Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumcocn Structured version   Visualization version   GIF version

Theorem esumcocn 34063
Description: Lemma for esummulc2 34065 and co. Composing with a continuous function preserves extended sums. (Contributed by Thierry Arnoux, 29-Jun-2017.)
Hypotheses
Ref Expression
esumcocn.j 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
esumcocn.a (𝜑𝐴𝑉)
esumcocn.b ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
esumcocn.1 (𝜑𝐶 ∈ (𝐽 Cn 𝐽))
esumcocn.0 (𝜑 → (𝐶‘0) = 0)
esumcocn.f ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶𝑥) +𝑒 (𝐶𝑦)))
Assertion
Ref Expression
esumcocn (𝜑 → (𝐶‘Σ*𝑘𝐴𝐵) = Σ*𝑘𝐴(𝐶𝐵))
Distinct variable groups:   𝐴,𝑘   𝑥,𝑦,𝑘,𝐶   𝑘,𝑉   𝜑,𝑥,𝑦,𝑘
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦,𝑘)   𝐽(𝑥,𝑦,𝑘)   𝑉(𝑥,𝑦)

Proof of Theorem esumcocn
StepHypRef Expression
1 nfv 1914 . . 3 𝑘𝜑
2 nfcv 2891 . . 3 𝑘𝐴
3 esumcocn.a . . 3 (𝜑𝐴𝑉)
4 esumcocn.1 . . . . . 6 (𝜑𝐶 ∈ (𝐽 Cn 𝐽))
5 xrge0tps 33925 . . . . . . . 8 (ℝ*𝑠s (0[,]+∞)) ∈ TopSp
6 xrge0base 17511 . . . . . . . . 9 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
7 esumcocn.j . . . . . . . . . 10 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
8 xrge0topn 33926 . . . . . . . . . 10 (TopOpen‘(ℝ*𝑠s (0[,]+∞))) = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
97, 8eqtr4i 2755 . . . . . . . . 9 𝐽 = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
106, 9tpsuni 22821 . . . . . . . 8 ((ℝ*𝑠s (0[,]+∞)) ∈ TopSp → (0[,]+∞) = 𝐽)
115, 10ax-mp 5 . . . . . . 7 (0[,]+∞) = 𝐽
1211, 11cnf 23131 . . . . . 6 (𝐶 ∈ (𝐽 Cn 𝐽) → 𝐶:(0[,]+∞)⟶(0[,]+∞))
134, 12syl 17 . . . . 5 (𝜑𝐶:(0[,]+∞)⟶(0[,]+∞))
1413adantr 480 . . . 4 ((𝜑𝑘𝐴) → 𝐶:(0[,]+∞)⟶(0[,]+∞))
15 esumcocn.b . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
1614, 15ffvelcdmd 7019 . . 3 ((𝜑𝑘𝐴) → (𝐶𝐵) ∈ (0[,]+∞))
17 xrge0cmn 21351 . . . . . 6 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
1817a1i 11 . . . . 5 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
195a1i 11 . . . . 5 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ TopSp)
20 cmnmnd 19676 . . . . . . . 8 ((ℝ*𝑠s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
2117, 20ax-mp 5 . . . . . . 7 (ℝ*𝑠s (0[,]+∞)) ∈ Mnd
2221a1i 11 . . . . . 6 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
23 esumcocn.f . . . . . . . 8 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶𝑥) +𝑒 (𝐶𝑦)))
24233expib 1122 . . . . . . 7 (𝜑 → ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶𝑥) +𝑒 (𝐶𝑦))))
2524ralrimivv 3170 . . . . . 6 (𝜑 → ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶𝑥) +𝑒 (𝐶𝑦)))
26 esumcocn.0 . . . . . 6 (𝜑 → (𝐶‘0) = 0)
