MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfss Structured version   Visualization version   GIF version

Theorem mbfss 25547
Description: Change the domain of a measurability predicate. (Contributed by Mario Carneiro, 17-Aug-2014.)
Hypotheses
Ref Expression
mbfss.1 (𝜑𝐴𝐵)
mbfss.2 (𝜑𝐵 ∈ dom vol)
mbfss.3 ((𝜑𝑥𝐴) → 𝐶𝑉)
mbfss.4 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 = 0)
mbfss.5 (𝜑 → (𝑥𝐴𝐶) ∈ MblFn)
Assertion
Ref Expression
mbfss (𝜑 → (𝑥𝐵𝐶) ∈ MblFn)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem mbfss
StepHypRef Expression
1 elun 4116 . . . . . . . 8 (𝑥 ∈ (𝐴 ∪ (𝐵𝐴)) ↔ (𝑥𝐴𝑥 ∈ (𝐵𝐴)))
2 undif2 4440 . . . . . . . . . 10 (𝐴 ∪ (𝐵𝐴)) = (𝐴𝐵)
3 mbfss.1 . . . . . . . . . . 11 (𝜑𝐴𝐵)
4 ssequn1 4149 . . . . . . . . . . 11 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐵)
53, 4sylib 218 . . . . . . . . . 10 (𝜑 → (𝐴𝐵) = 𝐵)
62, 5eqtrid 2776 . . . . . . . . 9 (𝜑 → (𝐴 ∪ (𝐵𝐴)) = 𝐵)
76eleq2d 2814 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝐴 ∪ (𝐵𝐴)) ↔ 𝑥𝐵))
81, 7bitr3id 285 . . . . . . 7 (𝜑 → ((𝑥𝐴𝑥 ∈ (𝐵𝐴)) ↔ 𝑥𝐵))
98biimpar 477 . . . . . 6 ((𝜑𝑥𝐵) → (𝑥𝐴𝑥 ∈ (𝐵𝐴)))
10 mbfss.5 . . . . . . . 8 (𝜑 → (𝑥𝐴𝐶) ∈ MblFn)
11 mbfss.3 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐶𝑉)
1210, 11mbfmptcl 25537 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
13 mbfss.4 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 = 0)
14 0cn 11166 . . . . . . . 8 0 ∈ ℂ
1513, 14eqeltrdi 2836 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 ∈ ℂ)
1612, 15jaodan 959 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝑥 ∈ (𝐵𝐴))) → 𝐶 ∈ ℂ)
179, 16syldan 591 . . . . 5 ((𝜑𝑥𝐵) → 𝐶 ∈ ℂ)
1817recld 15160 . . . 4 ((𝜑𝑥𝐵) → (ℜ‘𝐶) ∈ ℝ)
1918fmpttd 7087 . . 3 (𝜑 → (𝑥𝐵 ↦ (ℜ‘𝐶)):𝐵⟶ℝ)
203resmptd 6011 . . . 4 (𝜑 → ((𝑥𝐵 ↦ (ℜ‘𝐶)) ↾ 𝐴) = (𝑥𝐴 ↦ (ℜ‘𝐶)))
2112ismbfcn2 25539 . . . . . 6 (𝜑 → ((𝑥𝐴𝐶) ∈ MblFn ↔ ((𝑥𝐴 ↦ (ℜ‘𝐶)) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘𝐶)) ∈ MblFn)))
2210, 21mpbid 232 . . . . 5 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐶)) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘𝐶)) ∈ MblFn))
2322simpld 494 . . . 4 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐶)) ∈ MblFn)
2420, 23eqeltrd 2828 . . 3 (𝜑 → ((𝑥𝐵 ↦ (ℜ‘𝐶)) ↾ 𝐴) ∈ MblFn)
25 difss 4099 . . . . . 6 (𝐵𝐴) ⊆ 𝐵
26 resmpt 6008 . . . . . 6 ((𝐵𝐴) ⊆ 𝐵 → ((𝑥𝐵 ↦ (ℜ‘𝐶)) ↾ (𝐵𝐴)) = (𝑥 ∈ (𝐵𝐴) ↦ (ℜ‘𝐶)))
2725, 26ax-mp 5 . . . . 5 ((𝑥𝐵 ↦ (ℜ‘𝐶)) ↾ (𝐵𝐴)) = (𝑥 ∈ (𝐵𝐴) ↦ (ℜ‘𝐶))
2813fveq2d 6862 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵𝐴)) → (ℜ‘𝐶) = (ℜ‘0))
29 re0 15118 . . . . . . 7 (ℜ‘0) = 0
3028, 29eqtrdi 2780 . . . . . 6 ((𝜑𝑥 ∈ (𝐵𝐴)) → (ℜ‘𝐶) = 0)
3130mpteq2dva 5200 . . . . 5 (𝜑 → (𝑥 ∈ (𝐵𝐴) ↦ (ℜ‘𝐶)) = (𝑥 ∈ (𝐵𝐴) ↦ 0))
3227, 31eqtrid 2776 . . . 4 (𝜑 → ((𝑥𝐵 ↦ (ℜ‘𝐶)) ↾ (𝐵𝐴)) = (𝑥 ∈ (𝐵𝐴) ↦ 0))
33 fconstmpt 5700 . . . . 5 ((𝐵𝐴) × {0}) = (𝑥 ∈ (𝐵𝐴) ↦ 0)
34 mbfss.2 . . . . . . 7 (𝜑𝐵 ∈ dom vol)
3510, 11mbfdm2 25538 . . . . . . 7 (𝜑𝐴 ∈ dom vol)
36 difmbl 25444 . . . . . . 7 ((𝐵 ∈ dom vol ∧ 𝐴 ∈ dom vol) → (𝐵𝐴) ∈ dom vol)
3734, 35, 36syl2anc 584 . . . . . 6 (𝜑 → (𝐵𝐴) ∈ dom vol)
38 mbfconst 25534 . . . . . 6 (((𝐵𝐴) ∈ dom vol ∧ 0 ∈ ℂ) → ((𝐵𝐴) × {0}) ∈ MblFn)
3937, 14, 38sylancl 586 . . . . 5 (𝜑 → ((𝐵𝐴) × {0}) ∈ MblFn)
4033, 39eqeltrrid 2833 . . . 4 (𝜑 → (𝑥 ∈ (𝐵𝐴) ↦ 0) ∈ MblFn)
4132, 40eqeltrd 2828 . . 3 (𝜑 → ((𝑥𝐵 ↦ (ℜ‘𝐶)) ↾ (𝐵𝐴)) ∈ MblFn)
4219, 24, 41, 6mbfres2 25546 . 2 (𝜑 → (𝑥𝐵 ↦ (ℜ‘𝐶)) ∈ MblFn)
4317imcld 15161 . . . 4 ((𝜑𝑥𝐵) → (ℑ‘𝐶) ∈ ℝ)
4443fmpttd 7087 . . 3 (𝜑 → (𝑥𝐵 ↦ (ℑ‘𝐶)):𝐵⟶ℝ)
453resmptd 6011 . . . 4 (𝜑 → ((𝑥𝐵 ↦ (ℑ‘𝐶)) ↾ 𝐴) = (𝑥𝐴 ↦ (ℑ‘𝐶)))
4622simprd 495 . . . 4 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐶)) ∈ MblFn)
4745, 46eqeltrd 2828 . . 3 (𝜑 → ((𝑥𝐵 ↦ (ℑ‘𝐶)) ↾ 𝐴) ∈ MblFn)
48 resmpt 6008 . . . . . 6 ((𝐵𝐴) ⊆ 𝐵 → ((𝑥𝐵 ↦ (ℑ‘𝐶)) ↾ (𝐵𝐴)) = (𝑥 ∈ (𝐵𝐴) ↦ (ℑ‘𝐶)))
4925, 48ax-mp 5 . . . . 5 ((𝑥𝐵 ↦ (ℑ‘𝐶)) ↾ (𝐵𝐴)) = (𝑥 ∈ (𝐵𝐴) ↦ (ℑ‘𝐶))
5013fveq2d 6862 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵𝐴)) → (ℑ‘𝐶) = (ℑ‘0))
51 im0 15119 . . . . . . 7 (ℑ‘0) = 0
5250, 51eqtrdi 2780 . . . . . 6 ((𝜑𝑥 ∈ (𝐵𝐴)) → (ℑ‘𝐶) = 0)
5352mpteq2dva 5200 . . . . 5 (𝜑 → (𝑥 ∈ (𝐵𝐴) ↦ (ℑ‘𝐶)) = (𝑥 ∈ (𝐵𝐴) ↦ 0))
5449, 53eqtrid 2776 . . . 4 (𝜑 → ((𝑥𝐵 ↦ (ℑ‘𝐶)) ↾ (𝐵𝐴)) = (𝑥 ∈ (𝐵𝐴) ↦ 0))
5554, 40eqeltrd 2828 . . 3 (𝜑 → ((𝑥𝐵 ↦ (ℑ‘𝐶)) ↾ (𝐵𝐴)) ∈ MblFn)
5644, 47, 55, 6mbfres2 25546 . 2 (𝜑 → (𝑥𝐵 ↦ (ℑ‘𝐶)) ∈ MblFn)
5717ismbfcn2 25539 . 2 (𝜑 → ((𝑥𝐵𝐶) ∈ MblFn ↔ ((𝑥𝐵 ↦ (ℜ‘𝐶)) ∈ MblFn ∧ (𝑥𝐵 ↦ (ℑ‘𝐶)) ∈ MblFn)))
5842, 56, 57mpbir2and 713 1 (𝜑 → (𝑥𝐵𝐶) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  cdif 3911  cun 3912  wss 3914  {csn 4589  cmpt 5188   × cxp 5636  dom cdm 5638  cres 5640  cfv 6511  cc 11066  cr 11067  0cc0 11068  cre 15063  cim 15064  volcvol 25364  MblFncmbf 25515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xadd 13073  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-xmet 21257  df-met 21258  df-ovol 25365  df-vol 25366  df-mbf 25520
This theorem is referenced by:  mbfi1flim  25624  itg2cnlem1  25662  iblss2  25707  ibladdlem  25721  itgaddlem1  25724  iblabslem  25729  itggt0  25745  itgcn  25746  ibladdnclem  37670  itgaddnclem1  37672  iblabsnclem  37677  ftc1anclem5  37691  ftc1anclem6  37692  ftc1anclem8  37694
  Copyright terms: Public domain W3C validator