Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumcocn Structured version   Visualization version   GIF version

Theorem esumcocn 32346
Description: Lemma for esummulc2 32348 and co. Composing with a continuous function preserves extended sums. (Contributed by Thierry Arnoux, 29-Jun-2017.)
Hypotheses
Ref Expression
esumcocn.j 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
esumcocn.a (𝜑𝐴𝑉)
esumcocn.b ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
esumcocn.1 (𝜑𝐶 ∈ (𝐽 Cn 𝐽))
esumcocn.0 (𝜑 → (𝐶‘0) = 0)
esumcocn.f ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶𝑥) +𝑒 (𝐶𝑦)))
Assertion
Ref Expression
esumcocn (𝜑 → (𝐶‘Σ*𝑘𝐴𝐵) = Σ*𝑘𝐴(𝐶𝐵))
Distinct variable groups:   𝐴,𝑘   𝑥,𝑦,𝑘,𝐶   𝑘,𝑉   𝜑,𝑥,𝑦,𝑘
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦,𝑘)   𝐽(𝑥,𝑦,𝑘)   𝑉(𝑥,𝑦)

Proof of Theorem esumcocn
StepHypRef Expression
1 nfv 1916 . . 3 𝑘𝜑
2 nfcv 2904 . . 3 𝑘𝐴
3 esumcocn.a . . 3 (𝜑𝐴𝑉)
4 esumcocn.1 . . . . . 6 (𝜑𝐶 ∈ (𝐽 Cn 𝐽))
5 xrge0tps 32190 . . . . . . . 8 (ℝ*𝑠s (0[,]+∞)) ∈ TopSp
6 xrge0base 31581 . . . . . . . . 9 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
7 esumcocn.j . . . . . . . . . 10 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
8 xrge0topn 32191 . . . . . . . . . 10 (TopOpen‘(ℝ*𝑠s (0[,]+∞))) = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
97, 8eqtr4i 2767 . . . . . . . . 9 𝐽 = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
106, 9tpsuni 22191 . . . . . . . 8 ((ℝ*𝑠s (0[,]+∞)) ∈ TopSp → (0[,]+∞) = 𝐽)
115, 10ax-mp 5 . . . . . . 7 (0[,]+∞) = 𝐽
1211, 11cnf 22503 . . . . . 6 (𝐶 ∈ (𝐽 Cn 𝐽) → 𝐶:(0[,]+∞)⟶(0[,]+∞))
134, 12syl 17 . . . . 5 (𝜑𝐶:(0[,]+∞)⟶(0[,]+∞))
1413adantr 481 . . . 4 ((𝜑𝑘𝐴) → 𝐶:(0[,]+∞)⟶(0[,]+∞))
15 esumcocn.b . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
1614, 15ffvelcdmd 7018 . . 3 ((𝜑𝑘𝐴) → (𝐶𝐵) ∈ (0[,]+∞))
17 xrge0cmn 20746 . . . . . 6 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
1817a1i 11 . . . . 5 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
195a1i 11 . . . . 5 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ TopSp)
20 cmnmnd 19497 . . . . . . . 8 ((ℝ*𝑠s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
2117, 20ax-mp 5 . . . . . . 7 (ℝ*𝑠s (0[,]+∞)) ∈ Mnd
2221a1i 11 . . . . . 6 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
23 esumcocn.f . . . . . . . 8 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶𝑥) +𝑒 (𝐶𝑦)))
24233expib 1121 . . . . . . 7 (𝜑 → ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶𝑥) +𝑒 (𝐶𝑦))))
2524ralrimivv 3191 . . . . . 6 (𝜑 → ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶𝑥) +𝑒 (𝐶𝑦)))
26 esumcocn.0 . . . . . 6 (𝜑 → (𝐶‘0) = 0)
27 xrge0plusg 31583 . . . . . . . 8 +𝑒 = (+g‘(ℝ*𝑠s (0[,]+∞)))
28 xrge00 31582 . . . . . . . 8 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
296, 6, 27, 27, 28, 28ismhm 18529 . . . . . . 7 (𝐶 ∈ ((ℝ*𝑠s (0[,]+∞)) MndHom (ℝ*𝑠s (0[,]+∞))) ↔ (((ℝ*𝑠s (0[,]+∞)) ∈ Mnd ∧ (ℝ*𝑠s (0[,]+∞)) ∈ Mnd) ∧ (𝐶:(0[,]+∞)⟶(0[,]+∞) ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶𝑥) +𝑒 (𝐶𝑦)) ∧ (𝐶‘0) = 0)))
3029biimpri 227 . . . . . 6 ((((ℝ*𝑠s (0[,]+∞)) ∈ Mnd ∧ (ℝ*𝑠s (0[,]+∞)) ∈ Mnd) ∧ (𝐶:(0[,]+∞)⟶(0[,]+∞) ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶𝑥) +𝑒 (𝐶𝑦)) ∧ (𝐶‘0) = 0)) → 𝐶 ∈ ((ℝ*𝑠s (0[,]+∞)) MndHom (ℝ*𝑠s (0[,]+∞))))
