Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uhgrimedgi Structured version   Visualization version   GIF version

Theorem uhgrimedgi 47851
Description: An isomorphism between graphs preserves edges, i.e. if there is an edge in one graph connecting vertices then there is an edge in the other graph connecting the corresponding vertices. (Contributed by AV, 25-Oct-2025.)
Hypotheses
Ref Expression
uhgrimedgi.e 𝐸 = (Edg‘𝐺)
uhgrimedgi.d 𝐷 = (Edg‘𝐻)
Assertion
Ref Expression
uhgrimedgi (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ (𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾𝐸)) → (𝐹𝐾) ∈ 𝐷)

Proof of Theorem uhgrimedgi
Dummy variables 𝑗 𝑘 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2735 . . . . . 6 (Vtx‘𝐻) = (Vtx‘𝐻)
3 eqid 2735 . . . . . 6 (iEdg‘𝐺) = (iEdg‘𝐺)
4 eqid 2735 . . . . . 6 (iEdg‘𝐻) = (iEdg‘𝐻)
51, 2, 3, 4grimprop 47844 . . . . 5 (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))))
6 uhgrimedgi.e . . . . . . . . . . . . 13 𝐸 = (Edg‘𝐺)
76eleq2i 2826 . . . . . . . . . . . 12 (𝐾𝐸𝐾 ∈ (Edg‘𝐺))
83uhgrfun 28991 . . . . . . . . . . . . 13 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
93edgiedgb 28979 . . . . . . . . . . . . 13 (Fun (iEdg‘𝐺) → (𝐾 ∈ (Edg‘𝐺) ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑘)))
108, 9syl 17 . . . . . . . . . . . 12 (𝐺 ∈ UHGraph → (𝐾 ∈ (Edg‘𝐺) ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑘)))
117, 10bitrid 283 . . . . . . . . . . 11 (𝐺 ∈ UHGraph → (𝐾𝐸 ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑘)))
1211adantr 480 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝐾𝐸 ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑘)))
13 simplr 768 . . . . . . . . . . . . . . . . . . . 20 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → 𝑘 ∈ dom (iEdg‘𝐺))
14 2fveq3 6880 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑘 → ((iEdg‘𝐻)‘(𝑗𝑖)) = ((iEdg‘𝐻)‘(𝑗𝑘)))
15 fveq2 6875 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝑘 → ((iEdg‘𝐺)‘𝑖) = ((iEdg‘𝐺)‘𝑘))
1615imaeq2d 6047 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑘 → (𝐹 “ ((iEdg‘𝐺)‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)))
1714, 16eqeq12d 2751 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑘 → (((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) ↔ ((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘))))
1817rspcv 3597 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ dom (iEdg‘𝐺) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → ((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘))))
1913, 18syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → ((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘))))
204uhgrfun 28991 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐻 ∈ UHGraph → Fun (iEdg‘𝐻))
2120ad3antlr 731 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → Fun (iEdg‘𝐻))
22 f1of 6817 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) → 𝑗:dom (iEdg‘𝐺)⟶dom (iEdg‘𝐻))
2322adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → 𝑗:dom (iEdg‘𝐺)⟶dom (iEdg‘𝐻))
2413adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → 𝑘 ∈ dom (iEdg‘𝐺))
2523, 24ffvelcdmd 7074 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → (𝑗𝑘) ∈ dom (iEdg‘𝐻))
264iedgedg 28975 . . . . . . . . . . . . . . . . . . . . . . 23 ((Fun (iEdg‘𝐻) ∧ (𝑗𝑘) ∈ dom (iEdg‘𝐻)) → ((iEdg‘𝐻)‘(𝑗𝑘)) ∈ (Edg‘𝐻))
2721, 25, 26syl2an2r 685 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → ((iEdg‘𝐻)‘(𝑗𝑘)) ∈ (Edg‘𝐻))
28 uhgrimedgi.d . . . . . . . . . . . . . . . . . . . . . 22 𝐷 = (Edg‘𝐻)
2927, 28eleqtrrdi 2845 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → ((iEdg‘𝐻)‘(𝑗𝑘)) ∈ 𝐷)
30 eleq1 2822 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 “ ((iEdg‘𝐺)‘𝑘)) = ((iEdg‘𝐻)‘(𝑗𝑘)) → ((𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷 ↔ ((iEdg‘𝐻)‘(𝑗𝑘)) ∈ 𝐷))
3130eqcoms 2743 . . . . . . . . . . . . . . . . . . . . 21 (((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)) → ((𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷 ↔ ((iEdg‘𝐻)‘(𝑗𝑘)) ∈ 𝐷))
