Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eupth2lem3lem2 | Structured version Visualization version GIF version |
Description: Lemma for eupth2lem3 28596. (Contributed by AV, 21-Feb-2021.) |
Ref | Expression |
---|---|
trlsegvdeg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
trlsegvdeg.i | ⊢ 𝐼 = (iEdg‘𝐺) |
trlsegvdeg.f | ⊢ (𝜑 → Fun 𝐼) |
trlsegvdeg.n | ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) |
trlsegvdeg.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
trlsegvdeg.w | ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
trlsegvdeg.vx | ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) |
trlsegvdeg.vy | ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) |
trlsegvdeg.vz | ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) |
trlsegvdeg.ix | ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
trlsegvdeg.iy | ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) |
trlsegvdeg.iz | ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) |
Ref | Expression |
---|---|
eupth2lem3lem2 | ⊢ (𝜑 → ((VtxDeg‘𝑌)‘𝑈) ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trlsegvdeg.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
2 | trlsegvdeg.vy | . . . . 5 ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) | |
3 | 1, 2 | eleqtrrd 2844 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ (Vtx‘𝑌)) |
4 | 3 | elfvexd 6805 | . . 3 ⊢ (𝜑 → 𝑌 ∈ V) |
5 | trlsegvdeg.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
6 | trlsegvdeg.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
7 | trlsegvdeg.f | . . . 4 ⊢ (𝜑 → Fun 𝐼) | |
8 | trlsegvdeg.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) | |
9 | trlsegvdeg.w | . . . 4 ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) | |
10 | trlsegvdeg.vx | . . . 4 ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) | |
11 | trlsegvdeg.vz | . . . 4 ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) | |
12 | trlsegvdeg.ix | . . . 4 ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) | |
13 | trlsegvdeg.iy | . . . 4 ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) | |
14 | trlsegvdeg.iz | . . . 4 ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) | |
15 | 5, 6, 7, 8, 1, 9, 10, 2, 11, 12, 13, 14 | trlsegvdeglem7 28586 | . . 3 ⊢ (𝜑 → dom (iEdg‘𝑌) ∈ Fin) |
16 | eqid 2740 | . . . 4 ⊢ (Vtx‘𝑌) = (Vtx‘𝑌) | |
17 | eqid 2740 | . . . 4 ⊢ (iEdg‘𝑌) = (iEdg‘𝑌) | |
18 | eqid 2740 | . . . 4 ⊢ dom (iEdg‘𝑌) = dom (iEdg‘𝑌) | |
19 | 16, 17, 18 | vtxdgfisf 27841 | . . 3 ⊢ ((𝑌 ∈ V ∧ dom (iEdg‘𝑌) ∈ Fin) → (VtxDeg‘𝑌):(Vtx‘𝑌)⟶ℕ0) |
20 | 4, 15, 19 | syl2anc 584 | . 2 ⊢ (𝜑 → (VtxDeg‘𝑌):(Vtx‘𝑌)⟶ℕ0) |
21 | 20, 3 | ffvelrnd 6959 | 1 ⊢ (𝜑 → ((VtxDeg‘𝑌)‘𝑈) ∈ ℕ0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 Vcvv 3431 {csn 4567 〈cop 4573 class class class wbr 5079 dom cdm 5590 ↾ cres 5592 “ cima 5593 Fun wfun 6426 ⟶wf 6428 ‘cfv 6432 (class class class)co 7271 Fincfn 8716 0cc0 10872 ℕ0cn0 12233 ...cfz 13238 ..^cfzo 13381 ♯chash 14042 Vtxcvtx 27364 iEdgciedg 27365 VtxDegcvtxdg 27830 Trailsctrls 28055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-card 9698 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-xnn0 12306 df-z 12320 df-uz 12582 df-xadd 12848 df-hash 14043 df-vtxdg 27831 |
This theorem is referenced by: eupth2lem3lem3 28590 |
Copyright terms: Public domain | W3C validator |