![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dpjdisj | Structured version Visualization version GIF version |
Description: The two subgroups that appear in dpjval 20102 are disjoint. (Contributed by Mario Carneiro, 26-Apr-2016.) |
Ref | Expression |
---|---|
dpjfval.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
dpjfval.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
dpjlem.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
dpjdisj.0 | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
dpjdisj | ⊢ (𝜑 → ((𝑆‘𝑋) ∩ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) = { 0 }) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dpjfval.1 | . . . 4 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
2 | dpjfval.2 | . . . 4 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
3 | dpjlem.3 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
4 | 1, 2, 3 | dpjlem 20097 | . . 3 ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ {𝑋})) = (𝑆‘𝑋)) |
5 | 4 | ineq1d 4240 | . 2 ⊢ (𝜑 → ((𝐺 DProd (𝑆 ↾ {𝑋})) ∩ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) = ((𝑆‘𝑋) ∩ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))) |
6 | 1, 2 | dprdf2 20053 | . . . . 5 ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
7 | disjdif 4495 | . . . . . 6 ⊢ ({𝑋} ∩ (𝐼 ∖ {𝑋})) = ∅ | |
8 | 7 | a1i 11 | . . . . 5 ⊢ (𝜑 → ({𝑋} ∩ (𝐼 ∖ {𝑋})) = ∅) |
9 | undif2 4500 | . . . . . 6 ⊢ ({𝑋} ∪ (𝐼 ∖ {𝑋})) = ({𝑋} ∪ 𝐼) | |
10 | 3 | snssd 4834 | . . . . . . 7 ⊢ (𝜑 → {𝑋} ⊆ 𝐼) |
11 | ssequn1 4209 | . . . . . . 7 ⊢ ({𝑋} ⊆ 𝐼 ↔ ({𝑋} ∪ 𝐼) = 𝐼) | |
12 | 10, 11 | sylib 218 | . . . . . 6 ⊢ (𝜑 → ({𝑋} ∪ 𝐼) = 𝐼) |
13 | 9, 12 | eqtr2id 2793 | . . . . 5 ⊢ (𝜑 → 𝐼 = ({𝑋} ∪ (𝐼 ∖ {𝑋}))) |
14 | eqid 2740 | . . . . 5 ⊢ (Cntz‘𝐺) = (Cntz‘𝐺) | |
15 | dpjdisj.0 | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
16 | 6, 8, 13, 14, 15 | dmdprdsplit 20093 | . . . 4 ⊢ (𝜑 → (𝐺dom DProd 𝑆 ↔ ((𝐺dom DProd (𝑆 ↾ {𝑋}) ∧ 𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))) ∧ (𝐺 DProd (𝑆 ↾ {𝑋})) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) ∧ ((𝐺 DProd (𝑆 ↾ {𝑋})) ∩ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) = { 0 }))) |
17 | 1, 16 | mpbid 232 | . . 3 ⊢ (𝜑 → ((𝐺dom DProd (𝑆 ↾ {𝑋}) ∧ 𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))) ∧ (𝐺 DProd (𝑆 ↾ {𝑋})) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) ∧ ((𝐺 DProd (𝑆 ↾ {𝑋})) ∩ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) = { 0 })) |
18 | 17 | simp3d 1144 | . 2 ⊢ (𝜑 → ((𝐺 DProd (𝑆 ↾ {𝑋})) ∩ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) = { 0 }) |
19 | 5, 18 | eqtr3d 2782 | 1 ⊢ (𝜑 → ((𝑆‘𝑋) ∩ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) = { 0 }) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∖ cdif 3973 ∪ cun 3974 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 {csn 4648 class class class wbr 5166 dom cdm 5700 ↾ cres 5702 ‘cfv 6575 (class class class)co 7450 0gc0g 17501 Cntzccntz 19357 DProd cdprd 20039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-pre-mulgt0 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-isom 6584 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-of 7716 df-om 7906 df-1st 8032 df-2nd 8033 df-supp 8204 df-tpos 8269 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-1o 8524 df-2o 8525 df-er 8765 df-map 8888 df-ixp 8958 df-en 9006 df-dom 9007 df-sdom 9008 df-fin 9009 df-fsupp 9434 df-oi 9581 df-card 10010 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-sub 11524 df-neg 11525 df-nn 12296 df-2 12358 df-n0 12556 df-z 12642 df-uz 12906 df-fz 13570 df-fzo 13714 df-seq 14055 df-hash 14382 df-sets 17213 df-slot 17231 df-ndx 17243 df-base 17261 df-ress 17290 df-plusg 17326 df-0g 17503 df-gsum 17504 df-mre 17646 df-mrc 17647 df-acs 17649 df-mgm 18680 df-sgrp 18759 df-mnd 18775 df-mhm 18820 df-submnd 18821 df-grp 18978 df-minusg 18979 df-sbg 18980 df-mulg 19110 df-subg 19165 df-ghm 19255 df-gim 19301 df-cntz 19359 df-oppg 19388 df-lsm 19680 df-cmn 19826 df-dprd 20041 |
This theorem is referenced by: dpjf 20103 dpjidcl 20104 dpjlid 20107 dpjghm 20109 |
Copyright terms: Public domain | W3C validator |