Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meaunle Structured version   Visualization version   GIF version

Theorem meaunle 46460
Description: The measure of the union of two sets is less than or equal to the sum of the measures, Property 112C (c) of [Fremlin1] p. 15. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
meaunle.1 (𝜑𝑀 ∈ Meas)
meaunle.2 𝑆 = dom 𝑀
meaunle.3 (𝜑𝐴𝑆)
meaunle.4 (𝜑𝐵𝑆)
Assertion
Ref Expression
meaunle (𝜑 → (𝑀‘(𝐴𝐵)) ≤ ((𝑀𝐴) +𝑒 (𝑀𝐵)))

Proof of Theorem meaunle
StepHypRef Expression
1 undif2 4457 . . . . . 6 (𝐴 ∪ (𝐵𝐴)) = (𝐴𝐵)
21eqcomi 2745 . . . . 5 (𝐴𝐵) = (𝐴 ∪ (𝐵𝐴))
32fveq2i 6884 . . . 4 (𝑀‘(𝐴𝐵)) = (𝑀‘(𝐴 ∪ (𝐵𝐴)))
43a1i 11 . . 3 (𝜑 → (𝑀‘(𝐴𝐵)) = (𝑀‘(𝐴 ∪ (𝐵𝐴))))
5 meaunle.1 . . . 4 (𝜑𝑀 ∈ Meas)
6 meaunle.2 . . . 4 𝑆 = dom 𝑀
7 meaunle.3 . . . 4 (𝜑𝐴𝑆)
85, 6dmmeasal 46448 . . . . 5 (𝜑𝑆 ∈ SAlg)
9 meaunle.4 . . . . 5 (𝜑𝐵𝑆)
10 saldifcl2 46324 . . . . 5 ((𝑆 ∈ SAlg ∧ 𝐵𝑆𝐴𝑆) → (𝐵𝐴) ∈ 𝑆)
118, 9, 7, 10syl3anc 1373 . . . 4 (𝜑 → (𝐵𝐴) ∈ 𝑆)
12 disjdif 4452 . . . . 5 (𝐴 ∩ (𝐵𝐴)) = ∅
1312a1i 11 . . . 4 (𝜑 → (𝐴 ∩ (𝐵𝐴)) = ∅)
145, 6, 7, 11, 13meadjun 46458 . . 3 (𝜑 → (𝑀‘(𝐴 ∪ (𝐵𝐴))) = ((𝑀𝐴) +𝑒 (𝑀‘(𝐵𝐴))))
154, 14eqtrd 2771 . 2 (𝜑 → (𝑀‘(𝐴𝐵)) = ((𝑀𝐴) +𝑒 (𝑀‘(𝐵𝐴))))
165, 6, 11meaxrcl 46457 . . 3 (𝜑 → (𝑀‘(𝐵𝐴)) ∈ ℝ*)
175, 6, 9meaxrcl 46457 . . 3 (𝜑 → (𝑀𝐵) ∈ ℝ*)
185, 6, 7meaxrcl 46457 . . 3 (𝜑 → (𝑀𝐴) ∈ ℝ*)
19 difssd 4117 . . . 4 (𝜑 → (𝐵𝐴) ⊆ 𝐵)
205, 6, 11, 9, 19meassle 46459 . . 3 (𝜑 → (𝑀‘(𝐵𝐴)) ≤ (𝑀𝐵))
2116, 17, 18, 20xleadd2d 45321 . 2 (𝜑 → ((𝑀𝐴) +𝑒 (𝑀‘(𝐵𝐴))) ≤ ((𝑀𝐴) +𝑒 (𝑀𝐵)))
2215, 21eqbrtrd 5146 1 (𝜑 → (𝑀‘(𝐴𝐵)) ≤ ((𝑀𝐴) +𝑒 (𝑀𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cdif 3928  cun 3929  cin 3930  c0 4313   class class class wbr 5124  dom cdm 5659  cfv 6536  (class class class)co 7410  cle 11275   +𝑒 cxad 13131  SAlgcsalg 46304  Meascmea 46445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-disj 5092  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-xadd 13134  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-sum 15708  df-salg 46305  df-sumge0 46359  df-mea 46446
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator