Proof of Theorem mbfss
| Step | Hyp | Ref
| Expression |
| 1 | | elun 4153 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐴 ∪ (𝐵 ∖ 𝐴)) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ (𝐵 ∖ 𝐴))) |
| 2 | | undif2 4477 |
. . . . . . . . . 10
⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = (𝐴 ∪ 𝐵) |
| 3 | | mbfss.1 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| 4 | | ssequn1 4186 |
. . . . . . . . . . 11
⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) |
| 5 | 3, 4 | sylib 218 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 ∪ 𝐵) = 𝐵) |
| 6 | 2, 5 | eqtrid 2789 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) |
| 7 | 6 | eleq2d 2827 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (𝐴 ∪ (𝐵 ∖ 𝐴)) ↔ 𝑥 ∈ 𝐵)) |
| 8 | 1, 7 | bitr3id 285 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ (𝐵 ∖ 𝐴)) ↔ 𝑥 ∈ 𝐵)) |
| 9 | 8 | biimpar 477 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ (𝐵 ∖ 𝐴))) |
| 10 | | mbfss.5 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) |
| 11 | | mbfss.3 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) |
| 12 | 10, 11 | mbfmptcl 25671 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| 13 | | mbfss.4 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 0) |
| 14 | | 0cn 11253 |
. . . . . . . 8
⊢ 0 ∈
ℂ |
| 15 | 13, 14 | eqeltrdi 2849 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → 𝐶 ∈ ℂ) |
| 16 | 12, 15 | jaodan 960 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ (𝐵 ∖ 𝐴))) → 𝐶 ∈ ℂ) |
| 17 | 9, 16 | syldan 591 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ ℂ) |
| 18 | 17 | recld 15233 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (ℜ‘𝐶) ∈ ℝ) |
| 19 | 18 | fmpttd 7135 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ (ℜ‘𝐶)):𝐵⟶ℝ) |
| 20 | 3 | resmptd 6058 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ (ℜ‘𝐶)) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐶))) |
| 21 | 12 | ismbfcn2 25673 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn ↔ ((𝑥 ∈ 𝐴 ↦ (ℜ‘𝐶)) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐶)) ∈ MblFn))) |
| 22 | 10, 21 | mpbid 232 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (ℜ‘𝐶)) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐶)) ∈ MblFn)) |
| 23 | 22 | simpld 494 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐶)) ∈ MblFn) |
| 24 | 20, 23 | eqeltrd 2841 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ (ℜ‘𝐶)) ↾ 𝐴) ∈ MblFn) |
| 25 | | difss 4136 |
. . . . . 6
⊢ (𝐵 ∖ 𝐴) ⊆ 𝐵 |
| 26 | | resmpt 6055 |
. . . . . 6
⊢ ((𝐵 ∖ 𝐴) ⊆ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (ℜ‘𝐶)) ↾ (𝐵 ∖ 𝐴)) = (𝑥 ∈ (𝐵 ∖ 𝐴) ↦ (ℜ‘𝐶))) |
| 27 | 25, 26 | ax-mp 5 |
. . . . 5
⊢ ((𝑥 ∈ 𝐵 ↦ (ℜ‘𝐶)) ↾ (𝐵 ∖ 𝐴)) = (𝑥 ∈ (𝐵 ∖ 𝐴) ↦ (ℜ‘𝐶)) |
| 28 | 13 | fveq2d 6910 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → (ℜ‘𝐶) = (ℜ‘0)) |
| 29 | | re0 15191 |
. . . . . . 7
⊢
(ℜ‘0) = 0 |
| 30 | 28, 29 | eqtrdi 2793 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → (ℜ‘𝐶) = 0) |
