Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eupth2lem3lem2 | Structured version Visualization version GIF version |
Description: Lemma for eupth2lem3 28579. (Contributed by AV, 21-Feb-2021.) |
Ref | Expression |
---|---|
trlsegvdeg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
trlsegvdeg.i | ⊢ 𝐼 = (iEdg‘𝐺) |
trlsegvdeg.f | ⊢ (𝜑 → Fun 𝐼) |
trlsegvdeg.n | ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) |
trlsegvdeg.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
trlsegvdeg.w | ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
trlsegvdeg.vx | ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) |
trlsegvdeg.vy | ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) |
trlsegvdeg.vz | ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) |
trlsegvdeg.ix | ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
trlsegvdeg.iy | ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) |
trlsegvdeg.iz | ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) |
Ref | Expression |
---|---|
eupth2lem3lem2 | ⊢ (𝜑 → ((VtxDeg‘𝑌)‘𝑈) ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trlsegvdeg.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
2 | trlsegvdeg.vy | . . . . 5 ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) | |
3 | 1, 2 | eleqtrrd 2843 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ (Vtx‘𝑌)) |
4 | 3 | elfvexd 6802 | . . 3 ⊢ (𝜑 → 𝑌 ∈ V) |
5 | trlsegvdeg.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
6 | trlsegvdeg.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
7 | trlsegvdeg.f | . . . 4 ⊢ (𝜑 → Fun 𝐼) | |
8 | trlsegvdeg.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) | |
9 | trlsegvdeg.w | . . . 4 ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) | |
10 | trlsegvdeg.vx | . . . 4 ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) | |
11 | trlsegvdeg.vz | . . . 4 ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) | |
12 | trlsegvdeg.ix | . . . 4 ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) | |
13 | trlsegvdeg.iy | . . . 4 ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) | |
14 | trlsegvdeg.iz | . . . 4 ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) | |
15 | 5, 6, 7, 8, 1, 9, 10, 2, 11, 12, 13, 14 | trlsegvdeglem7 28569 | . . 3 ⊢ (𝜑 → dom (iEdg‘𝑌) ∈ Fin) |
16 | eqid 2739 | . . . 4 ⊢ (Vtx‘𝑌) = (Vtx‘𝑌) | |
17 | eqid 2739 | . . . 4 ⊢ (iEdg‘𝑌) = (iEdg‘𝑌) | |
18 | eqid 2739 | . . . 4 ⊢ dom (iEdg‘𝑌) = dom (iEdg‘𝑌) | |
19 | 16, 17, 18 | vtxdgfisf 27824 | . . 3 ⊢ ((𝑌 ∈ V ∧ dom (iEdg‘𝑌) ∈ Fin) → (VtxDeg‘𝑌):(Vtx‘𝑌)⟶ℕ0) |
20 | 4, 15, 19 | syl2anc 583 | . 2 ⊢ (𝜑 → (VtxDeg‘𝑌):(Vtx‘𝑌)⟶ℕ0) |
21 | 20, 3 | ffvelrnd 6956 | 1 ⊢ (𝜑 → ((VtxDeg‘𝑌)‘𝑈) ∈ ℕ0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 Vcvv 3430 {csn 4566 〈cop 4572 class class class wbr 5078 dom cdm 5588 ↾ cres 5590 “ cima 5591 Fun wfun 6424 ⟶wf 6426 ‘cfv 6430 (class class class)co 7268 Fincfn 8707 0cc0 10855 ℕ0cn0 12216 ...cfz 13221 ..^cfzo 13364 ♯chash 14025 Vtxcvtx 27347 iEdgciedg 27348 VtxDegcvtxdg 27813 Trailsctrls 28038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-n0 12217 df-xnn0 12289 df-z 12303 df-uz 12565 df-xadd 12831 df-hash 14026 df-vtxdg 27814 |
This theorem is referenced by: eupth2lem3lem3 28573 |
Copyright terms: Public domain | W3C validator |