| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2735 |
. . . . . 6
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
| 2 | | eqid 2735 |
. . . . . 6
⊢
(Vtx‘𝐻) =
(Vtx‘𝐻) |
| 3 | | eqid 2735 |
. . . . . 6
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) |
| 4 | | eqid 2735 |
. . . . . 6
⊢
(iEdg‘𝐻) =
(iEdg‘𝐻) |
| 5 | 1, 2, 3, 4 | grimprop 47844 |
. . . . 5
⊢ (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))))) |
| 6 | | uhgrimedgi.e |
. . . . . . . . . . . . 13
⊢ 𝐸 = (Edg‘𝐺) |
| 7 | 6 | eleq2i 2826 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ 𝐸 ↔ 𝐾 ∈ (Edg‘𝐺)) |
| 8 | 3 | uhgrfun 28991 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ UHGraph → Fun
(iEdg‘𝐺)) |
| 9 | 3 | edgiedgb 28979 |
. . . . . . . . . . . . 13
⊢ (Fun
(iEdg‘𝐺) →
(𝐾 ∈ (Edg‘𝐺) ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑘))) |
| 10 | 8, 9 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ UHGraph → (𝐾 ∈ (Edg‘𝐺) ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑘))) |
| 11 | 7, 10 | bitrid 283 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ UHGraph → (𝐾 ∈ 𝐸 ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑘))) |
| 12 | 11 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝐾 ∈ 𝐸 ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑘))) |
| 13 | | simplr 768 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → 𝑘 ∈ dom (iEdg‘𝐺)) |
| 14 | | 2fveq3 6880 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 = 𝑘 → ((iEdg‘𝐻)‘(𝑗‘𝑖)) = ((iEdg‘𝐻)‘(𝑗‘𝑘))) |
| 15 | | fveq2 6875 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 = 𝑘 → ((iEdg‘𝐺)‘𝑖) = ((iEdg‘𝐺)‘𝑘)) |
| 16 | 15 | imaeq2d 6047 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 = 𝑘 → (𝐹 “ ((iEdg‘𝐺)‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘))) |
| 17 | 14, 16 | eqeq12d 2751 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 = 𝑘 → (((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) ↔ ((iEdg‘𝐻)‘(𝑗‘𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)))) |
| 18 | 17 | rspcv 3597 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ dom (iEdg‘𝐺) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → ((iEdg‘𝐻)‘(𝑗‘𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)))) |
| 19 | 13, 18 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → ((iEdg‘𝐻)‘(𝑗‘𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)))) |
| 20 | 4 | uhgrfun 28991 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐻 ∈ UHGraph → Fun
(iEdg‘𝐻)) |
| 21 | 20 | ad3antlr 731 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → Fun (iEdg‘𝐻)) |
| 22 | | f1of 6817 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) → 𝑗:dom (iEdg‘𝐺)⟶dom (iEdg‘𝐻)) |
| 23 | 22 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝐺 ∈
UHGraph ∧ 𝐻 ∈
UHGraph) ∧ 𝑘 ∈ dom
(iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) →
𝑗:dom (iEdg‘𝐺)⟶dom (iEdg‘𝐻)) |
| 24 | 13 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝐺 ∈
UHGraph ∧ 𝐻 ∈
UHGraph) ∧ 𝑘 ∈ dom
(iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) →
𝑘 ∈ dom
(iEdg‘𝐺)) |
| 25 | 23, 24 | ffvelcdmd 7074 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝐺 ∈
UHGraph ∧ 𝐻 ∈
UHGraph) ∧ 𝑘 ∈ dom
(iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) →
(𝑗‘𝑘) ∈ dom (iEdg‘𝐻)) |
| 26 | 4 | iedgedg 28975 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((Fun
(iEdg‘𝐻) ∧ (𝑗‘𝑘) ∈ dom (iEdg‘𝐻)) → ((iEdg‘𝐻)‘(𝑗‘𝑘)) ∈ (Edg‘𝐻)) |
| 27 | 21, 25, 26 | syl2an2r 685 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝐺 ∈
UHGraph ∧ 𝐻 ∈
UHGraph) ∧ 𝑘 ∈ dom
(iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) →
((iEdg‘𝐻)‘(𝑗‘𝑘)) ∈ (Edg‘𝐻)) |
| 28 | | uhgrimedgi.d |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝐷 = (Edg‘𝐻) |
| 29 | 27, 28 | eleqtrrdi 2845 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝐺 ∈
UHGraph ∧ 𝐻 ∈
UHGraph) ∧ 𝑘 ∈ dom
(iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) →
((iEdg‘𝐻)‘(𝑗‘𝑘)) ∈ 𝐷) |
| 30 | | eleq1 2822 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹 “ ((iEdg‘𝐺)‘𝑘)) = ((iEdg‘𝐻)‘(𝑗‘𝑘)) → ((𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷 ↔ ((iEdg‘𝐻)‘(𝑗‘𝑘)) ∈ 𝐷)) |
| 31 | 30 | eqcoms 2743 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((iEdg‘𝐻)‘(𝑗‘𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)) → ((𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷 ↔ ((iEdg‘𝐻)‘(𝑗‘𝑘)) ∈ 𝐷)) |