27 xrge0plusg 21346 . . . . . . . 8 +𝑒 = (+g‘(ℝ*𝑠s (0[,]+∞)))
28 xrge00 32977 . . . . . . . 8 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
296, 6, 27, 27, 28, 28ismhm 18659 . . . . . . 7 (𝐶 ∈ ((ℝ*𝑠s (0[,]+∞)) MndHom (ℝ*𝑠s (0[,]+∞))) ↔ (((ℝ*𝑠s (0[,]+∞)) ∈ Mnd ∧ (ℝ*𝑠s (0[,]+∞)) ∈ Mnd) ∧ (𝐶:(0[,]+∞)⟶(0[,]+∞) ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶𝑥) +𝑒 (𝐶𝑦)) ∧ (𝐶‘0) = 0)))
3029biimpri 228 . . . . . 6 ((((ℝ*𝑠s (0[,]+∞)) ∈ Mnd ∧ (ℝ*𝑠s (0[,]+∞)) ∈ Mnd) ∧ (𝐶:(0[,]+∞)⟶(0[,]+∞) ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶𝑥) +𝑒 (𝐶𝑦)) ∧ (𝐶‘0) = 0)) → 𝐶 ∈ ((ℝ*𝑠s (0[,]+∞)) MndHom (ℝ*𝑠s (0[,]+∞))))
3122, 22, 13, 25, 26, 30syl23anc 1379 . . . . 5 (𝜑𝐶 ∈ ((ℝ*𝑠s (0[,]+∞)) MndHom (ℝ*𝑠s (0[,]+∞))))
32 eqidd 2730 . . . . . 6 (𝜑 → (𝑘𝐴𝐵) = (𝑘𝐴𝐵))
3332, 15fmpt3d 7050 . . . . 5 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
341, 2, 3, 15esumel 34030 . . . . 5 (𝜑 → Σ*𝑘𝐴𝐵 ∈ ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)))
356, 9, 9, 18, 19, 18, 19, 31, 4, 3, 33, 34tsmsmhm 24031 . . . 4 (𝜑 → (𝐶‘Σ*𝑘𝐴𝐵) ∈ ((ℝ*𝑠s (0[,]+∞)) tsums (𝐶 ∘ (𝑘𝐴𝐵))))
3613, 15cofmpt 7066 . . . . 5 (𝜑 → (𝐶 ∘ (𝑘𝐴𝐵)) = (𝑘𝐴 ↦ (𝐶𝐵)))
3736oveq2d 7365 . . . 4 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) tsums (𝐶 ∘ (𝑘𝐴𝐵))) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴 ↦ (𝐶𝐵))))
3835, 37eleqtrd 2830 . . 3 (𝜑 → (𝐶‘Σ*𝑘𝐴𝐵) ∈ ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴 ↦ (𝐶𝐵))))
391, 2, 3, 16, 38esumid 34027 . 2 (𝜑 → Σ*𝑘𝐴(𝐶𝐵) = (𝐶‘Σ*𝑘𝐴𝐵))
4039eqcomd 2735 1 (𝜑 → (𝐶‘Σ*𝑘𝐴𝐵) = Σ*𝑘𝐴(𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044   cuni 4858  cmpt 5173  ccom 5623  wf 6478  cfv 6482  (class class class)co 7349  0cc0 11009  +∞cpnf 11146  cle 11150   +𝑒 cxad 13012  [,]cicc 13251  s cress 17141  t crest 17324  TopOpenctopn 17325  ordTopcordt 17403  *𝑠cxrs 17404  Mndcmnd 18608   MndHom cmhm 18655  CMndccmn 19659  TopSpctps 22817   Cn ccn 23109   tsums ctsu 24011  Σ*cesum 34010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-xadd 13015  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-tset 17180  df-ple 17181  df-ds 17183  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-ordt 17405  df-xrs 17406  df-mre 17488  df-mrc 17489  df-acs 17491  df-ps 18472  df-tsr 18473  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-cntz 19196  df-cmn 19661  df-fbas 21258  df-fg 21259  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-ntr 22905  df-nei 22983  df-cn 23112  df-cnp 23113  df-haus 23200  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-tsms 24012  df-esum 34011
This theorem is referenced by:  esummulc1  34064
  Copyright terms: Public domain W3C validator