![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumcocn | Structured version Visualization version GIF version |
Description: Lemma for esummulc2 32681 and co. Composing with a continuous function preserves extended sums. (Contributed by Thierry Arnoux, 29-Jun-2017.) |
Ref | Expression |
---|---|
esumcocn.j | ⊢ 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) |
esumcocn.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
esumcocn.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
esumcocn.1 | ⊢ (𝜑 → 𝐶 ∈ (𝐽 Cn 𝐽)) |
esumcocn.0 | ⊢ (𝜑 → (𝐶‘0) = 0) |
esumcocn.f | ⊢ ((𝜑 ∧ 𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶‘𝑥) +𝑒 (𝐶‘𝑦))) |
Ref | Expression |
---|---|
esumcocn | ⊢ (𝜑 → (𝐶‘Σ*𝑘 ∈ 𝐴𝐵) = Σ*𝑘 ∈ 𝐴(𝐶‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1917 | . . 3 ⊢ Ⅎ𝑘𝜑 | |
2 | nfcv 2907 | . . 3 ⊢ Ⅎ𝑘𝐴 | |
3 | esumcocn.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
4 | esumcocn.1 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ (𝐽 Cn 𝐽)) | |
5 | xrge0tps 32523 | . . . . . . . 8 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp | |
6 | xrge0base 31876 | . . . . . . . . 9 ⊢ (0[,]+∞) = (Base‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
7 | esumcocn.j | . . . . . . . . . 10 ⊢ 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) | |
8 | xrge0topn 32524 | . . . . . . . . . 10 ⊢ (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) | |
9 | 7, 8 | eqtr4i 2767 | . . . . . . . . 9 ⊢ 𝐽 = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) |
10 | 6, 9 | tpsuni 22285 | . . . . . . . 8 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp → (0[,]+∞) = ∪ 𝐽) |
11 | 5, 10 | ax-mp 5 | . . . . . . 7 ⊢ (0[,]+∞) = ∪ 𝐽 |
12 | 11, 11 | cnf 22597 | . . . . . 6 ⊢ (𝐶 ∈ (𝐽 Cn 𝐽) → 𝐶:(0[,]+∞)⟶(0[,]+∞)) |
13 | 4, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐶:(0[,]+∞)⟶(0[,]+∞)) |
14 | 13 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶:(0[,]+∞)⟶(0[,]+∞)) |
15 | esumcocn.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
16 | 14, 15 | ffvelcdmd 7036 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐶‘𝐵) ∈ (0[,]+∞)) |
17 | xrge0cmn 20839 | . . . . . 6 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | |
18 | 17 | a1i 11 | . . . . 5 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd) |
19 | 5 | a1i 11 | . . . . 5 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp) |
20 | cmnmnd 19579 | . . . . . . . 8 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) | |
21 | 17, 20 | ax-mp 5 | . . . . . . 7 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd |
22 | 21 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) |
23 | esumcocn.f | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶‘𝑥) +𝑒 (𝐶‘𝑦))) | |
24 | 23 | 3expib 1122 | . . . . . . 7 ⊢ (𝜑 → ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶‘𝑥) +𝑒 (𝐶‘𝑦)))) |
25 | 24 | ralrimivv 3195 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶‘𝑥) +𝑒 (𝐶‘𝑦))) |
26 | esumcocn.0 | . . . . . 6 ⊢ (𝜑 → (𝐶‘0) = 0) | |
27 | xrge0plusg 31878 | . . . . . . . 8 ⊢ +𝑒 = (+g‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
28 | xrge00 31877 | . . . . . . . 8 ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
