Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meaunle Structured version   Visualization version   GIF version

Theorem meaunle 46572
Description: The measure of the union of two sets is less than or equal to the sum of the measures, Property 112C (c) of [Fremlin1] p. 15. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
meaunle.1 (𝜑𝑀 ∈ Meas)
meaunle.2 𝑆 = dom 𝑀
meaunle.3 (𝜑𝐴𝑆)
meaunle.4 (𝜑𝐵𝑆)
Assertion
Ref Expression
meaunle (𝜑 → (𝑀‘(𝐴𝐵)) ≤ ((𝑀𝐴) +𝑒 (𝑀𝐵)))

Proof of Theorem meaunle
StepHypRef Expression
1 undif2 4424 . . . . . 6 (𝐴 ∪ (𝐵𝐴)) = (𝐴𝐵)
21eqcomi 2740 . . . . 5 (𝐴𝐵) = (𝐴 ∪ (𝐵𝐴))
32fveq2i 6825 . . . 4 (𝑀‘(𝐴𝐵)) = (𝑀‘(𝐴 ∪ (𝐵𝐴)))
43a1i 11 . . 3 (𝜑 → (𝑀‘(𝐴𝐵)) = (𝑀‘(𝐴 ∪ (𝐵𝐴))))
5 meaunle.1 . . . 4 (𝜑𝑀 ∈ Meas)
6 meaunle.2 . . . 4 𝑆 = dom 𝑀
7 meaunle.3 . . . 4 (𝜑𝐴𝑆)
85, 6dmmeasal 46560 . . . . 5 (𝜑𝑆 ∈ SAlg)
9 meaunle.4 . . . . 5 (𝜑𝐵𝑆)
10 saldifcl2 46436 . . . . 5 ((𝑆 ∈ SAlg ∧ 𝐵𝑆𝐴𝑆) → (𝐵𝐴) ∈ 𝑆)
118, 9, 7, 10syl3anc 1373 . . . 4 (𝜑 → (𝐵𝐴) ∈ 𝑆)
12 disjdif 4419 . . . . 5 (𝐴 ∩ (𝐵𝐴)) = ∅
1312a1i 11 . . . 4 (𝜑 → (𝐴 ∩ (𝐵𝐴)) = ∅)
145, 6, 7, 11, 13meadjun 46570 . . 3 (𝜑 → (𝑀‘(𝐴 ∪ (𝐵𝐴))) = ((𝑀𝐴) +𝑒 (𝑀‘(𝐵𝐴))))
154, 14eqtrd 2766 . 2 (𝜑 → (𝑀‘(𝐴𝐵)) = ((𝑀𝐴) +𝑒 (𝑀‘(𝐵𝐴))))
165, 6, 11meaxrcl 46569 . . 3 (𝜑 → (𝑀‘(𝐵𝐴)) ∈ ℝ*)
175, 6, 9meaxrcl 46569 . . 3 (𝜑 → (𝑀𝐵) ∈ ℝ*)
185, 6, 7meaxrcl 46569 . . 3 (𝜑 → (𝑀𝐴) ∈ ℝ*)
19 difssd 4084 . . . 4 (𝜑 → (𝐵𝐴) ⊆ 𝐵)
205, 6, 11, 9, 19meassle 46571 . . 3 (𝜑 → (𝑀‘(𝐵𝐴)) ≤ (𝑀𝐵))
2116, 17, 18, 20xleadd2d 45436 . 2 (𝜑 → ((𝑀𝐴) +𝑒 (𝑀‘(𝐵𝐴))) ≤ ((𝑀𝐴) +𝑒 (𝑀𝐵)))
2215, 21eqbrtrd 5111 1 (𝜑 → (𝑀‘(𝐴𝐵)) ≤ ((𝑀𝐴) +𝑒 (𝑀𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cdif 3894  cun 3895  cin 3896  c0 4280   class class class wbr 5089  dom cdm 5614  cfv 6481  (class class class)co 7346  cle 11147   +𝑒 cxad 13009  SAlgcsalg 46416  Meascmea 46557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-disj 5057  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-xadd 13012  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-salg 46417  df-sumge0 46471  df-mea 46558
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator