Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumcocn | Structured version Visualization version GIF version |
Description: Lemma for esummulc2 32348 and co. Composing with a continuous function preserves extended sums. (Contributed by Thierry Arnoux, 29-Jun-2017.) |
Ref | Expression |
---|---|
esumcocn.j | ⊢ 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) |
esumcocn.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
esumcocn.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
esumcocn.1 | ⊢ (𝜑 → 𝐶 ∈ (𝐽 Cn 𝐽)) |
esumcocn.0 | ⊢ (𝜑 → (𝐶‘0) = 0) |
esumcocn.f | ⊢ ((𝜑 ∧ 𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶‘𝑥) +𝑒 (𝐶‘𝑦))) |
Ref | Expression |
---|---|
esumcocn | ⊢ (𝜑 → (𝐶‘Σ*𝑘 ∈ 𝐴𝐵) = Σ*𝑘 ∈ 𝐴(𝐶‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1916 | . . 3 ⊢ Ⅎ𝑘𝜑 | |
2 | nfcv 2904 | . . 3 ⊢ Ⅎ𝑘𝐴 | |
3 | esumcocn.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
4 | esumcocn.1 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ (𝐽 Cn 𝐽)) | |
5 | xrge0tps 32190 | . . . . . . . 8 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp | |
6 | xrge0base 31581 | . . . . . . . . 9 ⊢ (0[,]+∞) = (Base‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
7 | esumcocn.j | . . . . . . . . . 10 ⊢ 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) | |
8 | xrge0topn 32191 | . . . . . . . . . 10 ⊢ (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) | |
9 | 7, 8 | eqtr4i 2767 | . . . . . . . . 9 ⊢ 𝐽 = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) |
10 | 6, 9 | tpsuni 22191 | . . . . . . . 8 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp → (0[,]+∞) = ∪ 𝐽) |
11 | 5, 10 | ax-mp 5 | . . . . . . 7 ⊢ (0[,]+∞) = ∪ 𝐽 |
12 | 11, 11 | cnf 22503 | . . . . . 6 ⊢ (𝐶 ∈ (𝐽 Cn 𝐽) → 𝐶:(0[,]+∞)⟶(0[,]+∞)) |
13 | 4, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐶:(0[,]+∞)⟶(0[,]+∞)) |
14 | 13 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶:(0[,]+∞)⟶(0[,]+∞)) |
15 | esumcocn.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
16 | 14, 15 | ffvelcdmd 7018 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐶‘𝐵) ∈ (0[,]+∞)) |
17 | xrge0cmn 20746 | . . . . . 6 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | |
18 | 17 | a1i 11 | . . . . 5 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd) |
19 | 5 | a1i 11 | . . . . 5 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp) |
20 | cmnmnd 19497 | . . . . . . . 8 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) | |
21 | 17, 20 | ax-mp 5 | . . . . . . 7 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd |
22 | 21 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) |
23 | esumcocn.f | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶‘𝑥) +𝑒 (𝐶‘𝑦))) | |
24 | 23 | 3expib 1121 | . . . . . . 7 ⊢ (𝜑 → ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶‘𝑥) +𝑒 (𝐶‘𝑦)))) |
25 | 24 | ralrimivv 3191 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶‘𝑥) +𝑒 (𝐶‘𝑦))) |
26 | esumcocn.0 | . . . . . 6 ⊢ (𝜑 → (𝐶‘0) = 0) | |
27 | xrge0plusg 31583 | . . . . . . . 8 ⊢ +𝑒 = (+g‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
28 | xrge00 31582 | . . . . . . . 8 ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
29 | 6, 6, 27, 27, 28, 28 | ismhm 18529 | . . . . . . 7 ⊢ (𝐶 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) MndHom (ℝ*𝑠 ↾s (0[,]+∞))) ↔ (((ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd ∧ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) ∧ (𝐶:(0[,]+∞)⟶(0[,]+∞) ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶‘𝑥) +𝑒 (𝐶‘𝑦)) ∧ (𝐶‘0) = 0))) |
