| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hashun2 | Structured version Visualization version GIF version | ||
| Description: The size of the union of finite sets is less than or equal to the sum of their sizes. (Contributed by Mario Carneiro, 23-Sep-2013.) (Proof shortened by Mario Carneiro, 27-Jul-2014.) |
| Ref | Expression |
|---|---|
| hashun2 | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 ∪ 𝐵)) ≤ ((♯‘𝐴) + (♯‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | undif2 4436 | . . . 4 ⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = (𝐴 ∪ 𝐵) | |
| 2 | 1 | fveq2i 6843 | . . 3 ⊢ (♯‘(𝐴 ∪ (𝐵 ∖ 𝐴))) = (♯‘(𝐴 ∪ 𝐵)) |
| 3 | diffi 9116 | . . . 4 ⊢ (𝐵 ∈ Fin → (𝐵 ∖ 𝐴) ∈ Fin) | |
| 4 | disjdif 4431 | . . . . 5 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ | |
| 5 | hashun 14323 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∖ 𝐴) ∈ Fin ∧ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅) → (♯‘(𝐴 ∪ (𝐵 ∖ 𝐴))) = ((♯‘𝐴) + (♯‘(𝐵 ∖ 𝐴)))) | |
| 6 | 4, 5 | mp3an3 1452 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∖ 𝐴) ∈ Fin) → (♯‘(𝐴 ∪ (𝐵 ∖ 𝐴))) = ((♯‘𝐴) + (♯‘(𝐵 ∖ 𝐴)))) |
| 7 | 3, 6 | sylan2 593 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 ∪ (𝐵 ∖ 𝐴))) = ((♯‘𝐴) + (♯‘(𝐵 ∖ 𝐴)))) |
| 8 | 2, 7 | eqtr3id 2778 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 ∪ 𝐵)) = ((♯‘𝐴) + (♯‘(𝐵 ∖ 𝐴)))) |
| 9 | 3 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐵 ∖ 𝐴) ∈ Fin) |
| 10 | hashcl 14297 | . . . . 5 ⊢ ((𝐵 ∖ 𝐴) ∈ Fin → (♯‘(𝐵 ∖ 𝐴)) ∈ ℕ0) | |
| 11 | 9, 10 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐵 ∖ 𝐴)) ∈ ℕ0) |
| 12 | 11 | nn0red 12480 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐵 ∖ 𝐴)) ∈ ℝ) |
| 13 | hashcl 14297 | . . . . 5 ⊢ (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0) | |
| 14 | 13 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘𝐵) ∈ ℕ0) |
| 15 | 14 | nn0red 12480 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘𝐵) ∈ ℝ) |
| 16 | hashcl 14297 | . . . . 5 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
| 17 | 16 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘𝐴) ∈ ℕ0) |
| 18 | 17 | nn0red 12480 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘𝐴) ∈ ℝ) |
| 19 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → 𝐵 ∈ Fin) | |
| 20 | difss 4095 | . . . . 5 ⊢ (𝐵 ∖ 𝐴) ⊆ 𝐵 | |
| 21 | ssdomg 8948 | . . . . 5 ⊢ (𝐵 ∈ Fin → ((𝐵 ∖ 𝐴) ⊆ 𝐵 → (𝐵 ∖ 𝐴) ≼ 𝐵)) | |
| 22 | 19, 20, 21 | mpisyl 21 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐵 ∖ 𝐴) ≼ 𝐵) |
| 23 | hashdom 14320 | . . . . 5 ⊢ (((𝐵 ∖ 𝐴) ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘(𝐵 ∖ 𝐴)) ≤ (♯‘𝐵) ↔ (𝐵 ∖ 𝐴) ≼ 𝐵)) | |
| 24 | 9, 23 | sylancom 588 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘(𝐵 ∖ 𝐴)) ≤ (♯‘𝐵) ↔ (𝐵 ∖ 𝐴) ≼ 𝐵)) |
| 25 | 22, 24 | mpbird 257 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐵 ∖ 𝐴)) ≤ (♯‘𝐵)) |
| 26 | 12, 15, 18, 25 | leadd2dd 11769 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) + (♯‘(𝐵 ∖ 𝐴))) ≤ ((♯‘𝐴) + (♯‘𝐵))) |
| 27 | 8, 26 | eqbrtrd 5124 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 ∪ 𝐵)) ≤ ((♯‘𝐴) + (♯‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3908 ∪ cun 3909 ∩ cin 3910 ⊆ wss 3911 ∅c0 4292 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 ≼ cdom 8893 Fincfn 8895 + caddc 11047 ≤ cle 11185 ℕ0cn0 12418 ♯chash 14271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-oadd 8415 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-dju 9830 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-xnn0 12492 df-z 12506 df-uz 12770 df-fz 13445 df-hash 14272 |
| This theorem is referenced by: hashunlei 14366 hashfun 14378 prmreclem4 16866 fta1glem2 26050 fta1lem 26191 vieta1lem2 26195 |
| Copyright terms: Public domain | W3C validator |