Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dpjlsm Structured version   Visualization version   GIF version

Theorem dpjlsm 18807
 Description: The two subgroups that appear in dpjval 18809 add to the full direct product. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dpjfval.1 (𝜑𝐺dom DProd 𝑆)
dpjfval.2 (𝜑 → dom 𝑆 = 𝐼)
dpjlem.3 (𝜑𝑋𝐼)
dpjlsm.s = (LSSum‘𝐺)
Assertion
Ref Expression
dpjlsm (𝜑 → (𝐺 DProd 𝑆) = ((𝑆𝑋) (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))))

Proof of Theorem dpjlsm
StepHypRef Expression
1 dpjfval.1 . . . 4 (𝜑𝐺dom DProd 𝑆)
2 dpjfval.2 . . . 4 (𝜑 → dom 𝑆 = 𝐼)
31, 2dprdf2 18760 . . 3 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
4 disjdif 4263 . . . 4 ({𝑋} ∩ (𝐼 ∖ {𝑋})) = ∅
54a1i 11 . . 3 (𝜑 → ({𝑋} ∩ (𝐼 ∖ {𝑋})) = ∅)
6 undif2 4267 . . . 4 ({𝑋} ∪ (𝐼 ∖ {𝑋})) = ({𝑋} ∪ 𝐼)
7 dpjlem.3 . . . . . 6 (𝜑𝑋𝐼)
87snssd 4558 . . . . 5 (𝜑 → {𝑋} ⊆ 𝐼)
9 ssequn1 4010 . . . . 5 ({𝑋} ⊆ 𝐼 ↔ ({𝑋} ∪ 𝐼) = 𝐼)
108, 9sylib 210 . . . 4 (𝜑 → ({𝑋} ∪ 𝐼) = 𝐼)
116, 10syl5req 2874 . . 3 (𝜑𝐼 = ({𝑋} ∪ (𝐼 ∖ {𝑋})))
12 dpjlsm.s . . 3 = (LSSum‘𝐺)
133, 5, 11, 12, 1dprdsplit 18801 . 2 (𝜑 → (𝐺 DProd 𝑆) = ((𝐺 DProd (𝑆 ↾ {𝑋})) (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))))
141, 2, 7dpjlem 18804 . . 3 (𝜑 → (𝐺 DProd (𝑆 ↾ {𝑋})) = (𝑆𝑋))
1514oveq1d 6920 . 2 (𝜑 → ((𝐺 DProd (𝑆 ↾ {𝑋})) (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) = ((𝑆𝑋) (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))))
1613, 15eqtrd 2861 1 (𝜑 → (𝐺 DProd 𝑆) = ((𝑆𝑋) (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1658   ∈ wcel 2166   ∖ cdif 3795   ∪ cun 3796   ∩ cin 3797   ⊆ wss 3798  ∅c0 4144  {csn 4397   class class class wbr 4873  dom cdm 5342   ↾ cres 5344  ‘cfv 6123  (class class class)co 6905  LSSumclsm 18400   DProd cdprd 18746 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-iin 4743  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-of 7157  df-om 7327  df-1st 7428  df-2nd 7429  df-supp 7560  df-tpos 7617  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-map 8124  df-ixp 8176  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-fsupp 8545  df-oi 8684  df-card 9078  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-n0 11619  df-z 11705  df-uz 11969  df-fz 12620  df-fzo 12761  df-seq 13096  df-hash 13411  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-ress 16230  df-plusg 16318  df-0g 16455  df-gsum 16456  df-mre 16599  df-mrc 16600  df-acs 16602  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-mhm 17688  df-submnd 17689  df-grp 17779  df-minusg 17780  df-sbg 17781  df-mulg 17895  df-subg 17942  df-ghm 18009  df-gim 18052  df-cntz 18100  df-oppg 18126  df-lsm 18402  df-cmn 18548  df-dprd 18748 This theorem is referenced by:  dpjf  18810  dpjidcl  18811  dpjghm  18816
 Copyright terms: Public domain W3C validator