![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trfilss | Structured version Visualization version GIF version |
Description: If 𝐴 is a member of the filter, then the filter truncated to 𝐴 is a subset of the original filter. (Contributed by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
trfilss | ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝐹 ↾t 𝐴) ⊆ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | restval 16447 | . 2 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝐹 ↾t 𝐴) = ran (𝑥 ∈ 𝐹 ↦ (𝑥 ∩ 𝐴))) | |
2 | filin 22035 | . . . . . 6 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝐹 ∧ 𝐴 ∈ 𝐹) → (𝑥 ∩ 𝐴) ∈ 𝐹) | |
3 | 2 | 3expa 1151 | . . . . 5 ⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝐹) ∧ 𝐴 ∈ 𝐹) → (𝑥 ∩ 𝐴) ∈ 𝐹) |
4 | 3 | an32s 642 | . . . 4 ⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ 𝑥 ∈ 𝐹) → (𝑥 ∩ 𝐴) ∈ 𝐹) |
5 | 4 | fmpttd 6639 | . . 3 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝑥 ∈ 𝐹 ↦ (𝑥 ∩ 𝐴)):𝐹⟶𝐹) |
6 | 5 | frnd 6289 | . 2 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → ran (𝑥 ∈ 𝐹 ↦ (𝑥 ∩ 𝐴)) ⊆ 𝐹) |
7 | 1, 6 | eqsstrd 3864 | 1 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝐹 ↾t 𝐴) ⊆ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∈ wcel 2164 ∩ cin 3797 ⊆ wss 3798 ↦ cmpt 4954 ran crn 5347 ‘cfv 6127 (class class class)co 6910 ↾t crest 16441 Filcfil 22026 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-rest 16443 df-fbas 20110 df-fil 22027 |
This theorem is referenced by: fgtr 22071 flimrest 22164 |
Copyright terms: Public domain | W3C validator |