Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > trfilss | Structured version Visualization version GIF version |
Description: If 𝐴 is a member of the filter, then the filter truncated to 𝐴 is a subset of the original filter. (Contributed by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
trfilss | ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝐹 ↾t 𝐴) ⊆ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | restval 17054 | . 2 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝐹 ↾t 𝐴) = ran (𝑥 ∈ 𝐹 ↦ (𝑥 ∩ 𝐴))) | |
2 | filin 22913 | . . . . . 6 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝐹 ∧ 𝐴 ∈ 𝐹) → (𝑥 ∩ 𝐴) ∈ 𝐹) | |
3 | 2 | 3expa 1116 | . . . . 5 ⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝐹) ∧ 𝐴 ∈ 𝐹) → (𝑥 ∩ 𝐴) ∈ 𝐹) |
4 | 3 | an32s 648 | . . . 4 ⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ 𝑥 ∈ 𝐹) → (𝑥 ∩ 𝐴) ∈ 𝐹) |
5 | 4 | fmpttd 6971 | . . 3 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝑥 ∈ 𝐹 ↦ (𝑥 ∩ 𝐴)):𝐹⟶𝐹) |
6 | 5 | frnd 6592 | . 2 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → ran (𝑥 ∈ 𝐹 ↦ (𝑥 ∩ 𝐴)) ⊆ 𝐹) |
7 | 1, 6 | eqsstrd 3955 | 1 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝐹 ↾t 𝐴) ⊆ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∩ cin 3882 ⊆ wss 3883 ↦ cmpt 5153 ran crn 5581 ‘cfv 6418 (class class class)co 7255 ↾t crest 17048 Filcfil 22904 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-rest 17050 df-fbas 20507 df-fil 22905 |
This theorem is referenced by: fgtr 22949 flimrest 23042 |
Copyright terms: Public domain | W3C validator |