![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumcocn | Structured version Visualization version GIF version |
Description: Lemma for esummulc2 33068 and co. Composing with a continuous function preserves extended sums. (Contributed by Thierry Arnoux, 29-Jun-2017.) |
Ref | Expression |
---|---|
esumcocn.j | β’ π½ = ((ordTopβ β€ ) βΎt (0[,]+β)) |
esumcocn.a | β’ (π β π΄ β π) |
esumcocn.b | β’ ((π β§ π β π΄) β π΅ β (0[,]+β)) |
esumcocn.1 | β’ (π β πΆ β (π½ Cn π½)) |
esumcocn.0 | β’ (π β (πΆβ0) = 0) |
esumcocn.f | β’ ((π β§ π₯ β (0[,]+β) β§ π¦ β (0[,]+β)) β (πΆβ(π₯ +π π¦)) = ((πΆβπ₯) +π (πΆβπ¦))) |
Ref | Expression |
---|---|
esumcocn | β’ (π β (πΆβΞ£*π β π΄π΅) = Ξ£*π β π΄(πΆβπ΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1917 | . . 3 β’ β²ππ | |
2 | nfcv 2903 | . . 3 β’ β²ππ΄ | |
3 | esumcocn.a | . . 3 β’ (π β π΄ β π) | |
4 | esumcocn.1 | . . . . . 6 β’ (π β πΆ β (π½ Cn π½)) | |
5 | xrge0tps 32910 | . . . . . . . 8 β’ (β*π βΎs (0[,]+β)) β TopSp | |
6 | xrge0base 32173 | . . . . . . . . 9 β’ (0[,]+β) = (Baseβ(β*π βΎs (0[,]+β))) | |
7 | esumcocn.j | . . . . . . . . . 10 β’ π½ = ((ordTopβ β€ ) βΎt (0[,]+β)) | |
8 | xrge0topn 32911 | . . . . . . . . . 10 β’ (TopOpenβ(β*π βΎs (0[,]+β))) = ((ordTopβ β€ ) βΎt (0[,]+β)) | |
9 | 7, 8 | eqtr4i 2763 | . . . . . . . . 9 β’ π½ = (TopOpenβ(β*π βΎs (0[,]+β))) |
10 | 6, 9 | tpsuni 22429 | . . . . . . . 8 β’ ((β*π βΎs (0[,]+β)) β TopSp β (0[,]+β) = βͺ π½) |
11 | 5, 10 | ax-mp 5 | . . . . . . 7 β’ (0[,]+β) = βͺ π½ |
12 | 11, 11 | cnf 22741 | . . . . . 6 β’ (πΆ β (π½ Cn π½) β πΆ:(0[,]+β)βΆ(0[,]+β)) |
13 | 4, 12 | syl 17 | . . . . 5 β’ (π β πΆ:(0[,]+β)βΆ(0[,]+β)) |
14 | 13 | adantr 481 | . . . 4 β’ ((π β§ π β π΄) β πΆ:(0[,]+β)βΆ(0[,]+β)) |
15 | esumcocn.b | . . . 4 β’ ((π β§ π β π΄) β π΅ β (0[,]+β)) | |
16 | 14, 15 | ffvelcdmd 7084 | . . 3 β’ ((π β§ π β π΄) β (πΆβπ΅) β (0[,]+β)) |
17 | xrge0cmn 20979 | . . . . . 6 β’ (β*π βΎs (0[,]+β)) β CMnd | |
18 | 17 | a1i 11 | . . . . 5 β’ (π β (β*π βΎs (0[,]+β)) β CMnd) |
19 | 5 | a1i 11 | . . . . 5 β’ (π β (β*π βΎs (0[,]+β)) β TopSp) |
20 | cmnmnd 19659 | . . . . . . . 8 β’ ((β*π βΎs (0[,]+β)) β CMnd β (β*π βΎs (0[,]+β)) β Mnd) | |
21 | 17, 20 | ax-mp 5 | . . . . . . 7 β’ (β*π βΎs (0[,]+β)) β Mnd |
22 | 21 | a1i 11 | . . . . . 6 β’ (π β (β*π βΎs (0[,]+β)) β Mnd) |
23 | esumcocn.f | . . . . . . . 8 β’ ((π β§ π₯ β (0[,]+β) β§ π¦ β (0[,]+β)) β (πΆβ(π₯ +π π¦)) = ((πΆβπ₯) +π (πΆβπ¦))) | |
24 | 23 | 3expib 1122 | . . . . . . 7 β’ (π β ((π₯ β (0[,]+β) β§ π¦ β (0[,]+β)) β (πΆβ(π₯ +π π¦)) = ((πΆβπ₯) +π (πΆβπ¦)))) |
25 | 24 | ralrimivv 3198 | . . . . . 6 β’ (π β βπ₯ β (0[,]+β)βπ¦ β (0[,]+β)(πΆβ(π₯ +π π¦)) = ((πΆβπ₯) +π (πΆβπ¦))) |
26 | esumcocn.0 | . . . . . 6 β’ (π β (πΆβ0) = 0) | |
27 | xrge0plusg 32175 | . . . . . . . 8 β’ +π = (+gβ(β*π βΎs (0[,]+β))) | |
28 | xrge00 32174 | . . . . . . . 8 β’ 0 = (0gβ(β*π βΎs (0[,]+β))) | |
29 | 6, 6, 27, 27, 28, 28 | ismhm 18669 | . . . . . . 7 β’ (πΆ β ((β*π βΎs (0[,]+β)) MndHom (β*π βΎs (0[,]+β))) β (((β*π βΎs (0[,]+β)) β Mnd β§ (β*π βΎs (0[,]+β)) β Mnd) β§ (πΆ:(0[,]+β)βΆ(0[,]+β) β§ βπ₯ β (0[,]+β)βπ¦ β (0[,]+β)(πΆβ(π₯ +π π¦)) = ((πΆβπ₯) +π (πΆβπ¦)) β§ (πΆβ0) = 0))) |
30 | 29 | biimpri 227 | . . . . . 6 β’ ((((β*π βΎs (0[,]+β)) β Mnd β§ (β*π βΎs (0[,]+β)) β Mnd) β§ (πΆ:(0[,]+β)βΆ(0[,]+β) β§ βπ₯ β (0[,]+β)βπ¦ β (0[,]+β)(πΆβ(π₯ +π π¦)) = ((πΆβπ₯) +π (πΆβπ¦)) β§ (πΆβ0) = 0)) β πΆ β ((β*π βΎs (0[,]+β)) MndHom (β*π βΎs (0[,]+β)))) |
31 | 22, 22, 13, 25, 26, 30 | syl23anc 1377 | . . . . 5 β’ (π β πΆ β ((β*π βΎs (0[,]+β)) MndHom (β*π βΎs (0[,]+β)))) |
32 | eqidd 2733 | . . . . . 6 β’ (π β (π β π΄ β¦ π΅) = (π β π΄ β¦ π΅)) | |
33 | 32, 15 | fmpt3d 7112 | . . . . 5 β’ (π β (π β π΄ β¦ π΅):π΄βΆ(0[,]+β)) |
34 | 1, 2, 3, 15 | esumel 33033 | . . . . 5 β’ (π β Ξ£*π β π΄π΅ β ((β*π βΎs (0[,]+β)) tsums (π β π΄ β¦ π΅))) |
35 | 6, 9, 9, 18, 19, 18, 19, 31, 4, 3, 33, 34 | tsmsmhm 23641 | . . . 4 β’ (π β (πΆβΞ£*π β π΄π΅) β ((β*π βΎs (0[,]+β)) tsums (πΆ β (π β π΄ β¦ π΅)))) |
36 | 13, 15 | cofmpt 7126 | . . . . 5 β’ (π β (πΆ β (π β π΄ β¦ π΅)) = (π β π΄ β¦ (πΆβπ΅))) |
37 | 36 | oveq2d 7421 | . . . 4 β’ (π β ((β*π βΎs (0[,]+β)) tsums (πΆ β (π β π΄ β¦ π΅))) = ((β*π βΎs (0[,]+β)) tsums (π β π΄ β¦ (πΆβπ΅)))) |
38 | 35, 37 | eleqtrd 2835 | . . 3 β’ (π β (πΆβΞ£*π β π΄π΅) β ((β*π βΎs (0[,]+β)) tsums (π β π΄ β¦ (πΆβπ΅)))) |
39 | 1, 2, 3, 16, 38 | esumid 33030 | . 2 β’ (π β Ξ£*π β π΄(πΆβπ΅) = (πΆβΞ£*π β π΄π΅)) |
40 | 39 | eqcomd 2738 | 1 β’ (π β (πΆβΞ£*π β π΄π΅) = Ξ£*π β π΄(πΆβπ΅)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 βwral 3061 βͺ cuni 4907 β¦ cmpt 5230 β ccom 5679 βΆwf 6536 βcfv 6540 (class class class)co 7405 0cc0 11106 +βcpnf 11241 β€ cle 11245 +π cxad 13086 [,]cicc 13323 βΎs cress 17169 βΎt crest 17362 TopOpenctopn 17363 ordTopcordt 17441 β*π cxrs 17442 Mndcmnd 18621 MndHom cmhm 18665 CMndccmn 19642 TopSpctps 22425 Cn ccn 22719 tsums ctsu 23621 Ξ£*cesum 33013 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-fi 9402 df-sup 9433 df-inf 9434 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-q 12929 df-xadd 13089 df-ioo 13324 df-ioc 13325 df-ico 13326 df-icc 13327 df-fz 13481 df-fzo 13624 df-seq 13963 df-hash 14287 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-tset 17212 df-ple 17213 df-ds 17215 df-rest 17364 df-topn 17365 df-0g 17383 df-gsum 17384 df-topgen 17385 df-ordt 17443 df-xrs 17444 df-mre 17526 df-mrc 17527 df-acs 17529 df-ps 18515 df-tsr 18516 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-mhm 18667 df-submnd 18668 df-cntz 19175 df-cmn 19644 df-fbas 20933 df-fg 20934 df-top 22387 df-topon 22404 df-topsp 22426 df-bases 22440 df-ntr 22515 df-nei 22593 df-cn 22722 df-cnp 22723 df-haus 22810 df-fil 23341 df-fm 23433 df-flim 23434 df-flf 23435 df-tsms 23622 df-esum 33014 |
This theorem is referenced by: esummulc1 33067 |
Copyright terms: Public domain | W3C validator |