Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uhgrimedgi Structured version   Visualization version   GIF version

Theorem uhgrimedgi 48014
Description: An isomorphism between graphs preserves edges, i.e. if there is an edge in one graph connecting vertices then there is an edge in the other graph connecting the corresponding vertices. (Contributed by AV, 25-Oct-2025.)
Hypotheses
Ref Expression
uhgrimedgi.e 𝐸 = (Edg‘𝐺)
uhgrimedgi.d 𝐷 = (Edg‘𝐻)
Assertion
Ref Expression
uhgrimedgi (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ (𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾𝐸)) → (𝐹𝐾) ∈ 𝐷)

Proof of Theorem uhgrimedgi
Dummy variables 𝑗 𝑘 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2733 . . . . . 6 (Vtx‘𝐻) = (Vtx‘𝐻)
3 eqid 2733 . . . . . 6 (iEdg‘𝐺) = (iEdg‘𝐺)
4 eqid 2733 . . . . . 6 (iEdg‘𝐻) = (iEdg‘𝐻)
51, 2, 3, 4grimprop 48007 . . . . 5 (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))))
6 uhgrimedgi.e . . . . . . . . . . . . 13 𝐸 = (Edg‘𝐺)
76eleq2i 2825 . . . . . . . . . . . 12 (𝐾𝐸𝐾 ∈ (Edg‘𝐺))
83uhgrfun 29046 . . . . . . . . . . . . 13 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
93edgiedgb 29034 . . . . . . . . . . . . 13 (Fun (iEdg‘𝐺) → (𝐾 ∈ (Edg‘𝐺) ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑘)))
108, 9syl 17 . . . . . . . . . . . 12 (𝐺 ∈ UHGraph → (𝐾 ∈ (Edg‘𝐺) ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑘)))
117, 10bitrid 283 . . . . . . . . . . 11 (𝐺 ∈ UHGraph → (𝐾𝐸 ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑘)))
1211adantr 480 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝐾𝐸 ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑘)))
13 simplr 768 . . . . . . . . . . . . . . . . . . . 20 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → 𝑘 ∈ dom (iEdg‘𝐺))
14 2fveq3 6833 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑘 → ((iEdg‘𝐻)‘(𝑗𝑖)) = ((iEdg‘𝐻)‘(𝑗𝑘)))
15 fveq2 6828 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝑘 → ((iEdg‘𝐺)‘𝑖) = ((iEdg‘𝐺)‘𝑘))
1615imaeq2d 6013 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑘 → (𝐹 “ ((iEdg‘𝐺)‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)))
1714, 16eqeq12d 2749 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑘 → (((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) ↔ ((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘))))
1817rspcv 3569 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ dom (iEdg‘𝐺) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → ((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘))))
1913, 18syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → ((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘))))
204uhgrfun 29046 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐻 ∈ UHGraph → Fun (iEdg‘𝐻))
2120ad3antlr 731 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → Fun (iEdg‘𝐻))
22 f1of 6768 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) → 𝑗:dom (iEdg‘𝐺)⟶dom (iEdg‘𝐻))
2322adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → 𝑗:dom (iEdg‘𝐺)⟶dom (iEdg‘𝐻))
2413adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → 𝑘 ∈ dom (iEdg‘𝐺))
2523, 24ffvelcdmd 7024 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → (𝑗𝑘) ∈ dom (iEdg‘𝐻))
264iedgedg 29030 . . . . . . . . . . . . . . . . . . . . . . 23 ((Fun (iEdg‘𝐻) ∧ (𝑗𝑘) ∈ dom (iEdg‘𝐻)) → ((iEdg‘𝐻)‘(𝑗𝑘)) ∈ (Edg‘𝐻))
2721, 25, 26syl2an2r 685 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → ((iEdg‘𝐻)‘(𝑗𝑘)) ∈ (Edg‘𝐻))
28 uhgrimedgi.d . . . . . . . . . . . . . . . . . . . . . 22 𝐷 = (Edg‘𝐻)
2927, 28eleqtrrdi 2844 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → ((iEdg‘𝐻)‘(𝑗𝑘)) ∈ 𝐷)
30 eleq1 2821 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 “ ((iEdg‘𝐺)‘𝑘)) = ((iEdg‘𝐻)‘(𝑗𝑘)) → ((𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷 ↔ ((iEdg‘𝐻)‘(𝑗𝑘)) ∈ 𝐷))
3130eqcoms 2741 . . . . . . . . . . . . . . . . . . . . 21 (((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)) → ((𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷 ↔ ((iEdg‘𝐻)‘(𝑗𝑘)) ∈ 𝐷))
