![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dpjlsm | Structured version Visualization version GIF version |
Description: The two subgroups that appear in dpjval 20050 add to the full direct product. (Contributed by Mario Carneiro, 26-Apr-2016.) |
Ref | Expression |
---|---|
dpjfval.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
dpjfval.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
dpjlem.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
dpjlsm.s | ⊢ ⊕ = (LSSum‘𝐺) |
Ref | Expression |
---|---|
dpjlsm | ⊢ (𝜑 → (𝐺 DProd 𝑆) = ((𝑆‘𝑋) ⊕ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dpjfval.1 | . . . 4 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
2 | dpjfval.2 | . . . 4 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
3 | 1, 2 | dprdf2 20001 | . . 3 ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
4 | disjdif 4467 | . . . 4 ⊢ ({𝑋} ∩ (𝐼 ∖ {𝑋})) = ∅ | |
5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → ({𝑋} ∩ (𝐼 ∖ {𝑋})) = ∅) |
6 | undif2 4472 | . . . 4 ⊢ ({𝑋} ∪ (𝐼 ∖ {𝑋})) = ({𝑋} ∪ 𝐼) | |
7 | dpjlem.3 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
8 | 7 | snssd 4809 | . . . . 5 ⊢ (𝜑 → {𝑋} ⊆ 𝐼) |
9 | ssequn1 4179 | . . . . 5 ⊢ ({𝑋} ⊆ 𝐼 ↔ ({𝑋} ∪ 𝐼) = 𝐼) | |
10 | 8, 9 | sylib 217 | . . . 4 ⊢ (𝜑 → ({𝑋} ∪ 𝐼) = 𝐼) |
11 | 6, 10 | eqtr2id 2779 | . . 3 ⊢ (𝜑 → 𝐼 = ({𝑋} ∪ (𝐼 ∖ {𝑋}))) |
12 | dpjlsm.s | . . 3 ⊢ ⊕ = (LSSum‘𝐺) | |
13 | 3, 5, 11, 12, 1 | dprdsplit 20042 | . 2 ⊢ (𝜑 → (𝐺 DProd 𝑆) = ((𝐺 DProd (𝑆 ↾ {𝑋})) ⊕ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))) |
14 | 1, 2, 7 | dpjlem 20045 | . . 3 ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ {𝑋})) = (𝑆‘𝑋)) |
15 | 14 | oveq1d 7429 | . 2 ⊢ (𝜑 → ((𝐺 DProd (𝑆 ↾ {𝑋})) ⊕ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) = ((𝑆‘𝑋) ⊕ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))) |
16 | 13, 15 | eqtrd 2766 | 1 ⊢ (𝜑 → (𝐺 DProd 𝑆) = ((𝑆‘𝑋) ⊕ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ∖ cdif 3944 ∪ cun 3945 ∩ cin 3946 ⊆ wss 3947 ∅c0 4323 {csn 4624 class class class wbr 5144 dom cdm 5673 ↾ cres 5675 ‘cfv 6544 (class class class)co 7414 LSSumclsm 19626 DProd cdprd 19987 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7736 ax-cnex 11203 ax-resscn 11204 ax-1cn 11205 ax-icn 11206 ax-addcl 11207 ax-addrcl 11208 ax-mulcl 11209 ax-mulrcl 11210 ax-mulcom 11211 ax-addass 11212 ax-mulass 11213 ax-distr 11214 ax-i2m1 11215 ax-1ne0 11216 ax-1rid 11217 ax-rnegex 11218 ax-rrecex 11219 ax-cnre 11220 ax-pre-lttri 11221 ax-pre-lttrn 11222 ax-pre-ltadd 11223 ax-pre-mulgt0 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3365 df-reu 3366 df-rab 3421 df-v 3465 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4324 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4907 df-int 4948 df-iun 4996 df-iin 4997 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-se 5629 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6303 df-ord 6369 df-on 6370 df-lim 6371 df-suc 6372 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7680 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-tpos 8231 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-2o 8487 df-er 8724 df-map 8847 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9397 df-oi 9544 df-card 9973 df-pnf 11289 df-mnf 11290 df-xr 11291 df-ltxr 11292 df-le 11293 df-sub 11485 df-neg 11486 df-nn 12257 df-2 12319 df-n0 12517 df-z 12603 df-uz 12867 df-fz 13531 df-fzo 13674 df-seq 14014 df-hash 14341 df-sets 17159 df-slot 17177 df-ndx 17189 df-base 17207 df-ress 17236 df-plusg 17272 df-0g 17449 df-gsum 17450 df-mre 17592 df-mrc 17593 df-acs 17595 df-mgm 18626 df-sgrp 18705 df-mnd 18721 df-mhm 18766 df-submnd 18767 df-grp 18924 df-minusg 18925 df-sbg 18926 df-mulg 19056 df-subg 19111 df-ghm 19201 df-gim 19247 df-cntz 19305 df-oppg 19334 df-lsm 19628 df-cmn 19774 df-dprd 19989 |
This theorem is referenced by: dpjf 20051 dpjidcl 20052 dpjghm 20057 |
Copyright terms: Public domain | W3C validator |