MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfss Structured version   Visualization version   GIF version

Theorem mbfss 25572
Description: Change the domain of a measurability predicate. (Contributed by Mario Carneiro, 17-Aug-2014.)
Hypotheses
Ref Expression
mbfss.1 (𝜑𝐴𝐵)
mbfss.2 (𝜑𝐵 ∈ dom vol)
mbfss.3 ((𝜑𝑥𝐴) → 𝐶𝑉)
mbfss.4 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 = 0)
mbfss.5 (𝜑 → (𝑥𝐴𝐶) ∈ MblFn)
Assertion
Ref Expression
mbfss (𝜑 → (𝑥𝐵𝐶) ∈ MblFn)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem mbfss
StepHypRef Expression
1 elun 4103 . . . . . . . 8 (𝑥 ∈ (𝐴 ∪ (𝐵𝐴)) ↔ (𝑥𝐴𝑥 ∈ (𝐵𝐴)))
2 undif2 4427 . . . . . . . . . 10 (𝐴 ∪ (𝐵𝐴)) = (𝐴𝐵)
3 mbfss.1 . . . . . . . . . . 11 (𝜑𝐴𝐵)
4 ssequn1 4136 . . . . . . . . . . 11 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐵)
53, 4sylib 218 . . . . . . . . . 10 (𝜑 → (𝐴𝐵) = 𝐵)
62, 5eqtrid 2778 . . . . . . . . 9 (𝜑 → (𝐴 ∪ (𝐵𝐴)) = 𝐵)
76eleq2d 2817 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝐴 ∪ (𝐵𝐴)) ↔ 𝑥𝐵))
81, 7bitr3id 285 . . . . . . 7 (𝜑 → ((𝑥𝐴𝑥 ∈ (𝐵𝐴)) ↔ 𝑥𝐵))
98biimpar 477 . . . . . 6 ((𝜑𝑥𝐵) → (𝑥𝐴𝑥 ∈ (𝐵𝐴)))
10 mbfss.5 . . . . . . . 8 (𝜑 → (𝑥𝐴𝐶) ∈ MblFn)
11 mbfss.3 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐶𝑉)
1210, 11mbfmptcl 25562 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
13 mbfss.4 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 = 0)
14 0cn 11101 . . . . . . . 8 0 ∈ ℂ
1513, 14eqeltrdi 2839 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 ∈ ℂ)
1612, 15jaodan 959 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝑥 ∈ (𝐵𝐴))) → 𝐶 ∈ ℂ)
179, 16syldan 591 . . . . 5 ((𝜑𝑥𝐵) → 𝐶 ∈ ℂ)
1817recld 15098 . . . 4 ((𝜑𝑥𝐵) → (ℜ‘𝐶) ∈ ℝ)
1918fmpttd 7048 . . 3 (𝜑 → (𝑥𝐵 ↦ (ℜ‘𝐶)):𝐵⟶ℝ)
203resmptd 5989 . . . 4 (𝜑 → ((𝑥𝐵 ↦ (ℜ‘𝐶)) ↾ 𝐴) = (𝑥𝐴 ↦ (ℜ‘𝐶)))
2112ismbfcn2 25564 . . . . . 6 (𝜑 → ((𝑥𝐴𝐶) ∈ MblFn ↔ ((𝑥𝐴 ↦ (ℜ‘𝐶)) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘𝐶)) ∈ MblFn)))
2210, 21mpbid 232 . . . . 5 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐶)) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘𝐶)) ∈ MblFn))
2322simpld 494 . . . 4 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐶)) ∈ MblFn)
2420, 23eqeltrd 2831 . . 3 (𝜑 → ((𝑥𝐵 ↦ (ℜ‘𝐶)) ↾ 𝐴) ∈ MblFn)
25 difss 4086 . . . . . 6 (𝐵𝐴) ⊆ 𝐵
26 resmpt 5986 . . . . . 6 ((𝐵𝐴) ⊆ 𝐵 → ((𝑥𝐵 ↦ (ℜ‘𝐶)) ↾ (𝐵𝐴)) = (𝑥 ∈ (𝐵𝐴) ↦ (ℜ‘𝐶)))
2725, 26ax-mp 5 . . . . 5 ((𝑥𝐵 ↦ (ℜ‘𝐶)) ↾ (𝐵𝐴)) = (𝑥 ∈ (𝐵𝐴) ↦ (ℜ‘𝐶))
2813fveq2d 6826 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵𝐴)) → (ℜ‘𝐶) = (ℜ‘0))
29 re0 15056 . . . . . . 7 (ℜ‘0) = 0
3028, 29eqtrdi 2782 . . . . . 6 ((𝜑𝑥 ∈ (𝐵𝐴)) → (ℜ‘𝐶) = 0)
3130mpteq2dva 5184 . . . . 5 (𝜑 → (𝑥 ∈ (𝐵𝐴) ↦ (ℜ‘𝐶)) = (𝑥 ∈ (𝐵𝐴) ↦ 0))
3227, 31eqtrid 2778 . . . 4 (𝜑 → ((𝑥𝐵 ↦ (ℜ‘𝐶)) ↾ (𝐵𝐴)) = (𝑥 ∈ (𝐵𝐴) ↦ 0))
