MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftalem3 Structured version   Visualization version   GIF version

Theorem ftalem3 27136
Description: Lemma for fta 27141. There exists a global minimum of the function abs ∘ 𝐹. The proof uses a circle of radius 𝑟 where 𝑟 is the value coming from ftalem1 27134; since this is a compact set, the minimum on this disk is achieved, and this must then be the global minimum. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
ftalem.1 𝐴 = (coeff‘𝐹)
ftalem.2 𝑁 = (deg‘𝐹)
ftalem.3 (𝜑𝐹 ∈ (Poly‘𝑆))
ftalem.4 (𝜑𝑁 ∈ ℕ)
ftalem3.5 𝐷 = {𝑦 ∈ ℂ ∣ (abs‘𝑦) ≤ 𝑅}
ftalem3.6 𝐽 = (TopOpen‘ℂfld)
ftalem3.7 (𝜑𝑅 ∈ ℝ+)
ftalem3.8 (𝜑 → ∀𝑥 ∈ ℂ (𝑅 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
Assertion
Ref Expression
ftalem3 (𝜑 → ∃𝑧 ∈ ℂ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑧,𝐷   𝑥,𝑁   𝑥,𝑦,𝐹,𝑧   𝑥,𝐽,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝑅,𝑦
Allowed substitution hints:   𝐴(𝑦,𝑧)   𝐷(𝑦)   𝑅(𝑧)   𝑆(𝑥,𝑦,𝑧)   𝐽(𝑦)   𝑁(𝑦,𝑧)

Proof of Theorem ftalem3
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 ftalem3.5 . . . 4 𝐷 = {𝑦 ∈ ℂ ∣ (abs‘𝑦) ≤ 𝑅}
21ssrab3 4105 . . 3 𝐷 ⊆ ℂ
3 ftalem3.6 . . . . . . . 8 𝐽 = (TopOpen‘ℂfld)
43cnfldtopon 24824 . . . . . . 7 𝐽 ∈ (TopOn‘ℂ)
5 resttopon 23190 . . . . . . 7 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝐷 ⊆ ℂ) → (𝐽t 𝐷) ∈ (TopOn‘𝐷))
64, 2, 5mp2an 691 . . . . . 6 (𝐽t 𝐷) ∈ (TopOn‘𝐷)
76toponunii 22943 . . . . 5 𝐷 = (𝐽t 𝐷)
8 eqid 2740 . . . . 5 (topGen‘ran (,)) = (topGen‘ran (,))
9 cnxmet 24814 . . . . . . . 8 (abs ∘ − ) ∈ (∞Met‘ℂ)
109a1i 11 . . . . . . 7 (𝜑 → (abs ∘ − ) ∈ (∞Met‘ℂ))
11 0cn 11282 . . . . . . . 8 0 ∈ ℂ
1211a1i 11 . . . . . . 7 (𝜑 → 0 ∈ ℂ)
13 ftalem3.7 . . . . . . . 8 (𝜑𝑅 ∈ ℝ+)
1413rpxrd 13100 . . . . . . 7 (𝜑𝑅 ∈ ℝ*)
153cnfldtopn 24823 . . . . . . . 8 𝐽 = (MetOpen‘(abs ∘ − ))
16 eqid 2740 . . . . . . . . . . . . . 14 (abs ∘ − ) = (abs ∘ − )
1716cnmetdval 24812 . . . . . . . . . . . . 13 ((0 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0(abs ∘ − )𝑦) = (abs‘(0 − 𝑦)))
1811, 17mpan 689 . . . . . . . . . . . 12 (𝑦 ∈ ℂ → (0(abs ∘ − )𝑦) = (abs‘(0 − 𝑦)))
19 df-neg 11523 . . . . . . . . . . . . . 14 -𝑦 = (0 − 𝑦)
2019fveq2i 6923 . . . . . . . . . . . . 13 (abs‘-𝑦) = (abs‘(0 − 𝑦))
21 absneg 15326 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ → (abs‘-𝑦) = (abs‘𝑦))
2220, 21eqtr3id 2794 . . . . . . . . . . . 12 (𝑦 ∈ ℂ → (abs‘(0 − 𝑦)) = (abs‘𝑦))
2318, 22eqtrd 2780 . . . . . . . . . . 11 (𝑦 ∈ ℂ → (0(abs ∘ − )𝑦) = (abs‘𝑦))