| 31 | 30 | mpteq2dva 5242 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (𝐵 ∖ 𝐴) ↦ (ℜ‘𝐶)) = (𝑥 ∈ (𝐵 ∖ 𝐴) ↦ 0)) |
| 32 | 27, 31 | eqtrid 2789 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ (ℜ‘𝐶)) ↾ (𝐵 ∖ 𝐴)) = (𝑥 ∈ (𝐵 ∖ 𝐴) ↦ 0)) |
| 33 | | fconstmpt 5747 |
. . . . 5
⊢ ((𝐵 ∖ 𝐴) × {0}) = (𝑥 ∈ (𝐵 ∖ 𝐴) ↦ 0) |
| 34 | | mbfss.2 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ dom vol) |
| 35 | 10, 11 | mbfdm2 25672 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ dom vol) |
| 36 | | difmbl 25578 |
. . . . . . 7
⊢ ((𝐵 ∈ dom vol ∧ 𝐴 ∈ dom vol) → (𝐵 ∖ 𝐴) ∈ dom vol) |
| 37 | 34, 35, 36 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (𝐵 ∖ 𝐴) ∈ dom vol) |
| 38 | | mbfconst 25668 |
. . . . . 6
⊢ (((𝐵 ∖ 𝐴) ∈ dom vol ∧ 0 ∈ ℂ)
→ ((𝐵 ∖ 𝐴) × {0}) ∈
MblFn) |
| 39 | 37, 14, 38 | sylancl 586 |
. . . . 5
⊢ (𝜑 → ((𝐵 ∖ 𝐴) × {0}) ∈
MblFn) |
| 40 | 33, 39 | eqeltrrid 2846 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (𝐵 ∖ 𝐴) ↦ 0) ∈ MblFn) |
| 41 | 32, 40 | eqeltrd 2841 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ (ℜ‘𝐶)) ↾ (𝐵 ∖ 𝐴)) ∈ MblFn) |
| 42 | 19, 24, 41, 6 | mbfres2 25680 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ (ℜ‘𝐶)) ∈ MblFn) |
| 43 | 17 | imcld 15234 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (ℑ‘𝐶) ∈ ℝ) |
| 44 | 43 | fmpttd 7135 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ (ℑ‘𝐶)):𝐵⟶ℝ) |
| 45 | 3 | resmptd 6058 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ (ℑ‘𝐶)) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐶))) |
| 46 | 22 | simprd 495 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐶)) ∈ MblFn) |
| 47 | 45, 46 | eqeltrd 2841 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ (ℑ‘𝐶)) ↾ 𝐴) ∈ MblFn) |
| 48 | | resmpt 6055 |
. . . . . 6
⊢ ((𝐵 ∖ 𝐴) ⊆ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (ℑ‘𝐶)) ↾ (𝐵 ∖ 𝐴)) = (𝑥 ∈ (𝐵 ∖ 𝐴) ↦ (ℑ‘𝐶))) |
| 49 | 25, 48 | ax-mp 5 |
. . . . 5
⊢ ((𝑥 ∈ 𝐵 ↦ (ℑ‘𝐶)) ↾ (𝐵 ∖ 𝐴)) = (𝑥 ∈ (𝐵 ∖ 𝐴) ↦ (ℑ‘𝐶)) |
| 50 | 13 | fveq2d 6910 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → (ℑ‘𝐶) = (ℑ‘0)) |
| 51 | | im0 15192 |
. . . . . . 7
⊢
(ℑ‘0) = 0 |
| 52 | 50, 51 | eqtrdi 2793 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → (ℑ‘𝐶) = 0) |
| 53 | 52 | mpteq2dva 5242 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (𝐵 ∖ 𝐴) ↦ (ℑ‘𝐶)) = (𝑥 ∈ (𝐵 ∖ 𝐴) ↦ 0)) |
| 54 | 49, 53 | eqtrid 2789 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ (ℑ‘𝐶)) ↾ (𝐵 ∖ 𝐴)) = (𝑥 ∈ (𝐵 ∖ 𝐴) ↦ 0)) |
| 55 | 54, 40 | eqeltrd 2841 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ (ℑ‘𝐶)) ↾ (𝐵 ∖ 𝐴)) ∈ MblFn) |
| 56 | 44, 47, 55, 6 | mbfres2 25680 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ (ℑ‘𝐶)) ∈ MblFn) |
| 57 | 17 | ismbfcn2 25673 |
. 2
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶) ∈ MblFn ↔ ((𝑥 ∈ 𝐵 ↦ (ℜ‘𝐶)) ∈ MblFn ∧ (𝑥 ∈ 𝐵 ↦ (ℑ‘𝐶)) ∈ MblFn))) |
| 58 | 42, 56, 57 | mpbir2and 713 |
1
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ MblFn) |