3229, 31syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . 20 (((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → (((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))
3332ex 412 . . . . . . . . . . . . . . . . . . 19 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) → (((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷)))
3419, 33syl5d 73 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷)))
3534impd 410 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))
3635ex 412 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷)))
3736adantr 480 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑘)) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷)))
38373imp 1110 . . . . . . . . . . . . . 14 (((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑘)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷)
39 imaeq2 6043 . . . . . . . . . . . . . . . . 17 (𝐾 = ((iEdg‘𝐺)‘𝑘) → (𝐹𝐾) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)))
4039eleq1d 2819 . . . . . . . . . . . . . . . 16 (𝐾 = ((iEdg‘𝐺)‘𝑘) → ((𝐹𝐾) ∈ 𝐷 ↔ (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))
4140adantl 481 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑘)) → ((𝐹𝐾) ∈ 𝐷 ↔ (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))
42413ad2ant1 1133 . . . . . . . . . . . . . 14 (((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑘)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → ((𝐹𝐾) ∈ 𝐷 ↔ (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))
4338, 42mpbird 257 . . . . . . . . . . . . 13 (((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑘)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (𝐹𝐾) ∈ 𝐷)
44433exp 1119 . . . . . . . . . . . 12 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑘)) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹𝐾) ∈ 𝐷)))
4544ex 412 . . . . . . . . . . 11 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (𝐾 = ((iEdg‘𝐺)‘𝑘) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹𝐾) ∈ 𝐷))))
4645rexlimdva 3141 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (∃𝑘 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑘) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹𝐾) ∈ 𝐷))))
4712, 46sylbid 240 . . . . . . . . 9 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝐾𝐸 → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹𝐾) ∈ 𝐷))))
4847imp 406 . . . . . . . 8 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐾𝐸) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹𝐾) ∈ 𝐷)))
4948imp 406 . . . . . . 7 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐾𝐸) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹𝐾) ∈ 𝐷))
5049exlimdv 1933 . . . . . 6 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐾𝐸) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → (∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹𝐾) ∈ 𝐷))
5150expimpd 453 . . . . 5 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐾𝐸) → ((𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (𝐹𝐾) ∈ 𝐷))
525, 51syl5 34 . . . 4 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐾𝐸) → (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐹𝐾) ∈ 𝐷))
5352ex 412 . . 3 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝐾𝐸 → (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐹𝐾) ∈ 𝐷)))
5453impcomd 411 . 2 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → ((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾𝐸) → (𝐹𝐾) ∈ 𝐷))
5554imp 406 1 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ (𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾𝐸)) → (𝐹𝐾) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2108  wral 3051  wrex 3060  dom cdm 5654  cima 5657  Fun wfun 6524  wf 6526  1-1-ontowf1o 6529  cfv 6530  (class class class)co 7403  Vtxcvtx 28921  iEdgciedg 28922  Edgcedg 28972  UHGraphcuhgr 28981   GraphIso cgrim 47836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-map 8840  df-edg 28973  df-uhgr 28983  df-grim 47839
This theorem is referenced by:  uhgrimedg  47852  upgrimwlklem2  47859  upgrimwlklem3  47860  upgrimtrlslem1  47865
  Copyright terms: Public domain W3C validator