2423breq1d 5176 . . . . . . . . . 10 (𝑦 ∈ ℂ → ((0(abs ∘ − )𝑦) ≤ 𝑅 ↔ (abs‘𝑦) ≤ 𝑅))
2524rabbiia 3447 . . . . . . . . 9 {𝑦 ∈ ℂ ∣ (0(abs ∘ − )𝑦) ≤ 𝑅} = {𝑦 ∈ ℂ ∣ (abs‘𝑦) ≤ 𝑅}
261, 25eqtr4i 2771 . . . . . . . 8 𝐷 = {𝑦 ∈ ℂ ∣ (0(abs ∘ − )𝑦) ≤ 𝑅}
2715, 26blcld 24539 . . . . . . 7 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 𝑅 ∈ ℝ*) → 𝐷 ∈ (Clsd‘𝐽))
2810, 12, 14, 27syl3anc 1371 . . . . . 6 (𝜑𝐷 ∈ (Clsd‘𝐽))
2913rpred 13099 . . . . . . 7 (𝜑𝑅 ∈ ℝ)
30 fveq2 6920 . . . . . . . . . . 11 (𝑦 = 𝑥 → (abs‘𝑦) = (abs‘𝑥))
3130breq1d 5176 . . . . . . . . . 10 (𝑦 = 𝑥 → ((abs‘𝑦) ≤ 𝑅 ↔ (abs‘𝑥) ≤ 𝑅))
3231, 1elrab2 3711 . . . . . . . . 9 (𝑥𝐷 ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) ≤ 𝑅))
3332simprbi 496 . . . . . . . 8 (𝑥𝐷 → (abs‘𝑥) ≤ 𝑅)
3433rgen 3069 . . . . . . 7 𝑥𝐷 (abs‘𝑥) ≤ 𝑅
35 brralrspcev 5226 . . . . . . 7 ((𝑅 ∈ ℝ ∧ ∀𝑥𝐷 (abs‘𝑥) ≤ 𝑅) → ∃𝑠 ∈ ℝ ∀𝑥𝐷 (abs‘𝑥) ≤ 𝑠)
3629, 34, 35sylancl 585 . . . . . 6 (𝜑 → ∃𝑠 ∈ ℝ ∀𝑥𝐷 (abs‘𝑥) ≤ 𝑠)
37 eqid 2740 . . . . . . . 8 (𝐽t 𝐷) = (𝐽t 𝐷)
383, 37cnheibor 25006 . . . . . . 7 (𝐷 ⊆ ℂ → ((𝐽t 𝐷) ∈ Comp ↔ (𝐷 ∈ (Clsd‘𝐽) ∧ ∃𝑠 ∈ ℝ ∀𝑥𝐷 (abs‘𝑥) ≤ 𝑠)))
392, 38ax-mp 5 . . . . . 6 ((𝐽t 𝐷) ∈ Comp ↔ (𝐷 ∈ (Clsd‘𝐽) ∧ ∃𝑠 ∈ ℝ ∀𝑥𝐷 (abs‘𝑥) ≤ 𝑠))
4028, 36, 39sylanbrc 582 . . . . 5 (𝜑 → (𝐽t 𝐷) ∈ Comp)
41 ftalem.3 . . . . . . . . 9 (𝜑𝐹 ∈ (Poly‘𝑆))
42 plycn 26320 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (ℂ–cn→ℂ))
4341, 42syl 17 . . . . . . . 8 (𝜑𝐹 ∈ (ℂ–cn→ℂ))
44 abscncf 24946 . . . . . . . . 9 abs ∈ (ℂ–cn→ℝ)
4544a1i 11 . . . . . . . 8 (𝜑 → abs ∈ (ℂ–cn→ℝ))
4643, 45cncfco 24952 . . . . . . 7 (𝜑 → (abs ∘ 𝐹) ∈ (ℂ–cn→ℝ))
47 ssid 4031 . . . . . . . 8 ℂ ⊆ ℂ
48 ax-resscn 11241 . . . . . . . 8 ℝ ⊆ ℂ
494toponrestid 22948 . . . . . . . . 9 𝐽 = (𝐽t ℂ)
503tgioo2 24844 . . . . . . . . 9 (topGen‘ran (,)) = (𝐽t ℝ)
513, 49, 50cncfcn 24955 . . . . . . . 8 ((ℂ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℂ–cn→ℝ) = (𝐽 Cn (topGen‘ran (,))))
5247, 48, 51mp2an 691 . . . . . . 7 (ℂ–cn→ℝ) = (𝐽 Cn (topGen‘ran (,)))
5346, 52eleqtrdi 2854 . . . . . 6 (𝜑 → (abs ∘ 𝐹) ∈ (𝐽 Cn (topGen‘ran (,))))
544toponunii 22943 . . . . . . 7 ℂ = 𝐽
5554cnrest 23314 . . . . . 6 (((abs ∘ 𝐹) ∈ (𝐽 Cn (topGen‘ran (,))) ∧ 𝐷 ⊆ ℂ) → ((abs ∘ 𝐹) ↾ 𝐷) ∈ ((𝐽t 𝐷) Cn (topGen‘ran (,))))
5653, 2, 55sylancl 585 . . . . 5 (𝜑 → ((abs ∘ 𝐹) ↾ 𝐷) ∈ ((𝐽t 𝐷) Cn (topGen‘ran (,))))
5713rpge0d 13103 . . . . . . 7 (𝜑 → 0 ≤ 𝑅)
58 fveq2 6920 . . . . . . . . . 10 (𝑦 = 0 → (abs‘𝑦) = (abs‘0))
59 abs0 15334 . . . . . . . . . 10 (abs‘0) = 0
6058, 59eqtrdi 2796 . . . . . . . . 9 (𝑦 = 0 → (abs‘𝑦) = 0)
6160breq1d 5176 . . . . . . . 8 (𝑦 = 0 → ((abs‘𝑦) ≤ 𝑅 ↔ 0 ≤ 𝑅))