| 32 | 29, 31 | syl5ibrcom 247 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐺 ∈
UHGraph ∧ 𝐻 ∈
UHGraph) ∧ 𝑘 ∈ dom
(iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) →
(((iEdg‘𝐻)‘(𝑗‘𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷)) |
| 33 | 32 | ex 412 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) →
(((iEdg‘𝐻)‘(𝑗‘𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))) |
| 34 | 19, 33 | syl5d 73 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) →
(∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))) |
| 35 | 34 | impd 410 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷)) |
| 36 | 35 | ex 412 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))) |
| 37 | 36 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑘)) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))) |
| 38 | 37 | 3imp 1110 |
. . . . . . . . . . . . . 14
⊢
(((((𝐺 ∈
UHGraph ∧ 𝐻 ∈
UHGraph) ∧ 𝑘 ∈ dom
(iEdg‘𝐺)) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑘)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷) |
| 39 | | imaeq2 6043 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐾 = ((iEdg‘𝐺)‘𝑘) → (𝐹 “ 𝐾) = (𝐹 “ ((iEdg‘𝐺)‘𝑘))) |
| 40 | 39 | eleq1d 2819 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 = ((iEdg‘𝐺)‘𝑘) → ((𝐹 “ 𝐾) ∈ 𝐷 ↔ (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷)) |
| 41 | 40 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑘)) → ((𝐹 “ 𝐾) ∈ 𝐷 ↔ (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷)) |
| 42 | 41 | 3ad2ant1 1133 |
. . . . . . . . . . . . . 14
⊢
(((((𝐺 ∈
UHGraph ∧ 𝐻 ∈
UHGraph) ∧ 𝑘 ∈ dom
(iEdg‘𝐺)) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑘)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → ((𝐹 “ 𝐾) ∈ 𝐷 ↔ (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷)) |
| 43 | 38, 42 | mpbird 257 |
. . . . . . . . . . . . 13
⊢
(((((𝐺 ∈
UHGraph ∧ 𝐻 ∈
UHGraph) ∧ 𝑘 ∈ dom
(iEdg‘𝐺)) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑘)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (𝐹 “ 𝐾) ∈ 𝐷) |
| 44 | 43 | 3exp 1119 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑘)) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹 “ 𝐾) ∈ 𝐷))) |
| 45 | 44 | ex 412 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (𝐾 = ((iEdg‘𝐺)‘𝑘) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹 “ 𝐾) ∈ 𝐷)))) |
| 46 | 45 | rexlimdva 3141 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) →
(∃𝑘 ∈ dom
(iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑘) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹 “ 𝐾) ∈ 𝐷)))) |
| 47 | 12, 46 | sylbid 240 |
. . . . . . . . 9
⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝐾 ∈ 𝐸 → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹 “ 𝐾) ∈ 𝐷)))) |
| 48 | 47 | imp 406 |
. . . . . . . 8
⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐾 ∈ 𝐸) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹 “ 𝐾) ∈ 𝐷))) |
| 49 | 48 | imp 406 |
. . . . . . 7
⊢ ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐾 ∈ 𝐸) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹 “ 𝐾) ∈ 𝐷)) |
| 50 | 49 | exlimdv 1933 |
. . . . . 6
⊢ ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐾 ∈ 𝐸) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → (∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹 “ 𝐾) ∈ 𝐷)) |
| 51 | 50 | expimpd 453 |
. . . . 5
⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐾 ∈ 𝐸) → ((𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (𝐹 “ 𝐾) ∈ 𝐷)) |
| 52 | 5, 51 | syl5 34 |
. . . 4
⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐾 ∈ 𝐸) → (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐹 “ 𝐾) ∈ 𝐷)) |
| 53 | 52 | ex 412 |
. . 3
⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝐾 ∈ 𝐸 → (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐹 “ 𝐾) ∈ 𝐷))) |
| 54 | 53 | impcomd 411 |
. 2
⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → ((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ∈ 𝐸) → (𝐹 “ 𝐾) ∈ 𝐷)) |
| 55 | 54 | imp 406 |
1
⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ (𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ∈ 𝐸)) → (𝐹 “ 𝐾) ∈ 𝐷) |