33 fconstmpt 5678 . . . . 5 ((𝐵𝐴) × {0}) = (𝑥 ∈ (𝐵𝐴) ↦ 0)
34 mbfss.2 . . . . . . 7 (𝜑𝐵 ∈ dom vol)
3510, 11mbfdm2 25563 . . . . . . 7 (𝜑𝐴 ∈ dom vol)
36 difmbl 25469 . . . . . . 7 ((𝐵 ∈ dom vol ∧ 𝐴 ∈ dom vol) → (𝐵𝐴) ∈ dom vol)
3734, 35, 36syl2anc 584 . . . . . 6 (𝜑 → (𝐵𝐴) ∈ dom vol)
38 mbfconst 25559 . . . . . 6 (((𝐵𝐴) ∈ dom vol ∧ 0 ∈ ℂ) → ((𝐵𝐴) × {0}) ∈ MblFn)
3937, 14, 38sylancl 586 . . . . 5 (𝜑 → ((𝐵𝐴) × {0}) ∈ MblFn)
4033, 39eqeltrrid 2836 . . . 4 (𝜑 → (𝑥 ∈ (𝐵𝐴) ↦ 0) ∈ MblFn)
4132, 40eqeltrd 2831 . . 3 (𝜑 → ((𝑥𝐵 ↦ (ℜ‘𝐶)) ↾ (𝐵𝐴)) ∈ MblFn)
4219, 24, 41, 6mbfres2 25571 . 2 (𝜑 → (𝑥𝐵 ↦ (ℜ‘𝐶)) ∈ MblFn)
4317imcld 15099 . . . 4 ((𝜑𝑥𝐵) → (ℑ‘𝐶) ∈ ℝ)
4443fmpttd 7048 . . 3 (𝜑 → (𝑥𝐵 ↦ (ℑ‘𝐶)):𝐵⟶ℝ)
453resmptd 5989 . . . 4 (𝜑 → ((𝑥𝐵 ↦ (ℑ‘𝐶)) ↾ 𝐴) = (𝑥𝐴 ↦ (ℑ‘𝐶)))
4622simprd 495 . . . 4 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐶)) ∈ MblFn)
4745, 46eqeltrd 2831 . . 3 (𝜑 → ((𝑥𝐵 ↦ (ℑ‘𝐶)) ↾ 𝐴) ∈ MblFn)
48 resmpt 5986 . . . . . 6 ((𝐵𝐴) ⊆ 𝐵 → ((𝑥𝐵 ↦ (ℑ‘𝐶)) ↾ (𝐵𝐴)) = (𝑥 ∈ (𝐵𝐴) ↦ (ℑ‘𝐶)))
4925, 48ax-mp 5 . . . . 5 ((𝑥𝐵 ↦ (ℑ‘𝐶)) ↾ (𝐵𝐴)) = (𝑥 ∈ (𝐵𝐴) ↦ (ℑ‘𝐶))
5013fveq2d 6826 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵𝐴)) → (ℑ‘𝐶) = (ℑ‘0))
51 im0 15057 . . . . . . 7 (ℑ‘0) = 0
5250, 51eqtrdi 2782 . . . . . 6 ((𝜑𝑥 ∈ (𝐵𝐴)) → (ℑ‘𝐶) = 0)
5352mpteq2dva 5184 . . . . 5 (𝜑 → (𝑥 ∈ (𝐵𝐴) ↦ (ℑ‘𝐶)) = (𝑥 ∈ (𝐵𝐴) ↦ 0))
5449, 53eqtrid 2778 . . . 4 (𝜑 → ((𝑥𝐵 ↦ (ℑ‘𝐶)) ↾ (𝐵𝐴)) = (𝑥 ∈ (𝐵𝐴) ↦ 0))
5554, 40eqeltrd 2831 . . 3 (𝜑 → ((𝑥𝐵 ↦ (ℑ‘𝐶)) ↾ (𝐵𝐴)) ∈ MblFn)
5644, 47, 55, 6mbfres2 25571 . 2 (𝜑 → (𝑥𝐵 ↦ (ℑ‘𝐶)) ∈ MblFn)
5717ismbfcn2 25564 . 2 (𝜑 → ((𝑥𝐵𝐶) ∈ MblFn ↔ ((𝑥𝐵 ↦ (ℜ‘𝐶)) ∈ MblFn ∧ (𝑥𝐵 ↦ (ℑ‘𝐶)) ∈ MblFn)))
5842, 56, 57mpbir2and 713 1 (𝜑 → (𝑥𝐵𝐶) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wcel 2111  cdif 3899  cun 3900  wss 3902  {csn 4576  cmpt 5172   × cxp 5614  dom cdm 5616  cres 5618  cfv 6481  cc 11001  cr 11002  0cc0 11003  cre 15001  cim 15002  volcvol 25389  MblFncmbf 25540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9791  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-n0 12379  df-z 12466  df-uz 12730  df-q 12844  df-rp 12888  df-xadd 13009  df-ioo 13246  df-ico 13248  df-icc 13249  df-fz 13405  df-fzo 13552  df-fl 13693  df-seq 13906  df-exp 13966  df-hash 14235  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-clim 15392  df-sum 15591  df-xmet 21282  df-met 21283  df-ovol 25390  df-vol 25391  df-mbf 25545
This theorem is referenced by:  mbfi1flim  25649  itg2cnlem1  25687  iblss2  25732  ibladdlem  25746  itgaddlem1  25749  iblabslem  25754  itggt0  25770  itgcn  25771  ibladdnclem  37715  itgaddnclem1  37717  iblabsnclem  37722  ftc1anclem5  37736  ftc1anclem6  37737  ftc1anclem8  37739
  Copyright terms: Public domain W3C validator