29 | 6, 6, 27, 27, 28, 28 | ismhm 18603 | . . . . . . 7 ⊢ (𝐶 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) MndHom (ℝ*𝑠 ↾s (0[,]+∞))) ↔ (((ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd ∧ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) ∧ (𝐶:(0[,]+∞)⟶(0[,]+∞) ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶‘𝑥) +𝑒 (𝐶‘𝑦)) ∧ (𝐶‘0) = 0))) |
30 | 29 | biimpri 227 | . . . . . 6 ⊢ ((((ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd ∧ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) ∧ (𝐶:(0[,]+∞)⟶(0[,]+∞) ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶‘𝑥) +𝑒 (𝐶‘𝑦)) ∧ (𝐶‘0) = 0)) → 𝐶 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) MndHom (ℝ*𝑠 ↾s (0[,]+∞)))) |
31 | 22, 22, 13, 25, 26, 30 | syl23anc 1377 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) MndHom (ℝ*𝑠 ↾s (0[,]+∞)))) |
32 | eqidd 2737 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
33 | 32, 15 | fmpt3d 7064 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
34 | 1, 2, 3, 15 | esumel 32646 | . . . . 5 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵))) |
35 | 6, 9, 9, 18, 19, 18, 19, 31, 4, 3, 33, 34 | tsmsmhm 23497 | . . . 4 ⊢ (𝜑 → (𝐶‘Σ*𝑘 ∈ 𝐴𝐵) ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝐶 ∘ (𝑘 ∈ 𝐴 ↦ 𝐵)))) |
36 | 13, 15 | cofmpt 7078 | . . . . 5 ⊢ (𝜑 → (𝐶 ∘ (𝑘 ∈ 𝐴 ↦ 𝐵)) = (𝑘 ∈ 𝐴 ↦ (𝐶‘𝐵))) |
37 | 36 | oveq2d 7373 | . . . 4 ⊢ (𝜑 → ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝐶 ∘ (𝑘 ∈ 𝐴 ↦ 𝐵))) = ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ (𝐶‘𝐵)))) |
38 | 35, 37 | eleqtrd 2840 | . . 3 ⊢ (𝜑 → (𝐶‘Σ*𝑘 ∈ 𝐴𝐵) ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ (𝐶‘𝐵)))) |
39 | 1, 2, 3, 16, 38 | esumid 32643 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴(𝐶‘𝐵) = (𝐶‘Σ*𝑘 ∈ 𝐴𝐵)) |
40 | 39 | eqcomd 2742 | 1 ⊢ (𝜑 → (𝐶‘Σ*𝑘 ∈ 𝐴𝐵) = Σ*𝑘 ∈ 𝐴(𝐶‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3064 ∪ cuni 4865 ↦ cmpt 5188 ∘ ccom 5637 ⟶wf 6492 ‘cfv 6496 (class class class)co 7357 0cc0 11051 +∞cpnf 11186 ≤ cle 11190 +𝑒 cxad 13031 [,]cicc 13267 ↾s cress 17112 ↾t crest 17302 TopOpenctopn 17303 ordTopcordt 17381 ℝ*𝑠cxrs 17382 Mndcmnd 18556 MndHom cmhm 18599 CMndccmn 19562 TopSpctps 22281 Cn ccn 22575 tsums ctsu 23477 Σ*cesum 32626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-map 8767 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fsupp 9306 df-fi 9347 df-sup 9378 df-inf 9379 df-oi 9446 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-q 12874 df-xadd 13034 df-ioo 13268 df-ioc 13269 df-ico 13270 df-icc 13271 df-fz 13425 df-fzo 13568 df-seq 13907 df-hash 14231 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-tset 17152 df-ple 17153 df-ds 17155 df-rest 17304 df-topn 17305 df-0g 17323 df-gsum 17324 df-topgen 17325 df-ordt 17383 df-xrs 17384 df-mre 17466 df-mrc 17467 df-acs 17469 df-ps 18455 df-tsr 18456 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-mhm 18601 df-submnd 18602 df-cntz 19097 df-cmn 19564 df-fbas 20793 df-fg 20794 df-top 22243 df-topon 22260 df-topsp 22282 df-bases 22296 df-ntr 22371 df-nei 22449 df-cn 22578 df-cnp 22579 df-haus 22666 df-fil 23197 df-fm 23289 df-flim 23290 df-flf 23291 df-tsms 23478 df-esum 32627 |
This theorem is referenced by: esummulc1 32680 |
Copyright terms: Public domain | W3C validator |