Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > meaunle | Structured version Visualization version GIF version |
Description: The measure of the union of two sets is less than or equal to the sum of the measures, Property 112C (c) of [Fremlin1] p. 15. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
meaunle.1 | ⊢ (𝜑 → 𝑀 ∈ Meas) |
meaunle.2 | ⊢ 𝑆 = dom 𝑀 |
meaunle.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
meaunle.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
Ref | Expression |
---|---|
meaunle | ⊢ (𝜑 → (𝑀‘(𝐴 ∪ 𝐵)) ≤ ((𝑀‘𝐴) +𝑒 (𝑀‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | undif2 4422 | . . . . . 6 ⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = (𝐴 ∪ 𝐵) | |
2 | 1 | eqcomi 2745 | . . . . 5 ⊢ (𝐴 ∪ 𝐵) = (𝐴 ∪ (𝐵 ∖ 𝐴)) |
3 | 2 | fveq2i 6822 | . . . 4 ⊢ (𝑀‘(𝐴 ∪ 𝐵)) = (𝑀‘(𝐴 ∪ (𝐵 ∖ 𝐴))) |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑀‘(𝐴 ∪ 𝐵)) = (𝑀‘(𝐴 ∪ (𝐵 ∖ 𝐴)))) |
5 | meaunle.1 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
6 | meaunle.2 | . . . 4 ⊢ 𝑆 = dom 𝑀 | |
7 | meaunle.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
8 | 5, 6 | dmmeasal 44316 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
9 | meaunle.4 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
10 | saldifcl2 44192 | . . . . 5 ⊢ ((𝑆 ∈ SAlg ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → (𝐵 ∖ 𝐴) ∈ 𝑆) | |
11 | 8, 9, 7, 10 | syl3anc 1370 | . . . 4 ⊢ (𝜑 → (𝐵 ∖ 𝐴) ∈ 𝑆) |
12 | disjdif 4417 | . . . . 5 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ | |
13 | 12 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅) |
14 | 5, 6, 7, 11, 13 | meadjun 44326 | . . 3 ⊢ (𝜑 → (𝑀‘(𝐴 ∪ (𝐵 ∖ 𝐴))) = ((𝑀‘𝐴) +𝑒 (𝑀‘(𝐵 ∖ 𝐴)))) |
15 | 4, 14 | eqtrd 2776 | . 2 ⊢ (𝜑 → (𝑀‘(𝐴 ∪ 𝐵)) = ((𝑀‘𝐴) +𝑒 (𝑀‘(𝐵 ∖ 𝐴)))) |
16 | 5, 6, 11 | meaxrcl 44325 | . . 3 ⊢ (𝜑 → (𝑀‘(𝐵 ∖ 𝐴)) ∈ ℝ*) |
17 | 5, 6, 9 | meaxrcl 44325 | . . 3 ⊢ (𝜑 → (𝑀‘𝐵) ∈ ℝ*) |
18 | 5, 6, 7 | meaxrcl 44325 | . . 3 ⊢ (𝜑 → (𝑀‘𝐴) ∈ ℝ*) |
19 | difssd 4078 | . . . 4 ⊢ (𝜑 → (𝐵 ∖ 𝐴) ⊆ 𝐵) | |
20 | 5, 6, 11, 9, 19 | meassle 44327 | . . 3 ⊢ (𝜑 → (𝑀‘(𝐵 ∖ 𝐴)) ≤ (𝑀‘𝐵)) |
21 | 16, 17, 18, 20 | xleadd2d 43190 | . 2 ⊢ (𝜑 → ((𝑀‘𝐴) +𝑒 (𝑀‘(𝐵 ∖ 𝐴))) ≤ ((𝑀‘𝐴) +𝑒 (𝑀‘𝐵))) |
22 | 15, 21 | eqbrtrd 5111 | 1 ⊢ (𝜑 → (𝑀‘(𝐴 ∪ 𝐵)) ≤ ((𝑀‘𝐴) +𝑒 (𝑀‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ∖ cdif 3894 ∪ cun 3895 ∩ cin 3896 ∅c0 4268 class class class wbr 5089 dom cdm 5614 ‘cfv 6473 (class class class)co 7329 ≤ cle 11103 +𝑒 cxad 12939 SAlgcsalg 44174 Meascmea 44313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-inf2 9490 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 ax-pre-sup 11042 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-int 4894 df-iun 4940 df-disj 5055 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-se 5570 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-isom 6482 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-1st 7891 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 df-sup 9291 df-oi 9359 df-card 9788 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-div 11726 df-nn 12067 df-2 12129 df-3 12130 df-n0 12327 df-z 12413 df-uz 12676 df-rp 12824 df-xadd 12942 df-ico 13178 df-icc 13179 df-fz 13333 df-fzo 13476 df-seq 13815 df-exp 13876 df-hash 14138 df-cj 14901 df-re 14902 df-im 14903 df-sqrt 15037 df-abs 15038 df-clim 15288 df-sum 15489 df-salg 44175 df-sumge0 44227 df-mea 44314 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |