Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uhgrimedgi Structured version   Visualization version   GIF version

Theorem uhgrimedgi 47875
Description: An isomorphism between graphs preserves edges, i.e. if there is an edge in one graph connecting vertices then there is an edge in the other graph connecting the corresponding vertices. (Contributed by AV, 25-Oct-2025.)
Hypotheses
Ref Expression
uhgrimedgi.e 𝐸 = (Edg‘𝐺)
uhgrimedgi.d 𝐷 = (Edg‘𝐻)
Assertion
Ref Expression
uhgrimedgi (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ (𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾𝐸)) → (𝐹𝐾) ∈ 𝐷)

Proof of Theorem uhgrimedgi
Dummy variables 𝑗 𝑘 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2729 . . . . . 6 (Vtx‘𝐻) = (Vtx‘𝐻)
3 eqid 2729 . . . . . 6 (iEdg‘𝐺) = (iEdg‘𝐺)
4 eqid 2729 . . . . . 6 (iEdg‘𝐻) = (iEdg‘𝐻)
51, 2, 3, 4grimprop 47868 . . . . 5 (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))))
6 uhgrimedgi.e . . . . . . . . . . . . 13 𝐸 = (Edg‘𝐺)
76eleq2i 2820 . . . . . . . . . . . 12 (𝐾𝐸𝐾 ∈ (Edg‘𝐺))
83uhgrfun 29029 . . . . . . . . . . . . 13 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
93edgiedgb 29017 . . . . . . . . . . . . 13 (Fun (iEdg‘𝐺) → (𝐾 ∈ (Edg‘𝐺) ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑘)))
108, 9syl 17 . . . . . . . . . . . 12 (𝐺 ∈ UHGraph → (𝐾 ∈ (Edg‘𝐺) ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑘)))
117, 10bitrid 283 . . . . . . . . . . 11 (𝐺 ∈ UHGraph → (𝐾𝐸 ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑘)))
1211adantr 480 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝐾𝐸 ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑘)))
13 simplr 768 . . . . . . . . . . . . . . . . . . . 20 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → 𝑘 ∈ dom (iEdg‘𝐺))
14 2fveq3 6831 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑘 → ((iEdg‘𝐻)‘(𝑗𝑖)) = ((iEdg‘𝐻)‘(𝑗𝑘)))
15 fveq2 6826 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝑘 → ((iEdg‘𝐺)‘𝑖) = ((iEdg‘𝐺)‘𝑘))
1615imaeq2d 6015 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑘 → (𝐹 “ ((iEdg‘𝐺)‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)))
1714, 16eqeq12d 2745 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑘 → (((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) ↔ ((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘))))
1817rspcv 3575 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ dom (iEdg‘𝐺) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → ((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘))))
1913, 18syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → ((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘))))
204uhgrfun 29029 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐻 ∈ UHGraph → Fun (iEdg‘𝐻))
2120ad3antlr 731 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → Fun (iEdg‘𝐻))
22 f1of 6768 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) → 𝑗:dom (iEdg‘𝐺)⟶dom (iEdg‘𝐻))
2322adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → 𝑗:dom (iEdg‘𝐺)⟶dom (iEdg‘𝐻))
2413adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → 𝑘 ∈ dom (iEdg‘𝐺))
2523, 24ffvelcdmd 7023 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → (𝑗𝑘) ∈ dom (iEdg‘𝐻))
264iedgedg 29013 . . . . . . . . . . . . . . . . . . . . . . 23 ((Fun (iEdg‘𝐻) ∧ (𝑗𝑘) ∈ dom (iEdg‘𝐻)) → ((iEdg‘𝐻)‘(𝑗𝑘)) ∈ (Edg‘𝐻))
2721, 25, 26syl2an2r 685 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → ((iEdg‘𝐻)‘(𝑗𝑘)) ∈ (Edg‘𝐻))
28 uhgrimedgi.d . . . . . . . . . . . . . . . . . . . . . 22 𝐷 = (Edg‘𝐻)
2927, 28eleqtrrdi 2839 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → ((iEdg‘𝐻)‘(𝑗𝑘)) ∈ 𝐷)
30 eleq1 2816 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 “ ((iEdg‘𝐺)‘𝑘)) = ((iEdg‘𝐻)‘(𝑗𝑘)) → ((𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷 ↔ ((iEdg‘𝐻)‘(𝑗𝑘)) ∈ 𝐷))
3130eqcoms 2737 . . . . . . . . . . . . . . . . . . . . 21 (((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)) → ((𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷 ↔ ((iEdg‘𝐻)‘(𝑗𝑘)) ∈ 𝐷))
