![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashun2 | Structured version Visualization version GIF version |
Description: The size of the union of finite sets is less than or equal to the sum of their sizes. (Contributed by Mario Carneiro, 23-Sep-2013.) (Proof shortened by Mario Carneiro, 27-Jul-2014.) |
Ref | Expression |
---|---|
hashun2 | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 ∪ 𝐵)) ≤ ((♯‘𝐴) + (♯‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | undif2 4480 | . . . 4 ⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = (𝐴 ∪ 𝐵) | |
2 | 1 | fveq2i 6905 | . . 3 ⊢ (♯‘(𝐴 ∪ (𝐵 ∖ 𝐴))) = (♯‘(𝐴 ∪ 𝐵)) |
3 | diffi 9210 | . . . 4 ⊢ (𝐵 ∈ Fin → (𝐵 ∖ 𝐴) ∈ Fin) | |
4 | disjdif 4475 | . . . . 5 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ | |
5 | hashun 14381 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∖ 𝐴) ∈ Fin ∧ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅) → (♯‘(𝐴 ∪ (𝐵 ∖ 𝐴))) = ((♯‘𝐴) + (♯‘(𝐵 ∖ 𝐴)))) | |
6 | 4, 5 | mp3an3 1446 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∖ 𝐴) ∈ Fin) → (♯‘(𝐴 ∪ (𝐵 ∖ 𝐴))) = ((♯‘𝐴) + (♯‘(𝐵 ∖ 𝐴)))) |
7 | 3, 6 | sylan2 591 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 ∪ (𝐵 ∖ 𝐴))) = ((♯‘𝐴) + (♯‘(𝐵 ∖ 𝐴)))) |
8 | 2, 7 | eqtr3id 2782 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 ∪ 𝐵)) = ((♯‘𝐴) + (♯‘(𝐵 ∖ 𝐴)))) |
9 | 3 | adantl 480 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐵 ∖ 𝐴) ∈ Fin) |
10 | hashcl 14355 | . . . . 5 ⊢ ((𝐵 ∖ 𝐴) ∈ Fin → (♯‘(𝐵 ∖ 𝐴)) ∈ ℕ0) | |
11 | 9, 10 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐵 ∖ 𝐴)) ∈ ℕ0) |
12 | 11 | nn0red 12571 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐵 ∖ 𝐴)) ∈ ℝ) |
13 | hashcl 14355 | . . . . 5 ⊢ (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0) | |
14 | 13 | adantl 480 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘𝐵) ∈ ℕ0) |
15 | 14 | nn0red 12571 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘𝐵) ∈ ℝ) |
16 | hashcl 14355 | . . . . 5 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
17 | 16 | adantr 479 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘𝐴) ∈ ℕ0) |
18 | 17 | nn0red 12571 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘𝐴) ∈ ℝ) |
19 | simpr 483 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → 𝐵 ∈ Fin) | |
20 | difss 4132 | . . . . 5 ⊢ (𝐵 ∖ 𝐴) ⊆ 𝐵 | |
21 | ssdomg 9027 | . . . . 5 ⊢ (𝐵 ∈ Fin → ((𝐵 ∖ 𝐴) ⊆ 𝐵 → (𝐵 ∖ 𝐴) ≼ 𝐵)) | |
22 | 19, 20, 21 | mpisyl 21 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐵 ∖ 𝐴) ≼ 𝐵) |
23 | hashdom 14378 | . . . . 5 ⊢ (((𝐵 ∖ 𝐴) ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘(𝐵 ∖ 𝐴)) ≤ (♯‘𝐵) ↔ (𝐵 ∖ 𝐴) ≼ 𝐵)) | |
24 | 9, 23 | sylancom 586 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘(𝐵 ∖ 𝐴)) ≤ (♯‘𝐵) ↔ (𝐵 ∖ 𝐴) ≼ 𝐵)) |
25 | 22, 24 | mpbird 256 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐵 ∖ 𝐴)) ≤ (♯‘𝐵)) |
26 | 12, 15, 18, 25 | leadd2dd 11867 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) + (♯‘(𝐵 ∖ 𝐴))) ≤ ((♯‘𝐴) + (♯‘𝐵))) |
27 | 8, 26 | eqbrtrd 5174 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 ∪ 𝐵)) ≤ ((♯‘𝐴) + (♯‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∖ cdif 3946 ∪ cun 3947 ∩ cin 3948 ⊆ wss 3949 ∅c0 4326 class class class wbr 5152 ‘cfv 6553 (class class class)co 7426 ≼ cdom 8968 Fincfn 8970 + caddc 11149 ≤ cle 11287 ℕ0cn0 12510 ♯chash 14329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-oadd 8497 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-dju 9932 df-card 9970 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-n0 12511 df-xnn0 12583 df-z 12597 df-uz 12861 df-fz 13525 df-hash 14330 |
This theorem is referenced by: hashunlei 14424 hashfun 14436 prmreclem4 16895 fta1glem2 26123 fta1lem 26262 vieta1lem2 26266 |
Copyright terms: Public domain | W3C validator |