6261, 1elrab2 3711 . . . . . . 7 (0 ∈ 𝐷 ↔ (0 ∈ ℂ ∧ 0 ≤ 𝑅))
6312, 57, 62sylanbrc 582 . . . . . 6 (𝜑 → 0 ∈ 𝐷)
6463ne0d 4365 . . . . 5 (𝜑𝐷 ≠ ∅)
657, 8, 40, 56, 64evth2 25011 . . . 4 (𝜑 → ∃𝑧𝐷𝑥𝐷 (((abs ∘ 𝐹) ↾ 𝐷)‘𝑧) ≤ (((abs ∘ 𝐹) ↾ 𝐷)‘𝑥))
66 fvres 6939 . . . . . . . . 9 (𝑧𝐷 → (((abs ∘ 𝐹) ↾ 𝐷)‘𝑧) = ((abs ∘ 𝐹)‘𝑧))
6766ad2antlr 726 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → (((abs ∘ 𝐹) ↾ 𝐷)‘𝑧) = ((abs ∘ 𝐹)‘𝑧))
68 plyf 26257 . . . . . . . . . . 11 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
6941, 68syl 17 . . . . . . . . . 10 (𝜑𝐹:ℂ⟶ℂ)
7069ad2antrr 725 . . . . . . . . 9 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → 𝐹:ℂ⟶ℂ)
71 simplr 768 . . . . . . . . . 10 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → 𝑧𝐷)
722, 71sselid 4006 . . . . . . . . 9 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → 𝑧 ∈ ℂ)
73 fvco3 7021 . . . . . . . . 9 ((𝐹:ℂ⟶ℂ ∧ 𝑧 ∈ ℂ) → ((abs ∘ 𝐹)‘𝑧) = (abs‘(𝐹𝑧)))
7470, 72, 73syl2anc 583 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → ((abs ∘ 𝐹)‘𝑧) = (abs‘(𝐹𝑧)))
7567, 74eqtrd 2780 . . . . . . 7 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → (((abs ∘ 𝐹) ↾ 𝐷)‘𝑧) = (abs‘(𝐹𝑧)))
76 fvres 6939 . . . . . . . . 9 (𝑥𝐷 → (((abs ∘ 𝐹) ↾ 𝐷)‘𝑥) = ((abs ∘ 𝐹)‘𝑥))
7776adantl 481 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → (((abs ∘ 𝐹) ↾ 𝐷)‘𝑥) = ((abs ∘ 𝐹)‘𝑥))
78 simpr 484 . . . . . . . . . 10 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → 𝑥𝐷)
792, 78sselid 4006 . . . . . . . . 9 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → 𝑥 ∈ ℂ)
80 fvco3 7021 . . . . . . . . 9 ((𝐹:ℂ⟶ℂ ∧ 𝑥 ∈ ℂ) → ((abs ∘ 𝐹)‘𝑥) = (abs‘(𝐹𝑥)))
8170, 79, 80syl2anc 583 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → ((abs ∘ 𝐹)‘𝑥) = (abs‘(𝐹𝑥)))
8277, 81eqtrd 2780 . . . . . . 7 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → (((abs ∘ 𝐹) ↾ 𝐷)‘𝑥) = (abs‘(𝐹𝑥)))
8375, 82breq12d 5179 . . . . . 6 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → ((((abs ∘ 𝐹) ↾ 𝐷)‘𝑧) ≤ (((abs ∘ 𝐹) ↾ 𝐷)‘𝑥) ↔ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
8483ralbidva 3182 . . . . 5 ((𝜑𝑧𝐷) → (∀𝑥𝐷 (((abs ∘ 𝐹) ↾ 𝐷)‘𝑧) ≤ (((abs ∘ 𝐹) ↾ 𝐷)‘𝑥) ↔ ∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
8584rexbidva 3183 . . . 4 (𝜑 → (∃𝑧𝐷𝑥𝐷 (((abs ∘ 𝐹) ↾ 𝐷)‘𝑧) ≤ (((abs ∘ 𝐹) ↾ 𝐷)‘𝑥) ↔ ∃𝑧𝐷𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
8665, 85mpbid 232 . . 3 (𝜑 → ∃𝑧𝐷𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)))
87 ssrexv 4078 . . 3 (𝐷 ⊆ ℂ → (∃𝑧𝐷𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) → ