MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dpjlsm Structured version   Visualization version   GIF version

Theorem dpjlsm 20074
Description: The two subgroups that appear in dpjval 20076 add to the full direct product. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dpjfval.1 (𝜑𝐺dom DProd 𝑆)
dpjfval.2 (𝜑 → dom 𝑆 = 𝐼)
dpjlem.3 (𝜑𝑋𝐼)
dpjlsm.s = (LSSum‘𝐺)
Assertion
Ref Expression
dpjlsm (𝜑 → (𝐺 DProd 𝑆) = ((𝑆𝑋) (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))))

Proof of Theorem dpjlsm
StepHypRef Expression
1 dpjfval.1 . . . 4 (𝜑𝐺dom DProd 𝑆)
2 dpjfval.2 . . . 4 (𝜑 → dom 𝑆 = 𝐼)
31, 2dprdf2 20027 . . 3 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
4 disjdif 4472 . . . 4 ({𝑋} ∩ (𝐼 ∖ {𝑋})) = ∅
54a1i 11 . . 3 (𝜑 → ({𝑋} ∩ (𝐼 ∖ {𝑋})) = ∅)
6 undif2 4477 . . . 4 ({𝑋} ∪ (𝐼 ∖ {𝑋})) = ({𝑋} ∪ 𝐼)
7 dpjlem.3 . . . . . 6 (𝜑𝑋𝐼)
87snssd 4809 . . . . 5 (𝜑 → {𝑋} ⊆ 𝐼)
9 ssequn1 4186 . . . . 5 ({𝑋} ⊆ 𝐼 ↔ ({𝑋} ∪ 𝐼) = 𝐼)
108, 9sylib 218 . . . 4 (𝜑 → ({𝑋} ∪ 𝐼) = 𝐼)
116, 10eqtr2id 2790 . . 3 (𝜑𝐼 = ({𝑋} ∪ (𝐼 ∖ {𝑋})))
12 dpjlsm.s . . 3 = (LSSum‘𝐺)
133, 5, 11, 12, 1dprdsplit 20068 . 2 (𝜑 → (𝐺 DProd 𝑆) = ((𝐺 DProd (𝑆 ↾ {𝑋})) (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))))
141, 2, 7dpjlem 20071 . . 3 (𝜑 → (𝐺 DProd (𝑆 ↾ {𝑋})) = (𝑆𝑋))
1514oveq1d 7446 . 2 (𝜑 → ((𝐺 DProd (𝑆 ↾ {𝑋})) (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) = ((𝑆𝑋) (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))))
1613, 15eqtrd 2777 1 (𝜑 → (𝐺 DProd 𝑆) = ((𝑆𝑋) (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  cdif 3948  cun 3949  cin 3950  wss 3951  c0 4333  {csn 4626   class class class wbr 5143  dom cdm 5685  cres 5687  cfv 6561  (class class class)co 7431  LSSumclsm 19652   DProd cdprd 20013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-0g 17486  df-gsum 17487  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-ghm 19231  df-gim 19277  df-cntz 19335  df-oppg 19364  df-lsm 19654  df-cmn 19800  df-dprd 20015
This theorem is referenced by:  dpjf  20077  dpjidcl  20078  dpjghm  20083
  Copyright terms: Public domain W3C validator