3229, 31syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . 20 (((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → (((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))
3332ex 412 . . . . . . . . . . . . . . . . . . 19 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) → (((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷)))
3419, 33syl5d 73 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷)))
3534impd 410 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))
3635ex 412 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷)))
3736adantr 480 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑘)) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷)))
38373imp 1110 . . . . . . . . . . . . . 14 (((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑘)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷)
39 imaeq2 6009 . . . . . . . . . . . . . . . . 17 (𝐾 = ((iEdg‘𝐺)‘𝑘) → (𝐹𝐾) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)))
4039eleq1d 2818 . . . . . . . . . . . . . . . 16 (𝐾 = ((iEdg‘𝐺)‘𝑘) → ((𝐹𝐾) ∈ 𝐷 ↔ (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))
4140adantl 481 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑘)) → ((𝐹𝐾) ∈ 𝐷 ↔ (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))
42413ad2ant1 1133 . . . . . . . . . . . . . 14 (((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑘)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → ((𝐹𝐾) ∈ 𝐷 ↔ (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))
4338, 42mpbird 257 . . . . . . . . . . . . 13 (((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑘)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (𝐹𝐾) ∈ 𝐷)
44433exp 1119 . . . . . . . . . . . 12 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑘)) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹𝐾) ∈ 𝐷)))
4544ex 412 . . . . . . . . . . 11 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (𝐾 = ((iEdg‘𝐺)‘𝑘) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹𝐾) ∈ 𝐷))))
4645rexlimdva 3134 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (∃𝑘 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑘) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹𝐾) ∈ 𝐷))))
4712, 46sylbid 240 . . . . . . . . 9 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝐾𝐸 → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹𝐾) ∈ 𝐷))))
4847imp 406 . . . . . . . 8 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐾𝐸) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹𝐾) ∈ 𝐷)))
4948imp 406 . . . . . . 7 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐾𝐸) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹𝐾) ∈ 𝐷))
5049exlimdv 1934 . . . . . 6 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐾𝐸) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → (∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝐹𝐾) ∈ 𝐷))
5150expimpd 453 . . . . 5 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐾𝐸) → ((𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (𝐹𝐾) ∈ 𝐷))
525, 51syl5 34 . . . 4 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐾𝐸) → (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐹𝐾) ∈ 𝐷))
5352ex 412 . . 3 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝐾𝐸 → (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐹𝐾) ∈ 𝐷)))
5453impcomd 411 . 2 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → ((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾𝐸) → (𝐹𝐾) ∈ 𝐷))
5554imp 406 1 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ (𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾𝐸)) → (𝐹𝐾) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2113  wral 3048  wrex 3057  dom cdm 5619  cima 5622  Fun wfun 6480  wf 6482  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7352  Vtxcvtx 28976  iEdgciedg 28977  Edgcedg 29027  UHGraphcuhgr 29036   GraphIso cgrim 47999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-map 8758  df-edg 29028  df-uhgr 29038  df-grim 48002
This theorem is referenced by:  uhgrimedg  48015  upgrimwlklem2  48022  upgrimwlklem3  48023  upgrimtrlslem1  48028
  Copyright terms: Public domain W3C validator