Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meaunle Structured version   Visualization version   GIF version

Theorem meaunle 46420
Description: The measure of the union of two sets is less than or equal to the sum of the measures, Property 112C (c) of [Fremlin1] p. 15. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
meaunle.1 (𝜑𝑀 ∈ Meas)
meaunle.2 𝑆 = dom 𝑀
meaunle.3 (𝜑𝐴𝑆)
meaunle.4 (𝜑𝐵𝑆)
Assertion
Ref Expression
meaunle (𝜑 → (𝑀‘(𝐴𝐵)) ≤ ((𝑀𝐴) +𝑒 (𝑀𝐵)))

Proof of Theorem meaunle
StepHypRef Expression
1 undif2 4483 . . . . . 6 (𝐴 ∪ (𝐵𝐴)) = (𝐴𝐵)
21eqcomi 2744 . . . . 5 (𝐴𝐵) = (𝐴 ∪ (𝐵𝐴))
32fveq2i 6910 . . . 4 (𝑀‘(𝐴𝐵)) = (𝑀‘(𝐴 ∪ (𝐵𝐴)))
43a1i 11 . . 3 (𝜑 → (𝑀‘(𝐴𝐵)) = (𝑀‘(𝐴 ∪ (𝐵𝐴))))
5 meaunle.1 . . . 4 (𝜑𝑀 ∈ Meas)
6 meaunle.2 . . . 4 𝑆 = dom 𝑀
7 meaunle.3 . . . 4 (𝜑𝐴𝑆)
85, 6dmmeasal 46408 . . . . 5 (𝜑𝑆 ∈ SAlg)
9 meaunle.4 . . . . 5 (𝜑𝐵𝑆)
10 saldifcl2 46284 . . . . 5 ((𝑆 ∈ SAlg ∧ 𝐵𝑆𝐴𝑆) → (𝐵𝐴) ∈ 𝑆)
118, 9, 7, 10syl3anc 1370 . . . 4 (𝜑 → (𝐵𝐴) ∈ 𝑆)
12 disjdif 4478 . . . . 5 (𝐴 ∩ (𝐵𝐴)) = ∅
1312a1i 11 . . . 4 (𝜑 → (𝐴 ∩ (𝐵𝐴)) = ∅)
145, 6, 7, 11, 13meadjun 46418 . . 3 (𝜑 → (𝑀‘(𝐴 ∪ (𝐵𝐴))) = ((𝑀𝐴) +𝑒 (𝑀‘(𝐵𝐴))))
154, 14eqtrd 2775 . 2 (𝜑 → (𝑀‘(𝐴𝐵)) = ((𝑀𝐴) +𝑒 (𝑀‘(𝐵𝐴))))
165, 6, 11meaxrcl 46417 . . 3 (𝜑 → (𝑀‘(𝐵𝐴)) ∈ ℝ*)
175, 6, 9meaxrcl 46417 . . 3 (𝜑 → (𝑀𝐵) ∈ ℝ*)
185, 6, 7meaxrcl 46417 . . 3 (𝜑 → (𝑀𝐴) ∈ ℝ*)
19 difssd 4147 . . . 4 (𝜑 → (𝐵𝐴) ⊆ 𝐵)
205, 6, 11, 9, 19meassle 46419 . . 3 (𝜑 → (𝑀‘(𝐵𝐴)) ≤ (𝑀𝐵))
2116, 17, 18, 20xleadd2d 45277 . 2 (𝜑 → ((𝑀𝐴) +𝑒 (𝑀‘(𝐵𝐴))) ≤ ((𝑀𝐴) +𝑒 (𝑀𝐵)))
2215, 21eqbrtrd 5170 1 (𝜑 → (𝑀‘(𝐴𝐵)) ≤ ((𝑀𝐴) +𝑒 (𝑀𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  cdif 3960  cun 3961  cin 3962  c0 4339   class class class wbr 5148  dom cdm 5689  cfv 6563  (class class class)co 7431  cle 11294   +𝑒 cxad 13150  SAlgcsalg 46264  Meascmea 46405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-xadd 13153  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-salg 46265  df-sumge0 46319  df-mea 46406
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator