| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > esumcocn | Structured version Visualization version GIF version | ||
| Description: Lemma for esummulc2 34065 and co. Composing with a continuous function preserves extended sums. (Contributed by Thierry Arnoux, 29-Jun-2017.) |
| Ref | Expression |
|---|---|
| esumcocn.j | ⊢ 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) |
| esumcocn.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| esumcocn.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
| esumcocn.1 | ⊢ (𝜑 → 𝐶 ∈ (𝐽 Cn 𝐽)) |
| esumcocn.0 | ⊢ (𝜑 → (𝐶‘0) = 0) |
| esumcocn.f | ⊢ ((𝜑 ∧ 𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶‘𝑥) +𝑒 (𝐶‘𝑦))) |
| Ref | Expression |
|---|---|
| esumcocn | ⊢ (𝜑 → (𝐶‘Σ*𝑘 ∈ 𝐴𝐵) = Σ*𝑘 ∈ 𝐴(𝐶‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . . 3 ⊢ Ⅎ𝑘𝜑 | |
| 2 | nfcv 2891 | . . 3 ⊢ Ⅎ𝑘𝐴 | |
| 3 | esumcocn.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 4 | esumcocn.1 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ (𝐽 Cn 𝐽)) | |
| 5 | xrge0tps 33925 | . . . . . . . 8 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp | |
| 6 | xrge0base 17511 | . . . . . . . . 9 ⊢ (0[,]+∞) = (Base‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
| 7 | esumcocn.j | . . . . . . . . . 10 ⊢ 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) | |
| 8 | xrge0topn 33926 | . . . . . . . . . 10 ⊢ (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) | |
| 9 | 7, 8 | eqtr4i 2755 | . . . . . . . . 9 ⊢ 𝐽 = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) |
| 10 | 6, 9 | tpsuni 22821 | . . . . . . . 8 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp → (0[,]+∞) = ∪ 𝐽) |
| 11 | 5, 10 | ax-mp 5 | . . . . . . 7 ⊢ (0[,]+∞) = ∪ 𝐽 |
| 12 | 11, 11 | cnf 23131 | . . . . . 6 ⊢ (𝐶 ∈ (𝐽 Cn 𝐽) → 𝐶:(0[,]+∞)⟶(0[,]+∞)) |
| 13 | 4, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐶:(0[,]+∞)⟶(0[,]+∞)) |
| 14 | 13 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶:(0[,]+∞)⟶(0[,]+∞)) |
| 15 | esumcocn.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
| 16 | 14, 15 | ffvelcdmd 7019 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐶‘𝐵) ∈ (0[,]+∞)) |
| 17 | xrge0cmn 21351 | . . . . . 6 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | |
| 18 | 17 | a1i 11 | . . . . 5 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd) |
| 19 | 5 | a1i 11 | . . . . 5 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp) |
| 20 | cmnmnd 19676 | . . . . . . . 8 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) | |
| 21 | 17, 20 | ax-mp 5 | . . . . . . 7 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd |
| 22 | 21 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) |
| 23 | esumcocn.f | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶‘𝑥) +𝑒 (𝐶‘𝑦))) | |
| 24 | 23 | 3expib 1122 | . . . . . . 7 ⊢ (𝜑 → ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶‘𝑥) +𝑒 (𝐶‘𝑦)))) |
| 25 | 24 | ralrimivv 3170 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶‘𝑥) +𝑒 (𝐶‘𝑦))) |
| 26 | esumcocn.0 | . . . . . 6 ⊢ (𝜑 → (𝐶‘0) = 0) | |
| 27 | xrge0plusg 21346 | . . . . . . . 8 ⊢ +𝑒 = (+g‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
