![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashun2 | Structured version Visualization version GIF version |
Description: The size of the union of finite sets is less than or equal to the sum of their sizes. (Contributed by Mario Carneiro, 23-Sep-2013.) (Proof shortened by Mario Carneiro, 27-Jul-2014.) |
Ref | Expression |
---|---|
hashun2 | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 ∪ 𝐵)) ≤ ((♯‘𝐴) + (♯‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | undif2 4345 | . . . 4 ⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = (𝐴 ∪ 𝐵) | |
2 | 1 | fveq2i 6548 | . . 3 ⊢ (♯‘(𝐴 ∪ (𝐵 ∖ 𝐴))) = (♯‘(𝐴 ∪ 𝐵)) |
3 | diffi 8603 | . . . 4 ⊢ (𝐵 ∈ Fin → (𝐵 ∖ 𝐴) ∈ Fin) | |
4 | disjdif 4341 | . . . . 5 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ | |
5 | hashun 13595 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∖ 𝐴) ∈ Fin ∧ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅) → (♯‘(𝐴 ∪ (𝐵 ∖ 𝐴))) = ((♯‘𝐴) + (♯‘(𝐵 ∖ 𝐴)))) | |
6 | 4, 5 | mp3an3 1442 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∖ 𝐴) ∈ Fin) → (♯‘(𝐴 ∪ (𝐵 ∖ 𝐴))) = ((♯‘𝐴) + (♯‘(𝐵 ∖ 𝐴)))) |
7 | 3, 6 | sylan2 592 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 ∪ (𝐵 ∖ 𝐴))) = ((♯‘𝐴) + (♯‘(𝐵 ∖ 𝐴)))) |
8 | 2, 7 | syl5eqr 2847 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 ∪ 𝐵)) = ((♯‘𝐴) + (♯‘(𝐵 ∖ 𝐴)))) |
9 | 3 | adantl 482 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐵 ∖ 𝐴) ∈ Fin) |
10 | hashcl 13571 | . . . . 5 ⊢ ((𝐵 ∖ 𝐴) ∈ Fin → (♯‘(𝐵 ∖ 𝐴)) ∈ ℕ0) | |
11 | 9, 10 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐵 ∖ 𝐴)) ∈ ℕ0) |
12 | 11 | nn0red 11810 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐵 ∖ 𝐴)) ∈ ℝ) |
13 | hashcl 13571 | . . . . 5 ⊢ (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0) | |
14 | 13 | adantl 482 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘𝐵) ∈ ℕ0) |
15 | 14 | nn0red 11810 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘𝐵) ∈ ℝ) |
16 | hashcl 13571 | . . . . 5 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
17 | 16 | adantr 481 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘𝐴) ∈ ℕ0) |
18 | 17 | nn0red 11810 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘𝐴) ∈ ℝ) |
19 | simpr 485 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → 𝐵 ∈ Fin) | |
20 | difss 4035 | . . . . 5 ⊢ (𝐵 ∖ 𝐴) ⊆ 𝐵 | |
21 | ssdomg 8410 | . . . . 5 ⊢ (𝐵 ∈ Fin → ((𝐵 ∖ 𝐴) ⊆ 𝐵 → (𝐵 ∖ 𝐴) ≼ 𝐵)) | |
22 | 19, 20, 21 | mpisyl 21 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐵 ∖ 𝐴) ≼ 𝐵) |
23 | hashdom 13592 | . . . . 5 ⊢ (((𝐵 ∖ 𝐴) ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘(𝐵 ∖ 𝐴)) ≤ (♯‘𝐵) ↔ (𝐵 ∖ 𝐴) ≼ 𝐵)) | |
24 | 9, 23 | sylancom 588 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘(𝐵 ∖ 𝐴)) ≤ (♯‘𝐵) ↔ (𝐵 ∖ 𝐴) ≼ 𝐵)) |
25 | 22, 24 | mpbird 258 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐵 ∖ 𝐴)) ≤ (♯‘𝐵)) |
26 | 12, 15, 18, 25 | leadd2dd 11109 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) + (♯‘(𝐵 ∖ 𝐴))) ≤ ((♯‘𝐴) + (♯‘𝐵))) |
27 | 8, 26 | eqbrtrd 4990 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 ∪ 𝐵)) ≤ ((♯‘𝐴) + (♯‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 = wceq 1525 ∈ wcel 2083 ∖ cdif 3862 ∪ cun 3863 ∩ cin 3864 ⊆ wss 3865 ∅c0 4217 class class class wbr 4968 ‘cfv 6232 (class class class)co 7023 ≼ cdom 8362 Fincfn 8364 + caddc 10393 ≤ cle 10529 ℕ0cn0 11751 ♯chash 13544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-rep 5088 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-cnex 10446 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-mulcom 10454 ax-addass 10455 ax-mulass 10456 ax-distr 10457 ax-i2m1 10458 ax-1ne0 10459 ax-1rid 10460 ax-rnegex 10461 ax-rrecex 10462 ax-cnre 10463 ax-pre-lttri 10464 ax-pre-lttrn 10465 ax-pre-ltadd 10466 ax-pre-mulgt0 10467 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-reu 3114 df-rmo 3115 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-int 4789 df-iun 4833 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-om 7444 df-1st 7552 df-2nd 7553 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-1o 7960 df-oadd 7964 df-er 8146 df-en 8365 df-dom 8366 df-sdom 8367 df-fin 8368 df-dju 9183 df-card 9221 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 df-sub 10725 df-neg 10726 df-nn 11493 df-n0 11752 df-xnn0 11822 df-z 11836 df-uz 12098 df-fz 12747 df-hash 13545 |
This theorem is referenced by: hashunlei 13638 hashfun 13650 prmreclem4 16088 fta1glem2 24447 fta1lem 24583 vieta1lem2 24587 |
Copyright terms: Public domain | W3C validator |