| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dpjdisj | Structured version Visualization version GIF version | ||
| Description: The two subgroups that appear in dpjval 19955 are disjoint. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| Ref | Expression |
|---|---|
| dpjfval.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| dpjfval.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
| dpjlem.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
| dpjdisj.0 | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| dpjdisj | ⊢ (𝜑 → ((𝑆‘𝑋) ∩ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) = { 0 }) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dpjfval.1 | . . . 4 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
| 2 | dpjfval.2 | . . . 4 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
| 3 | dpjlem.3 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
| 4 | 1, 2, 3 | dpjlem 19950 | . . 3 ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ {𝑋})) = (𝑆‘𝑋)) |
| 5 | 4 | ineq1d 4172 | . 2 ⊢ (𝜑 → ((𝐺 DProd (𝑆 ↾ {𝑋})) ∩ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) = ((𝑆‘𝑋) ∩ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))) |
| 6 | 1, 2 | dprdf2 19906 | . . . . 5 ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
| 7 | disjdif 4425 | . . . . . 6 ⊢ ({𝑋} ∩ (𝐼 ∖ {𝑋})) = ∅ | |
| 8 | 7 | a1i 11 | . . . . 5 ⊢ (𝜑 → ({𝑋} ∩ (𝐼 ∖ {𝑋})) = ∅) |
| 9 | undif2 4430 | . . . . . 6 ⊢ ({𝑋} ∪ (𝐼 ∖ {𝑋})) = ({𝑋} ∪ 𝐼) | |
| 10 | 3 | snssd 4763 | . . . . . . 7 ⊢ (𝜑 → {𝑋} ⊆ 𝐼) |
| 11 | ssequn1 4139 | . . . . . . 7 ⊢ ({𝑋} ⊆ 𝐼 ↔ ({𝑋} ∪ 𝐼) = 𝐼) | |
| 12 | 10, 11 | sylib 218 | . . . . . 6 ⊢ (𝜑 → ({𝑋} ∪ 𝐼) = 𝐼) |
| 13 | 9, 12 | eqtr2id 2777 | . . . . 5 ⊢ (𝜑 → 𝐼 = ({𝑋} ∪ (𝐼 ∖ {𝑋}))) |
| 14 | eqid 2729 | . . . . 5 ⊢ (Cntz‘𝐺) = (Cntz‘𝐺) | |
| 15 | dpjdisj.0 | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
| 16 | 6, 8, 13, 14, 15 | dmdprdsplit 19946 | . . . 4 ⊢ (𝜑 → (𝐺dom DProd 𝑆 ↔ ((𝐺dom DProd (𝑆 ↾ {𝑋}) ∧ 𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))) ∧ (𝐺 DProd (𝑆 ↾ {𝑋})) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) ∧ ((𝐺 DProd (𝑆 ↾ {𝑋})) ∩ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) = { 0 }))) |
| 17 | 1, 16 | mpbid 232 | . . 3 ⊢ (𝜑 → ((𝐺dom DProd (𝑆 ↾ {𝑋}) ∧ 𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))) ∧ (𝐺 DProd (𝑆 ↾ {𝑋})) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) ∧ ((𝐺 DProd (𝑆 ↾ {𝑋})) ∩ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) = { 0 })) |
| 18 | 17 | simp3d 1144 | . 2 ⊢ (𝜑 → ((𝐺 DProd (𝑆 ↾ {𝑋})) ∩ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) = { 0 }) |
| 19 | 5, 18 | eqtr3d 2766 | 1 ⊢ (𝜑 → ((𝑆‘𝑋) ∩ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) = { 0 }) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∖ cdif 3902 ∪ cun 3903 ∩ cin 3904 ⊆ wss 3905 ∅c0 4286 {csn 4579 class class class wbr 5095 dom cdm 5623 ↾ cres 5625 ‘cfv 6486 (class class class)co 7353 0gc0g 17361 Cntzccntz 19212 DProd cdprd 19892 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-fzo 13576 df-seq 13927 df-hash 14256 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-0g 17363 df-gsum 17364 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-submnd 18676 df-grp 18833 df-minusg 18834 df-sbg 18835 df-mulg 18965 df-subg 19020 df-ghm 19110 df-gim 19156 df-cntz 19214 df-oppg 19243 df-lsm 19533 df-cmn 19679 df-dprd 19894 |
| This theorem is referenced by: dpjf 19956 dpjidcl 19957 dpjlid 19960 dpjghm 19962 |
| Copyright terms: Public domain | W3C validator |