Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uhgrimedgi Structured version   Visualization version   GIF version

Theorem uhgrimedgi 47920
Description: An isomorphism between graphs preserves edges, i.e. if there is an edge in one graph connecting vertices then there is an edge in the other graph connecting the corresponding vertices. (Contributed by AV, 25-Oct-2025.)
Hypotheses
Ref Expression
uhgrimedgi.e 𝐸 = (Edg‘𝐺)
uhgrimedgi.d 𝐷 = (Edg‘𝐻)
Assertion
Ref Expression
uhgrimedgi (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ (𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾𝐸)) → (𝐹𝐾) ∈ 𝐷)

Proof of Theorem uhgrimedgi
Dummy variables 𝑗 𝑘 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2731 . . . . . 6 (Vtx‘𝐻) = (Vtx‘𝐻)
3 eqid 2731 . . . . . 6 (iEdg‘𝐺) = (iEdg‘𝐺)
4 eqid 2731 . . . . . 6 (iEdg‘𝐻) = (iEdg‘𝐻)
51, 2, 3, 4grimprop 47913 . . . . 5 (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))))
6 uhgrimedgi.e . . . . . . . . . . . . 13 𝐸 = (Edg‘𝐺)
76eleq2i 2823 . . . . . . . . . . . 12 (𝐾𝐸𝐾 ∈ (Edg‘𝐺))
83uhgrfun 29042 . . . . . . . . . . . . 13 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
93edgiedgb 29030 . . . . . . . . . . . . 13 (Fun (iEdg‘𝐺) → (𝐾 ∈ (Edg‘𝐺) ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑘)))
108, 9syl 17 . . . . . . . . . . . 12 (𝐺 ∈ UHGraph → (𝐾 ∈ (Edg‘𝐺) ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑘)))
117, 10bitrid 283 . . . . . . . . . . 11 (𝐺 ∈ UHGraph → (𝐾𝐸 ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑘)))
1211adantr 480 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝐾𝐸 ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑘)))
13 simplr 768 . . . . . . . . . . . . . . . . . . . 20 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → 𝑘 ∈ dom (iEdg‘𝐺))
14 2fveq3 6827 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑘 → ((iEdg‘𝐻)‘(𝑗𝑖)) = ((iEdg‘𝐻)‘(𝑗𝑘)))
15 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝑘 → ((iEdg‘𝐺)‘𝑖) = ((iEdg‘𝐺)‘𝑘))
1615imaeq2d 6009 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑘 → (𝐹 “ ((iEdg‘𝐺)‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)))
1714, 16eqeq12d 2747 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑘 → (((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) ↔ ((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘))))
1817rspcv 3573 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ dom (iEdg‘𝐺) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → ((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘))))
1913, 18syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → ((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘))))
204uhgrfun 29042 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐻 ∈ UHGraph → Fun (iEdg‘𝐻))
2120ad3antlr 731 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → Fun (iEdg‘𝐻))
22 f1of 6763 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) → 𝑗:dom (iEdg‘𝐺)⟶dom (iEdg‘𝐻))
2322adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → 𝑗:dom (iEdg‘𝐺)⟶dom (iEdg‘𝐻))
2413adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → 𝑘 ∈ dom (iEdg‘𝐺))
2523, 24ffvelcdmd 7018 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → (𝑗𝑘) ∈ dom (iEdg‘𝐻))
264iedgedg 29026 . . . . . . . . . . . . . . . . . . . . . . 23 ((Fun (iEdg‘𝐻) ∧ (𝑗𝑘) ∈ dom (iEdg‘𝐻)) → ((iEdg‘𝐻)‘(𝑗𝑘)) ∈ (Edg‘𝐻))
2721, 25, 26syl2an2r 685 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → ((iEdg‘𝐻)‘(𝑗𝑘)) ∈ (Edg‘𝐻))
28 uhgrimedgi.d . . . . . . . . . . . . . . . . . . . . . 22 𝐷 = (Edg‘𝐻)
2927, 28eleqtrrdi 2842 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → ((iEdg‘𝐻)‘(𝑗𝑘)) ∈ 𝐷)
30 eleq1 2819 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 “ ((iEdg‘𝐺)‘𝑘)) = ((iEdg‘𝐻)‘(𝑗𝑘)) → ((𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷 ↔ ((iEdg‘𝐻)‘(𝑗𝑘)) ∈ 𝐷))
3130eqcoms 2739 . . . . . . . . . . . . . . . . . . . . 21 (((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)) → ((𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷 ↔ ((iEdg‘𝐻)‘(𝑗𝑘)) ∈ 𝐷))
3229, 31syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . 20 (((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → (((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))
3332ex 412 . . . . . . . . . . . . . . . . . . 19 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) → (((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷)))
3419, 33syl5d 73 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷)))
3534impd 410 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))
3635ex 412 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷)))
3736adantr 480 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑘)) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷)))
38373imp 1110 . . . . . . . . . . . . . 14 (((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑘)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷)
39 imaeq2 6005 . . . . . . . . . . . . . . . . 17 (𝐾 = ((iEdg‘𝐺)‘𝑘) → (𝐹𝐾) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)))
4039eleq1d 2816 . . . . . . . . . . . . . . . 16 (𝐾 = ((iEdg‘𝐺)‘𝑘) → ((𝐹𝐾) ∈ 𝐷 ↔ (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))
4140adantl 481 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑘)) → ((𝐹𝐾) ∈ 𝐷 ↔ (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))
42413ad2ant1 1133 . . . . . . . . . . . . . 14 (((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑘)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → ((𝐹𝐾) ∈ 𝐷 ↔ (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))
4338, 42mpbird 257 . . . . . . . . . . . . 13 (((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑘)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (𝐹𝐾) ∈ 𝐷)
44433exp 1119 . . . . . . . . . . . 12 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑘)) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹𝐾) ∈ 𝐷)))
4544ex 412 . . . . . . . . . . 11 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (𝐾 = ((iEdg‘𝐺)‘𝑘) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹𝐾) ∈ 𝐷))))
4645rexlimdva 3133 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (∃𝑘 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑘) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹𝐾) ∈ 𝐷))))
4712, 46sylbid 240 . . . . . . . . 9 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝐾𝐸 → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹𝐾) ∈ 𝐷))))
4847imp 406 . . . . . . . 8 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐾𝐸) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹𝐾) ∈ 𝐷)))
4948imp 406 . . . . . . 7 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐾𝐸) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹𝐾) ∈ 𝐷))
5049exlimdv 1934 . . . . . 6 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐾𝐸) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → (∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹𝐾) ∈ 𝐷))
5150expimpd 453 . . . . 5 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐾𝐸) → ((𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (𝐹𝐾) ∈ 𝐷))
525, 51syl5 34 . . . 4 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐾𝐸) → (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐹𝐾) ∈ 𝐷))
5352ex 412 . . 3 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝐾𝐸 → (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐹𝐾) ∈ 𝐷)))
5453impcomd 411 . 2 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → ((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾𝐸) → (𝐹𝐾) ∈ 𝐷))
5554imp 406 1 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ (𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾𝐸)) → (𝐹𝐾) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wral 3047  wrex 3056  dom cdm 5616  cima 5619  Fun wfun 6475  wf 6477  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  Vtxcvtx 28972  iEdgciedg 28973  Edgcedg 29023  UHGraphcuhgr 29032   GraphIso cgrim 47905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-edg 29024  df-uhgr 29034  df-grim 47908
This theorem is referenced by:  uhgrimedg  47921  upgrimwlklem2  47928  upgrimwlklem3  47929  upgrimtrlslem1  47934
  Copyright terms: Public domain W3C validator