3229, 31syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . 20 (((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → (((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))
3332ex 412 . . . . . . . . . . . . . . . . . . 19 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) → (((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷)))
3419, 33syl5d 73 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷)))
3534impd 410 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))
3635ex 412 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷)))
3736adantr 480 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑘)) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷)))
38373imp 1110 . . . . . . . . . . . . . 14 (((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑘)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷)
39 imaeq2 6011 . . . . . . . . . . . . . . . . 17 (𝐾 = ((iEdg‘𝐺)‘𝑘) → (𝐹𝐾) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)))
4039eleq1d 2813 . . . . . . . . . . . . . . . 16 (𝐾 = ((iEdg‘𝐺)‘𝑘) → ((𝐹𝐾) ∈ 𝐷 ↔ (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))
4140adantl 481 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑘)) → ((𝐹𝐾) ∈ 𝐷 ↔ (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))
42413ad2ant1 1133 . . . . . . . . . . . . . 14 (((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑘)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → ((𝐹𝐾) ∈ 𝐷 ↔ (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))
4338, 42mpbird 257 . . . . . . . . . . . . 13 (((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑘)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (𝐹𝐾) ∈ 𝐷)
44433exp 1119 . . . . . . . . . . . 12 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑘)) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹𝐾) ∈ 𝐷)))
4544ex 412 . . . . . . . . . . 11 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (𝐾 = ((iEdg‘𝐺)‘𝑘) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹𝐾) ∈ 𝐷))))
4645rexlimdva 3130 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (∃𝑘 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑘) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹𝐾) ∈ 𝐷))))
4712, 46sylbid 240 . . . . . . . . 9 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝐾𝐸 → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹𝐾) ∈ 𝐷))))
4847imp 406 . . . . . . . 8 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐾𝐸) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹𝐾) ∈ 𝐷)))
4948imp 406 . . . . . . 7 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐾𝐸) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹𝐾) ∈ 𝐷))
5049exlimdv 1933 . . . . . 6 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐾𝐸) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → (∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹𝐾) ∈ 𝐷))
5150expimpd 453 . . . . 5 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐾𝐸) → ((𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (𝐹𝐾) ∈ 𝐷))
525, 51syl5 34 . . . 4 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐾𝐸) → (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐹𝐾) ∈ 𝐷))
5352ex 412 . . 3 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝐾𝐸 → (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐹𝐾) ∈ 𝐷)))
5453impcomd 411 . 2 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → ((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾𝐸) → (𝐹𝐾) ∈ 𝐷))
5554imp 406 1 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ (𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾𝐸)) → (𝐹𝐾) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  dom cdm 5623  cima 5626  Fun wfun 6480  wf 6482  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7353  Vtxcvtx 28959  iEdgciedg 28960  Edgcedg 29010  UHGraphcuhgr 29019   GraphIso cgrim 47860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-map 8762  df-edg 29011  df-uhgr 29021  df-grim 47863
This theorem is referenced by:  uhgrimedg  47876  upgrimwlklem2  47883  upgrimwlklem3  47884  upgrimtrlslem1  47889
  Copyright terms: Public domain W3C validator