MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trfilss Structured version   Visualization version   GIF version

Theorem trfilss 23897
Description: If 𝐴 is a member of the filter, then the filter truncated to 𝐴 is a subset of the original filter. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
trfilss ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝐹t 𝐴) ⊆ 𝐹)

Proof of Theorem trfilss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 restval 17471 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝐹t 𝐴) = ran (𝑥𝐹 ↦ (𝑥𝐴)))
2 filin 23862 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝐹𝐴𝐹) → (𝑥𝐴) ∈ 𝐹)
323expa 1119 . . . . 5 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝐹) ∧ 𝐴𝐹) → (𝑥𝐴) ∈ 𝐹)
43an32s 652 . . . 4 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) ∧ 𝑥𝐹) → (𝑥𝐴) ∈ 𝐹)
54fmpttd 7135 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝑥𝐹 ↦ (𝑥𝐴)):𝐹𝐹)
65frnd 6744 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → ran (𝑥𝐹 ↦ (𝑥𝐴)) ⊆ 𝐹)
71, 6eqsstrd 4018 1 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝐹t 𝐴) ⊆ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  cin 3950  wss 3951  cmpt 5225  ran crn 5686  cfv 6561  (class class class)co 7431  t crest 17465  Filcfil 23853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-rest 17467  df-fbas 21361  df-fil 23854
This theorem is referenced by:  fgtr  23898  flimrest  23991
  Copyright terms: Public domain W3C validator