Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumcocn Structured version   Visualization version   GIF version

Theorem esumcocn 31760
Description: Lemma for esummulc2 31762 and co. Composing with a continuous function preserves extended sums. (Contributed by Thierry Arnoux, 29-Jun-2017.)
Hypotheses
Ref Expression
esumcocn.j 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
esumcocn.a (𝜑𝐴𝑉)
esumcocn.b ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
esumcocn.1 (𝜑𝐶 ∈ (𝐽 Cn 𝐽))
esumcocn.0 (𝜑 → (𝐶‘0) = 0)
esumcocn.f ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶𝑥) +𝑒 (𝐶𝑦)))
Assertion
Ref Expression
esumcocn (𝜑 → (𝐶‘Σ*𝑘𝐴𝐵) = Σ*𝑘𝐴(𝐶𝐵))
Distinct variable groups:   𝐴,𝑘   𝑥,𝑦,𝑘,𝐶   𝑘,𝑉   𝜑,𝑥,𝑦,𝑘
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦,𝑘)   𝐽(𝑥,𝑦,𝑘)   𝑉(𝑥,𝑦)

Proof of Theorem esumcocn
StepHypRef Expression
1 nfv 1922 . . 3 𝑘𝜑
2 nfcv 2904 . . 3 𝑘𝐴
3 esumcocn.a . . 3 (𝜑𝐴𝑉)
4 esumcocn.1 . . . . . 6 (𝜑𝐶 ∈ (𝐽 Cn 𝐽))
5 xrge0tps 31606 . . . . . . . 8 (ℝ*𝑠s (0[,]+∞)) ∈ TopSp
6 xrge0base 31013 . . . . . . . . 9 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
7 esumcocn.j . . . . . . . . . 10 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
8 xrge0topn 31607 . . . . . . . . . 10 (TopOpen‘(ℝ*𝑠s (0[,]+∞))) = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
97, 8eqtr4i 2768 . . . . . . . . 9 𝐽 = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
106, 9tpsuni 21833 . . . . . . . 8 ((ℝ*𝑠s (0[,]+∞)) ∈ TopSp → (0[,]+∞) = 𝐽)
115, 10ax-mp 5 . . . . . . 7 (0[,]+∞) = 𝐽
1211, 11cnf 22143 . . . . . 6 (𝐶 ∈ (𝐽 Cn 𝐽) → 𝐶:(0[,]+∞)⟶(0[,]+∞))
134, 12syl 17 . . . . 5 (𝜑𝐶:(0[,]+∞)⟶(0[,]+∞))
1413adantr 484 . . . 4 ((𝜑𝑘𝐴) → 𝐶:(0[,]+∞)⟶(0[,]+∞))
15 esumcocn.b . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
1614, 15ffvelrnd 6905 . . 3 ((𝜑𝑘𝐴) → (𝐶𝐵) ∈ (0[,]+∞))
17 xrge0cmn 20405 . . . . . 6 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
1817a1i 11 . . . . 5 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
195a1i 11 . . . . 5 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ TopSp)
20 cmnmnd 19186 . . . . . . . 8 ((ℝ*𝑠s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
2117, 20ax-mp 5 . . . . . . 7 (ℝ*𝑠s (0[,]+∞)) ∈ Mnd
2221a1i 11 . . . . . 6 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
23 esumcocn.f . . . . . . . 8 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶𝑥) +𝑒 (𝐶𝑦)))
24233expib 1124 . . . . . . 7 (𝜑 → ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶𝑥) +𝑒 (𝐶𝑦))))
2524ralrimivv 3111 . . . . . 6 (𝜑 → ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶𝑥) +𝑒 (𝐶𝑦)))
26 esumcocn.0 . . . . . 6 (𝜑 → (𝐶‘0) = 0)
27 xrge0plusg 31015 . . . . . . . 8 +𝑒 = (+g‘(ℝ*𝑠s (0[,]+∞)))
28 xrge00 31014 . . . . . . . 8 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