3122, 22, 13, 25, 26, 30syl23anc 1376 . . . . 5 (𝜑𝐶 ∈ ((ℝ*𝑠s (0[,]+∞)) MndHom (ℝ*𝑠s (0[,]+∞))))
32 eqidd 2737 . . . . . 6 (𝜑 → (𝑘𝐴𝐵) = (𝑘𝐴𝐵))
3332, 15fmpt3d 7046 . . . . 5 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
341, 2, 3, 15esumel 32313 . . . . 5 (𝜑 → Σ*𝑘𝐴𝐵 ∈ ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)))
356, 9, 9, 18, 19, 18, 19, 31, 4, 3, 33, 34tsmsmhm 23403 . . . 4 (𝜑 → (𝐶‘Σ*𝑘𝐴𝐵) ∈ ((ℝ*𝑠s (0[,]+∞)) tsums (𝐶 ∘ (𝑘𝐴𝐵))))
3613, 15cofmpt 7060 . . . . 5 (𝜑 → (𝐶 ∘ (𝑘𝐴𝐵)) = (𝑘𝐴 ↦ (𝐶𝐵)))
3736oveq2d 7353 . . . 4 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) tsums (𝐶 ∘ (𝑘𝐴𝐵))) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴 ↦ (𝐶𝐵))))
3835, 37eleqtrd 2839 . . 3 (𝜑 → (𝐶‘Σ*𝑘𝐴𝐵) ∈ ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴 ↦ (𝐶𝐵))))
391, 2, 3, 16, 38esumid 32310 . 2 (𝜑 → Σ*𝑘𝐴(𝐶𝐵) = (𝐶‘Σ*𝑘𝐴𝐵))
4039eqcomd 2742 1 (𝜑 → (𝐶‘Σ*𝑘𝐴𝐵) = Σ*𝑘𝐴(𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  wral 3061   cuni 4852  cmpt 5175  ccom 5624  wf 6475  cfv 6479  (class class class)co 7337  0cc0 10972  +∞cpnf 11107  cle 11111   +𝑒 cxad 12947  [,]cicc 13183  s cress 17038  t crest 17228  TopOpenctopn 17229  ordTopcordt 17307  *𝑠cxrs 17308  Mndcmnd 18482   MndHom cmhm 18525  CMndccmn 19481  TopSpctps 22187   Cn ccn 22481   tsums ctsu 23383  Σ*cesum 32293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049  ax-pre-sup 11050
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4853  df-int 4895  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-se 5576  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-isom 6488  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-of 7595  df-om 7781  df-1st 7899  df-2nd 7900  df-supp 8048  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-1o 8367  df-er 8569  df-map 8688  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-fsupp 9227  df-fi 9268  df-sup 9299  df-inf 9300  df-oi 9367  df-card 9796  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-div 11734  df-nn 12075  df-2 12137  df-3 12138  df-4 12139  df-5 12140  df-6 12141  df-7 12142  df-8 12143  df-9 12144  df-n0 12335  df-z 12421  df-dec 12539  df-uz 12684  df-q 12790  df-xadd 12950  df-ioo 13184  df-ioc 13185  df-ico 13186  df-icc 13187  df-fz 13341  df-fzo 13484  df-seq 13823  df-hash 14146  df-struct 16945  df-sets 16962  df-slot 16980  df-ndx 16992  df-base 17010  df-ress 17039  df-plusg 17072  df-mulr 17073  df-tset 17078  df-ple 17079  df-ds 17081  df-rest 17230  df-topn 17231  df-0g 17249  df-gsum 17250  df-topgen 17251  df-ordt 17309  df-xrs 17310  df-mre 17392  df-mrc 17393  df-acs 17395  df-ps 18381  df-tsr 18382  df-mgm 18423  df-sgrp 18472  df-mnd 18483  df-mhm 18527  df-submnd 18528  df-cntz 19019  df-cmn 19483  df-fbas 20700  df-fg 20701  df-top 22149  df-topon 22166  df-topsp 22188  df-bases 22202  df-ntr 22277  df-nei 22355  df-cn 22484  df-cnp 22485  df-haus 22572  df-fil 23103  df-fm 23195  df-flim 23196  df-flf 23197  df-tsms 23384  df-esum 32294
This theorem is referenced by:  esummulc1  32347
  Copyright terms: Public domain W3C validator