421 df-z 12508 df-dec 12628 df-uz 12772 df-q 12886 df-xadd 13051 df-ioo 13288 df-ioc 13289 df-ico 13290 df-icc 13291 df-fz 13447 df-fzo 13594 df-seq 13945 df-hash 14274 df-struct 17094 df-sets 17111 df-slot 17129 df-ndx 17141 df-base 17157 df-ress 17178 df-plusg 17210 df-mulr 17211 df-tset 17216 df-ple 17217 df-ds 17219 df-rest 17362 df-topn 17363 df-0g 17381 df-gsum 17382 df-topgen 17383 df-ordt 17441 df-xrs 17442 df-mre 17524 df-mrc 17525 df-acs 17527 df-ps 18508 df-tsr 18509 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-mhm 18693 df-submnd 18694 df-cntz 19232 df-cmn 19697 df-fbas 21294 df-fg 21295 df-top 22815 df-topon 22832 df-topsp 22854 df-bases 22867 df-ntr 22941 df-nei 23019 df-cn 23148 df-cnp 23149 df-haus 23236 df-fil 23767 df-fm 23859 df-flim 23860 df-flf 23861 df-tsms 24048 df-esum 34012 |
| This theorem is referenced by: esummulc1 34065 |
| Copyright terms: Public domain | W3C validator |