296, 6, 27, 27, 28, 28ismhm 18220 . . . . . . 7 (𝐶 ∈ ((ℝ*𝑠s (0[,]+∞)) MndHom (ℝ*𝑠s (0[,]+∞))) ↔ (((ℝ*𝑠s (0[,]+∞)) ∈ Mnd ∧ (ℝ*𝑠s (0[,]+∞)) ∈ Mnd) ∧ (𝐶:(0[,]+∞)⟶(0[,]+∞) ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶𝑥) +𝑒 (𝐶𝑦)) ∧ (𝐶‘0) = 0)))
3029biimpri 231 . . . . . 6 ((((ℝ*𝑠s (0[,]+∞)) ∈ Mnd ∧ (ℝ*𝑠s (0[,]+∞)) ∈ Mnd) ∧ (𝐶:(0[,]+∞)⟶(0[,]+∞) ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶𝑥) +𝑒 (𝐶𝑦)) ∧ (𝐶‘0) = 0)) → 𝐶 ∈ ((ℝ*𝑠s (0[,]+∞)) MndHom (ℝ*𝑠s (0[,]+∞))))
3122, 22, 13, 25, 26, 30syl23anc 1379 . . . . 5 (𝜑𝐶 ∈ ((ℝ*𝑠s (0[,]+∞)) MndHom (ℝ*𝑠s (0[,]+∞))))
32 eqidd 2738 . . . . . 6 (𝜑 → (𝑘𝐴𝐵) = (𝑘𝐴𝐵))
3332, 15fmpt3d 6933 . . . . 5 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
341, 2, 3, 15esumel 31727 . . . . 5 (𝜑 → Σ*𝑘𝐴𝐵 ∈ ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)))
356, 9, 9, 18, 19, 18, 19, 31, 4, 3, 33, 34tsmsmhm 23043 . . . 4 (𝜑 → (𝐶‘Σ*𝑘𝐴𝐵) ∈ ((ℝ*𝑠s (0[,]+∞)) tsums (𝐶 ∘ (𝑘𝐴𝐵))))
3613, 15cofmpt 6947 . . . . 5 (𝜑 → (𝐶 ∘ (𝑘𝐴𝐵)) = (𝑘𝐴 ↦ (𝐶𝐵)))
3736oveq2d 7229 . . . 4 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) tsums (𝐶 ∘ (𝑘𝐴𝐵))) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴 ↦ (𝐶𝐵))))
3835, 37eleqtrd 2840 . . 3 (𝜑 → (𝐶‘Σ*𝑘𝐴𝐵) ∈ ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴 ↦ (𝐶𝐵))))
391, 2, 3, 16, 38esumid 31724 . 2 (𝜑 → Σ*𝑘𝐴(𝐶𝐵) = (𝐶‘Σ*𝑘𝐴𝐵))
4039eqcomd 2743 1 (𝜑 → (𝐶‘Σ*𝑘𝐴𝐵) = Σ*𝑘𝐴(𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  wral 3061   cuni 4819  cmpt 5135  ccom 5555  wf 6376  cfv 6380  (class class class)co 7213  0cc0 10729  +∞cpnf 10864  cle 10868   +𝑒 cxad 12702  [,]cicc 12938  s cress 16784  t crest 16925  TopOpenctopn 16926  ordTopcordt 17004  *𝑠cxrs 17005  Mndcmnd 18173   MndHom cmhm 18216  CMndccmn 19170  TopSpctps 21829   Cn ccn 22121   tsums ctsu 23023  Σ*cesum 31707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-fi 9027  df-sup 9058  df-inf 9059  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-xadd 12705  df-ioo 12939  df-ioc 12940  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-seq 13575  df-hash 13897  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-tset 16821  df-ple 16822  df-ds 16824  df-rest 16927  df-topn 16928  df-0g 16946  df-gsum 16947  df-topgen 16948  df-ordt 17006  df-xrs 17007  df-mre 17089  df-mrc 17090  df-acs 17092  df-ps 18072  df-tsr 18073  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-mhm 18218  df-submnd 18219  df-cntz 18711  df-cmn 19172  df-fbas 20360  df-fg 20361  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-ntr 21917  df-nei 21995  df-cn 22124  df-cnp 22125  df-haus 22212  df-fil 22743  df-fm 22835  df-flim 22836  df-flf 22837  df-tsms 23024  df-esum 31708
This theorem is referenced by:  esummulc1  31761
  Copyright terms: Public domain W3C validator