| 28 | xrge00 32977 | . . . . . . . 8 ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
| 29 | 6, 6, 27, 27, 28, 28 | ismhm 18659 | . . . . . . 7 ⊢ (𝐶 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) MndHom (ℝ*𝑠 ↾s (0[,]+∞))) ↔ (((ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd ∧ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) ∧ (𝐶:(0[,]+∞)⟶(0[,]+∞) ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶‘𝑥) +𝑒 (𝐶‘𝑦)) ∧ (𝐶‘0) = 0))) |
| 30 | 29 | biimpri 228 | . . . . . 6 ⊢ ((((ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd ∧ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) ∧ (𝐶:(0[,]+∞)⟶(0[,]+∞) ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶‘𝑥) +𝑒 (𝐶‘𝑦)) ∧ (𝐶‘0) = 0)) → 𝐶 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) MndHom (ℝ*𝑠 ↾s (0[,]+∞)))) |
| 31 | 22, 22, 13, 25, 26, 30 | syl23anc 1379 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) MndHom (ℝ*𝑠 ↾s (0[,]+∞)))) |
| 32 | eqidd 2730 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
| 33 | 32, 15 | fmpt3d 7050 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
| 34 | 1, 2, 3, 15 | esumel 34030 | . . . . 5 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵))) |
| 35 | 6, 9, 9, 18, 19, 18, 19, 31, 4, 3, 33, 34 | tsmsmhm 24031 | . . . 4 ⊢ (𝜑 → (𝐶‘Σ*𝑘 ∈ 𝐴𝐵) ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝐶 ∘ (𝑘 ∈ 𝐴 ↦ 𝐵)))) |
| 36 | 13, 15 | cofmpt 7066 | . . . . 5 ⊢ (𝜑 → (𝐶 ∘ (𝑘 ∈ 𝐴 ↦ 𝐵)) = (𝑘 ∈ 𝐴 ↦ (𝐶‘𝐵))) |
| 37 | 36 | oveq2d 7365 | . . . 4 ⊢ (𝜑 → ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝐶 ∘ (𝑘 ∈ 𝐴 ↦ 𝐵))) = ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ (𝐶‘𝐵)))) |
| 38 | 35, 37 | eleqtrd 2830 | . . 3 ⊢ (𝜑 → (𝐶‘Σ*𝑘 ∈ 𝐴𝐵) ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ (𝐶‘𝐵)))) |
| 39 | 1, 2, 3, 16, 38 | esumid 34027 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴(𝐶‘𝐵) = (𝐶‘Σ*𝑘 ∈ 𝐴𝐵)) |
| 40 | 39 | eqcomd 2735 | 1 ⊢ (𝜑 → (𝐶‘Σ*𝑘 ∈ 𝐴𝐵) = Σ*𝑘 ∈ 𝐴(𝐶‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∪ cuni 4858 ↦ cmpt 5173 ∘ ccom 5623 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 0cc0 11009 +∞cpnf 11146 ≤ cle 11150 +𝑒 cxad 13012 [,]cicc 13251 ↾s cress 17141 ↾t crest 17324 TopOpenctopn 17325 ordTopcordt 17403 ℝ*𝑠cxrs 17404 Mndcmnd 18608 MndHom cmhm 18655 CMndccmn 19659 TopSpctps 22817 Cn ccn 23109 tsums ctsu 24011 Σ*cesum 34010 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-xadd 13015 df-ioo 13252 df-ioc 13253 df-ico 13254 df-icc 13255 df-fz 13411 df-fzo 13558 df-seq 13909 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-tset 17180 df-ple 17181 df-ds 17183 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-ordt 17405 df-xrs 17406 df-mre 17488 df-mrc 17489 df-acs 17491 df-ps 18472 df-tsr 18473 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-submnd 18658 df-cntz 19196 df-cmn 19661 df-fbas 21258 df-fg 21259 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-ntr 22905 df-nei 22983 df-cn 23112 df-cnp 23113 df-haus 23200 df-fil 23731 df-fm 23823 df-flim 23824 df-flf 23825 df-tsms 24012 df-esum 34011 |
| This theorem is referenced by: esummulc1 34064 |
| Copyright terms: Public domain | W3C validator |