Proof of Theorem mbfss
Step | Hyp | Ref
| Expression |
1 | | elun 4079 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐴 ∪ (𝐵 ∖ 𝐴)) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ (𝐵 ∖ 𝐴))) |
2 | | undif2 4407 |
. . . . . . . . . 10
⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = (𝐴 ∪ 𝐵) |
3 | | mbfss.1 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
4 | | ssequn1 4110 |
. . . . . . . . . . 11
⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) |
5 | 3, 4 | sylib 217 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 ∪ 𝐵) = 𝐵) |
6 | 2, 5 | syl5eq 2791 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) |
7 | 6 | eleq2d 2824 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (𝐴 ∪ (𝐵 ∖ 𝐴)) ↔ 𝑥 ∈ 𝐵)) |
8 | 1, 7 | bitr3id 284 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ (𝐵 ∖ 𝐴)) ↔ 𝑥 ∈ 𝐵)) |
9 | 8 | biimpar 477 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ (𝐵 ∖ 𝐴))) |
10 | | mbfss.5 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) |
11 | | mbfss.3 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) |
12 | 10, 11 | mbfmptcl 24705 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
13 | | mbfss.4 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 0) |
14 | | 0cn 10898 |
. . . . . . . 8
⊢ 0 ∈
ℂ |
15 | 13, 14 | eqeltrdi 2847 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → 𝐶 ∈ ℂ) |
16 | 12, 15 | jaodan 954 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ (𝐵 ∖ 𝐴))) → 𝐶 ∈ ℂ) |
17 | 9, 16 | syldan 590 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ ℂ) |
18 | 17 | recld 14833 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (ℜ‘𝐶) ∈ ℝ) |
19 | 18 | fmpttd 6971 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ (ℜ‘𝐶)):𝐵⟶ℝ) |
20 | 3 | resmptd 5937 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ (ℜ‘𝐶)) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐶))) |
21 | 12 | ismbfcn2 24707 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn ↔ ((𝑥 ∈ 𝐴 ↦ (ℜ‘𝐶)) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐶)) ∈ MblFn))) |
22 | 10, 21 | mpbid 231 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (ℜ‘𝐶)) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐶)) ∈ MblFn)) |
23 | 22 | simpld 494 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐶)) ∈ MblFn) |
24 | 20, 23 | eqeltrd 2839 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ (ℜ‘𝐶)) ↾ 𝐴) ∈ MblFn) |
25 | | difss 4062 |
. . . . . 6
⊢ (𝐵 ∖ 𝐴) ⊆ 𝐵 |
26 | | resmpt 5934 |
. . . . . 6
⊢ ((𝐵 ∖ 𝐴) ⊆ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (ℜ‘𝐶)) ↾ (𝐵 ∖ 𝐴)) = (𝑥 ∈ (𝐵 ∖ 𝐴) ↦ (ℜ‘𝐶))) |
27 | 25, 26 | ax-mp 5 |
. . . . 5
⊢ ((𝑥 ∈ 𝐵 ↦ (ℜ‘𝐶)) ↾ (𝐵 ∖ 𝐴)) = (𝑥 ∈ (𝐵 ∖ 𝐴) ↦ (ℜ‘𝐶)) |
28 | 13 | fveq2d 6760 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → (ℜ‘𝐶) = (ℜ‘0)) |
29 | | re0 14791 |
. . . . . . 7
⊢
(ℜ‘0) = 0 |
30 | 28, 29 | eqtrdi 2795 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → (ℜ‘𝐶) = 0) |