30 | 29 | biimpri 227 | . . . . . 6 ⊢ ((((ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd ∧ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) ∧ (𝐶:(0[,]+∞)⟶(0[,]+∞) ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶‘𝑥) +𝑒 (𝐶‘𝑦)) ∧ (𝐶‘0) = 0)) → 𝐶 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) MndHom (ℝ*𝑠 ↾s (0[,]+∞)))) |
31 | 22, 22, 13, 25, 26, 30 | syl23anc 1376 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) MndHom (ℝ*𝑠 ↾s (0[,]+∞)))) |
32 | eqidd 2737 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
33 | 32, 15 | fmpt3d 7046 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
34 | 1, 2, 3, 15 | esumel 32313 | . . . . 5 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵))) |
35 | 6, 9, 9, 18, 19, 18, 19, 31, 4, 3, 33, 34 | tsmsmhm 23403 | . . . 4 ⊢ (𝜑 → (𝐶‘Σ*𝑘 ∈ 𝐴𝐵) ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝐶 ∘ (𝑘 ∈ 𝐴 ↦ 𝐵)))) |
36 | 13, 15 | cofmpt 7060 | . . . . 5 ⊢ (𝜑 → (𝐶 ∘ (𝑘 ∈ 𝐴 ↦ 𝐵)) = (𝑘 ∈ 𝐴 ↦ (𝐶‘𝐵))) |
37 | 36 | oveq2d 7353 | . . . 4 ⊢ (𝜑 → ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝐶 ∘ (𝑘 ∈ 𝐴 ↦ 𝐵))) = ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ (𝐶‘𝐵)))) |
38 | 35, 37 | eleqtrd 2839 | . . 3 ⊢ (𝜑 → (𝐶‘Σ*𝑘 ∈ 𝐴𝐵) ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ (𝐶‘𝐵)))) |
39 | 1, 2, 3, 16, 38 | esumid 32310 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴(𝐶‘𝐵) = (𝐶‘Σ*𝑘 ∈ 𝐴𝐵)) |
40 | 39 | eqcomd 2742 | 1 ⊢ (𝜑 → (𝐶‘Σ*𝑘 ∈ 𝐴𝐵) = Σ*𝑘 ∈ 𝐴(𝐶‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∀wral 3061 ∪ cuni 4852 ↦ cmpt 5175 ∘ ccom 5624 ⟶wf 6475 ‘cfv 6479 (class class class)co 7337 0cc0 10972 +∞cpnf 11107 ≤ cle 11111 +𝑒 cxad 12947 [,]cicc 13183 ↾s cress 17038 ↾t crest 17228 TopOpenctopn 17229 ordTopcordt 17307 ℝ*𝑠cxrs 17308 Mndcmnd 18482 MndHom cmhm 18525 CMndccmn 19481 TopSpctps 22187 Cn ccn 22481 tsums ctsu 23383 Σ*cesum 32293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 ax-pre-sup 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-se 5576 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-isom 6488 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-of 7595 df-om 7781 df-1st 7899 df-2nd 7900 df-supp 8048 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-er 8569 df-map 8688 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-fsupp 9227 df-fi 9268 df-sup 9299 df-inf 9300 df-oi 9367 df-card 9796 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-div 11734 df-nn 12075 df-2 12137 df-3 12138 df-4 12139 df-5 12140 df-6 12141 df-7 12142 df-8 12143 df-9 12144 df-n0 12335 df-z 12421 df-dec 12539 df-uz 12684 df-q 12790 df-xadd 12950 df-ioo 13184 df-ioc 13185 df-ico 13186 df-icc 13187 df-fz 13341 df-fzo 13484 df-seq 13823 df-hash 14146 df-struct 16945 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-ress 17039 df-plusg 17072 df-mulr 17073 df-tset 17078 df-ple 17079 df-ds 17081 df-rest 17230 df-topn 17231 df-0g 17249 df-gsum 17250 df-topgen 17251 df-ordt 17309 df-xrs 17310 df-mre 17392 df-mrc 17393 df-acs 17395 df-ps 18381 df-tsr 18382 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-mhm 18527 df-submnd 18528 df-cntz 19019 df-cmn 19483 df-fbas 20700 df-fg 20701 df-top 22149 df-topon 22166 df-topsp 22188 df-bases 22202 df-ntr 22277 df-nei 22355 df-cn 22484 df-cnp 22485 df-haus 22572 df-fil 23103 df-fm 23195 df-flim 23196 df-flf 23197 df-tsms 23384 df-esum 32294 |
This theorem is referenced by: esummulc1 32347 |
Copyright terms: Public domain | W3C validator |