![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trfilss | Structured version Visualization version GIF version |
Description: If 𝐴 is a member of the filter, then the filter truncated to 𝐴 is a subset of the original filter. (Contributed by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
trfilss | ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝐹 ↾t 𝐴) ⊆ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | restval 17399 | . 2 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝐹 ↾t 𝐴) = ran (𝑥 ∈ 𝐹 ↦ (𝑥 ∩ 𝐴))) | |
2 | filin 23745 | . . . . . 6 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝐹 ∧ 𝐴 ∈ 𝐹) → (𝑥 ∩ 𝐴) ∈ 𝐹) | |
3 | 2 | 3expa 1116 | . . . . 5 ⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝐹) ∧ 𝐴 ∈ 𝐹) → (𝑥 ∩ 𝐴) ∈ 𝐹) |
4 | 3 | an32s 651 | . . . 4 ⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ 𝑥 ∈ 𝐹) → (𝑥 ∩ 𝐴) ∈ 𝐹) |
5 | 4 | fmpttd 7119 | . . 3 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝑥 ∈ 𝐹 ↦ (𝑥 ∩ 𝐴)):𝐹⟶𝐹) |
6 | 5 | frnd 6724 | . 2 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → ran (𝑥 ∈ 𝐹 ↦ (𝑥 ∩ 𝐴)) ⊆ 𝐹) |
7 | 1, 6 | eqsstrd 4016 | 1 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝐹 ↾t 𝐴) ⊆ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2099 ∩ cin 3943 ⊆ wss 3944 ↦ cmpt 5225 ran crn 5673 ‘cfv 6542 (class class class)co 7414 ↾t crest 17393 Filcfil 23736 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-rest 17395 df-fbas 21263 df-fil 23737 |
This theorem is referenced by: fgtr 23781 flimrest 23874 |
Copyright terms: Public domain | W3C validator |