31 | 30 | mpteq2dva 5170 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (𝐵 ∖ 𝐴) ↦ (ℜ‘𝐶)) = (𝑥 ∈ (𝐵 ∖ 𝐴) ↦ 0)) |
32 | 27, 31 | syl5eq 2791 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ (ℜ‘𝐶)) ↾ (𝐵 ∖ 𝐴)) = (𝑥 ∈ (𝐵 ∖ 𝐴) ↦ 0)) |
33 | | fconstmpt 5640 |
. . . . 5
⊢ ((𝐵 ∖ 𝐴) × {0}) = (𝑥 ∈ (𝐵 ∖ 𝐴) ↦ 0) |
34 | | mbfss.2 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ dom vol) |
35 | 10, 11 | mbfdm2 24706 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ dom vol) |
36 | | difmbl 24612 |
. . . . . . 7
⊢ ((𝐵 ∈ dom vol ∧ 𝐴 ∈ dom vol) → (𝐵 ∖ 𝐴) ∈ dom vol) |
37 | 34, 35, 36 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → (𝐵 ∖ 𝐴) ∈ dom vol) |
38 | | mbfconst 24702 |
. . . . . 6
⊢ (((𝐵 ∖ 𝐴) ∈ dom vol ∧ 0 ∈ ℂ)
→ ((𝐵 ∖ 𝐴) × {0}) ∈
MblFn) |
39 | 37, 14, 38 | sylancl 585 |
. . . . 5
⊢ (𝜑 → ((𝐵 ∖ 𝐴) × {0}) ∈
MblFn) |
40 | 33, 39 | eqeltrrid 2844 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (𝐵 ∖ 𝐴) ↦ 0) ∈ MblFn) |
41 | 32, 40 | eqeltrd 2839 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ (ℜ‘𝐶)) ↾ (𝐵 ∖ 𝐴)) ∈ MblFn) |
42 | 19, 24, 41, 6 | mbfres2 24714 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ (ℜ‘𝐶)) ∈ MblFn) |
43 | 17 | imcld 14834 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (ℑ‘𝐶) ∈ ℝ) |
44 | 43 | fmpttd 6971 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ (ℑ‘𝐶)):𝐵⟶ℝ) |
45 | 3 | resmptd 5937 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ (ℑ‘𝐶)) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐶))) |
46 | 22 | simprd 495 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐶)) ∈ MblFn) |
47 | 45, 46 | eqeltrd 2839 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ (ℑ‘𝐶)) ↾ 𝐴) ∈ MblFn) |
48 | | resmpt 5934 |
. . . . . 6
⊢ ((𝐵 ∖ 𝐴) ⊆ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (ℑ‘𝐶)) ↾ (𝐵 ∖ 𝐴)) = (𝑥 ∈ (𝐵 ∖ 𝐴) ↦ (ℑ‘𝐶))) |
49 | 25, 48 | ax-mp 5 |
. . . . 5
⊢ ((𝑥 ∈ 𝐵 ↦ (ℑ‘𝐶)) ↾ (𝐵 ∖ 𝐴)) = (𝑥 ∈ (𝐵 ∖ 𝐴) ↦ (ℑ‘𝐶)) |
50 | 13 | fveq2d 6760 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → (ℑ‘𝐶) = (ℑ‘0)) |
51 | | im0 14792 |
. . . . . . 7
⊢
(ℑ‘0) = 0 |
52 | 50, 51 | eqtrdi 2795 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → (ℑ‘𝐶) = 0) |
53 | 52 | mpteq2dva 5170 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (𝐵 ∖ 𝐴) ↦ (ℑ‘𝐶)) = (𝑥 ∈ (𝐵 ∖ 𝐴) ↦ 0)) |
54 | 49, 53 | syl5eq 2791 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ (ℑ‘𝐶)) ↾ (𝐵 ∖ 𝐴)) = (𝑥 ∈ (𝐵 ∖ 𝐴) ↦ 0)) |
55 | 54, 40 | eqeltrd 2839 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ (ℑ‘𝐶)) ↾ (𝐵 ∖ 𝐴)) ∈ MblFn) |
56 | 44, 47, 55, 6 | mbfres2 24714 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ (ℑ‘𝐶)) ∈ MblFn) |
57 | 17 | ismbfcn2 24707 |
. 2
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶) ∈ MblFn ↔ ((𝑥 ∈ 𝐵 ↦ (ℜ‘𝐶)) ∈ MblFn ∧ (𝑥 ∈ 𝐵 ↦ (ℑ‘𝐶)) ∈ MblFn))) |
58 | 42, 56, 57 | mpbir2and 709 |
1
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ MblFn) |