MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashun2 Structured version   Visualization version   GIF version

Theorem hashun2 14419
Description: The size of the union of finite sets is less than or equal to the sum of their sizes. (Contributed by Mario Carneiro, 23-Sep-2013.) (Proof shortened by Mario Carneiro, 27-Jul-2014.)
Assertion
Ref Expression
hashun2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) ≤ ((♯‘𝐴) + (♯‘𝐵)))

Proof of Theorem hashun2
StepHypRef Expression
1 undif2 4483 . . . 4 (𝐴 ∪ (𝐵𝐴)) = (𝐴𝐵)
21fveq2i 6910 . . 3 (♯‘(𝐴 ∪ (𝐵𝐴))) = (♯‘(𝐴𝐵))
3 diffi 9214 . . . 4 (𝐵 ∈ Fin → (𝐵𝐴) ∈ Fin)
4 disjdif 4478 . . . . 5 (𝐴 ∩ (𝐵𝐴)) = ∅
5 hashun 14418 . . . . 5 ((𝐴 ∈ Fin ∧ (𝐵𝐴) ∈ Fin ∧ (𝐴 ∩ (𝐵𝐴)) = ∅) → (♯‘(𝐴 ∪ (𝐵𝐴))) = ((♯‘𝐴) + (♯‘(𝐵𝐴))))
64, 5mp3an3 1449 . . . 4 ((𝐴 ∈ Fin ∧ (𝐵𝐴) ∈ Fin) → (♯‘(𝐴 ∪ (𝐵𝐴))) = ((♯‘𝐴) + (♯‘(𝐵𝐴))))
73, 6sylan2 593 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 ∪ (𝐵𝐴))) = ((♯‘𝐴) + (♯‘(𝐵𝐴))))
82, 7eqtr3id 2789 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) + (♯‘(𝐵𝐴))))
93adantl 481 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐵𝐴) ∈ Fin)
10 hashcl 14392 . . . . 5 ((𝐵𝐴) ∈ Fin → (♯‘(𝐵𝐴)) ∈ ℕ0)
119, 10syl 17 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐵𝐴)) ∈ ℕ0)
1211nn0red 12586 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐵𝐴)) ∈ ℝ)
13 hashcl 14392 . . . . 5 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
1413adantl 481 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘𝐵) ∈ ℕ0)
1514nn0red 12586 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘𝐵) ∈ ℝ)
16 hashcl 14392 . . . . 5 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
1716adantr 480 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘𝐴) ∈ ℕ0)
1817nn0red 12586 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘𝐴) ∈ ℝ)
19 simpr 484 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → 𝐵 ∈ Fin)
20 difss 4146 . . . . 5 (𝐵𝐴) ⊆ 𝐵
21 ssdomg 9039 . . . . 5 (𝐵 ∈ Fin → ((𝐵𝐴) ⊆ 𝐵 → (𝐵𝐴) ≼ 𝐵))
2219, 20, 21mpisyl 21 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐵𝐴) ≼ 𝐵)
23 hashdom 14415 . . . . 5 (((𝐵𝐴) ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘(𝐵𝐴)) ≤ (♯‘𝐵) ↔ (𝐵𝐴) ≼ 𝐵))
249, 23sylancom 588 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘(𝐵𝐴)) ≤ (♯‘𝐵) ↔ (𝐵𝐴) ≼ 𝐵))
2522, 24mpbird 257 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐵𝐴)) ≤ (♯‘𝐵))
2612, 15, 18, 25leadd2dd 11876 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) + (♯‘(𝐵𝐴))) ≤ ((♯‘𝐴) + (♯‘𝐵)))
278, 26eqbrtrd 5170 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) ≤ ((♯‘𝐴) + (♯‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  cdif 3960  cun 3961  cin 3962  wss 3963  c0 4339   class class class wbr 5148  cfv 6563  (class class class)co 7431  cdom 8982  Fincfn 8984   + caddc 11156  cle 11294  0cn0 12524  chash 14366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-fz 13545  df-hash 14367
This theorem is referenced by:  hashunlei  14461  hashfun  14473  prmreclem4  16953  fta1glem2  26223  fta1lem  26364  vieta1lem2  26368
  Copyright terms: Public domain W3C validator