Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumcocn | Structured version Visualization version GIF version |
Description: Lemma for esummulc2 31950 and co. Composing with a continuous function preserves extended sums. (Contributed by Thierry Arnoux, 29-Jun-2017.) |
Ref | Expression |
---|---|
esumcocn.j | ⊢ 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) |
esumcocn.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
esumcocn.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
esumcocn.1 | ⊢ (𝜑 → 𝐶 ∈ (𝐽 Cn 𝐽)) |
esumcocn.0 | ⊢ (𝜑 → (𝐶‘0) = 0) |
esumcocn.f | ⊢ ((𝜑 ∧ 𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶‘𝑥) +𝑒 (𝐶‘𝑦))) |
Ref | Expression |
---|---|
esumcocn | ⊢ (𝜑 → (𝐶‘Σ*𝑘 ∈ 𝐴𝐵) = Σ*𝑘 ∈ 𝐴(𝐶‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1918 | . . 3 ⊢ Ⅎ𝑘𝜑 | |
2 | nfcv 2906 | . . 3 ⊢ Ⅎ𝑘𝐴 | |
3 | esumcocn.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
4 | esumcocn.1 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ (𝐽 Cn 𝐽)) | |
5 | xrge0tps 31794 | . . . . . . . 8 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp | |
6 | xrge0base 31196 | . . . . . . . . 9 ⊢ (0[,]+∞) = (Base‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
7 | esumcocn.j | . . . . . . . . . 10 ⊢ 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) | |
8 | xrge0topn 31795 | . . . . . . . . . 10 ⊢ (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) | |
9 | 7, 8 | eqtr4i 2769 | . . . . . . . . 9 ⊢ 𝐽 = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) |
10 | 6, 9 | tpsuni 21993 | . . . . . . . 8 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp → (0[,]+∞) = ∪ 𝐽) |
11 | 5, 10 | ax-mp 5 | . . . . . . 7 ⊢ (0[,]+∞) = ∪ 𝐽 |
12 | 11, 11 | cnf 22305 | . . . . . 6 ⊢ (𝐶 ∈ (𝐽 Cn 𝐽) → 𝐶:(0[,]+∞)⟶(0[,]+∞)) |
13 | 4, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐶:(0[,]+∞)⟶(0[,]+∞)) |
14 | 13 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶:(0[,]+∞)⟶(0[,]+∞)) |
15 | esumcocn.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
16 | 14, 15 | ffvelrnd 6944 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐶‘𝐵) ∈ (0[,]+∞)) |
17 | xrge0cmn 20552 | . . . . . 6 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | |
18 | 17 | a1i 11 | . . . . 5 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd) |
19 | 5 | a1i 11 | . . . . 5 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp) |
20 | cmnmnd 19317 | . . . . . . . 8 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) | |
21 | 17, 20 | ax-mp 5 | . . . . . . 7 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd |
22 | 21 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) |
23 | esumcocn.f | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶‘𝑥) +𝑒 (𝐶‘𝑦))) | |
24 | 23 | 3expib 1120 | . . . . . . 7 ⊢ (𝜑 → ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶‘𝑥) +𝑒 (𝐶‘𝑦)))) |
25 | 24 | ralrimivv 3113 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶‘𝑥) +𝑒 (𝐶‘𝑦))) |
26 | esumcocn.0 | . . . . . 6 ⊢ (𝜑 → (𝐶‘0) = 0) | |
27 | xrge0plusg 31198 | . . . . . . . 8 ⊢ +𝑒 = (+g‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
28 | xrge00 31197 | . . . . . . . 8 ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
29 | 6, 6, 27, 27, 28, 28 | ismhm 18347 | . . . . . . 7 ⊢ (𝐶 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) MndHom (ℝ*𝑠 ↾s (0[,]+∞))) ↔ (((ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd ∧ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) ∧ (𝐶:(0[,]+∞)⟶(0[,]+∞) ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶‘𝑥) +𝑒 (𝐶‘𝑦)) ∧ (𝐶‘0) = 0))) |
30 | 29 | biimpri 227 | . . . . . 6 ⊢ ((((ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd ∧ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) ∧ (𝐶:(0[,]+∞)⟶(0[,]+∞) ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶‘𝑥) +𝑒 (𝐶‘𝑦)) ∧ (𝐶‘0) = 0)) → 𝐶 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) MndHom (ℝ*𝑠 ↾s (0[,]+∞)))) |
31 | 22, 22, 13, 25, 26, 30 | syl23anc 1375 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) MndHom (ℝ*𝑠 ↾s (0[,]+∞)))) |
32 | eqidd 2739 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
33 | 32, 15 | fmpt3d 6972 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
34 | 1, 2, 3, 15 | esumel 31915 | . . . . 5 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵))) |
35 | 6, 9, 9, 18, 19, 18, 19, 31, 4, 3, 33, 34 | tsmsmhm 23205 | . . . 4 ⊢ (𝜑 → (𝐶‘Σ*𝑘 ∈ 𝐴𝐵) ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝐶 ∘ (𝑘 ∈ 𝐴 ↦ 𝐵)))) |
36 | 13, 15 | cofmpt 6986 | . . . . 5 ⊢ (𝜑 → (𝐶 ∘ (𝑘 ∈ 𝐴 ↦ 𝐵)) = (𝑘 ∈ 𝐴 ↦ (𝐶‘𝐵))) |
37 | 36 | oveq2d 7271 | . . . 4 ⊢ (𝜑 → ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝐶 ∘ (𝑘 ∈ 𝐴 ↦ 𝐵))) = ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ (𝐶‘𝐵)))) |
38 | 35, 37 | eleqtrd 2841 | . . 3 ⊢ (𝜑 → (𝐶‘Σ*𝑘 ∈ 𝐴𝐵) ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ (𝐶‘𝐵)))) |
39 | 1, 2, 3, 16, 38 | esumid 31912 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴(𝐶‘𝐵) = (𝐶‘Σ*𝑘 ∈ 𝐴𝐵)) |
40 | 39 | eqcomd 2744 | 1 ⊢ (𝜑 → (𝐶‘Σ*𝑘 ∈ 𝐴𝐵) = Σ*𝑘 ∈ 𝐴(𝐶‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∪ cuni 4836 ↦ cmpt 5153 ∘ ccom 5584 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 0cc0 10802 +∞cpnf 10937 ≤ cle 10941 +𝑒 cxad 12775 [,]cicc 13011 ↾s cress 16867 ↾t crest 17048 TopOpenctopn 17049 ordTopcordt 17127 ℝ*𝑠cxrs 17128 Mndcmnd 18300 MndHom cmhm 18343 CMndccmn 19301 TopSpctps 21989 Cn ccn 22283 tsums ctsu 23185 Σ*cesum 31895 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-xadd 12778 df-ioo 13012 df-ioc 13013 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-tset 16907 df-ple 16908 df-ds 16910 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-ordt 17129 df-xrs 17130 df-mre 17212 df-mrc 17213 df-acs 17215 df-ps 18199 df-tsr 18200 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-cntz 18838 df-cmn 19303 df-fbas 20507 df-fg 20508 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-ntr 22079 df-nei 22157 df-cn 22286 df-cnp 22287 df-haus 22374 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-tsms 23186 df-esum 31896 |
This theorem is referenced by: esummulc1 31949 |
Copyright terms: Public domain | W3C validator |