| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hashun2 | Structured version Visualization version GIF version | ||
| Description: The size of the union of finite sets is less than or equal to the sum of their sizes. (Contributed by Mario Carneiro, 23-Sep-2013.) (Proof shortened by Mario Carneiro, 27-Jul-2014.) |
| Ref | Expression |
|---|---|
| hashun2 | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 ∪ 𝐵)) ≤ ((♯‘𝐴) + (♯‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | undif2 4422 | . . . 4 ⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = (𝐴 ∪ 𝐵) | |
| 2 | 1 | fveq2i 6820 | . . 3 ⊢ (♯‘(𝐴 ∪ (𝐵 ∖ 𝐴))) = (♯‘(𝐴 ∪ 𝐵)) |
| 3 | diffi 9079 | . . . 4 ⊢ (𝐵 ∈ Fin → (𝐵 ∖ 𝐴) ∈ Fin) | |
| 4 | disjdif 4417 | . . . . 5 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ | |
| 5 | hashun 14284 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∖ 𝐴) ∈ Fin ∧ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅) → (♯‘(𝐴 ∪ (𝐵 ∖ 𝐴))) = ((♯‘𝐴) + (♯‘(𝐵 ∖ 𝐴)))) | |
| 6 | 4, 5 | mp3an3 1452 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∖ 𝐴) ∈ Fin) → (♯‘(𝐴 ∪ (𝐵 ∖ 𝐴))) = ((♯‘𝐴) + (♯‘(𝐵 ∖ 𝐴)))) |
| 7 | 3, 6 | sylan2 593 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 ∪ (𝐵 ∖ 𝐴))) = ((♯‘𝐴) + (♯‘(𝐵 ∖ 𝐴)))) |
| 8 | 2, 7 | eqtr3id 2780 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 ∪ 𝐵)) = ((♯‘𝐴) + (♯‘(𝐵 ∖ 𝐴)))) |
| 9 | 3 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐵 ∖ 𝐴) ∈ Fin) |
| 10 | hashcl 14258 | . . . . 5 ⊢ ((𝐵 ∖ 𝐴) ∈ Fin → (♯‘(𝐵 ∖ 𝐴)) ∈ ℕ0) | |
| 11 | 9, 10 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐵 ∖ 𝐴)) ∈ ℕ0) |
| 12 | 11 | nn0red 12438 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐵 ∖ 𝐴)) ∈ ℝ) |
| 13 | hashcl 14258 | . . . . 5 ⊢ (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0) | |
| 14 | 13 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘𝐵) ∈ ℕ0) |
| 15 | 14 | nn0red 12438 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘𝐵) ∈ ℝ) |
| 16 | hashcl 14258 | . . . . 5 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
| 17 | 16 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘𝐴) ∈ ℕ0) |
| 18 | 17 | nn0red 12438 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘𝐴) ∈ ℝ) |
| 19 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → 𝐵 ∈ Fin) | |
| 20 | difss 4081 | . . . . 5 ⊢ (𝐵 ∖ 𝐴) ⊆ 𝐵 | |
| 21 | ssdomg 8917 | . . . . 5 ⊢ (𝐵 ∈ Fin → ((𝐵 ∖ 𝐴) ⊆ 𝐵 → (𝐵 ∖ 𝐴) ≼ 𝐵)) | |
| 22 | 19, 20, 21 | mpisyl 21 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐵 ∖ 𝐴) ≼ 𝐵) |
| 23 | hashdom 14281 | . . . . 5 ⊢ (((𝐵 ∖ 𝐴) ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘(𝐵 ∖ 𝐴)) ≤ (♯‘𝐵) ↔ (𝐵 ∖ 𝐴) ≼ 𝐵)) | |
| 24 | 9, 23 | sylancom 588 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘(𝐵 ∖ 𝐴)) ≤ (♯‘𝐵) ↔ (𝐵 ∖ 𝐴) ≼ 𝐵)) |
| 25 | 22, 24 | mpbird 257 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐵 ∖ 𝐴)) ≤ (♯‘𝐵)) |
| 26 | 12, 15, 18, 25 | leadd2dd 11727 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) + (♯‘(𝐵 ∖ 𝐴))) ≤ ((♯‘𝐴) + (♯‘𝐵))) |
| 27 | 8, 26 | eqbrtrd 5108 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 ∪ 𝐵)) ≤ ((♯‘𝐴) + (♯‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∖ cdif 3894 ∪ cun 3895 ∩ cin 3896 ⊆ wss 3897 ∅c0 4278 class class class wbr 5086 ‘cfv 6476 (class class class)co 7341 ≼ cdom 8862 Fincfn 8864 + caddc 11004 ≤ cle 11142 ℕ0cn0 12376 ♯chash 14232 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-oadd 8384 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-dju 9789 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-n0 12377 df-xnn0 12450 df-z 12464 df-uz 12728 df-fz 13403 df-hash 14233 |
| This theorem is referenced by: hashunlei 14327 hashfun 14339 prmreclem4 16826 fta1glem2 26096 fta1lem 26237 vieta1lem2 26241 |
| Copyright terms: Public domain | W3C validator |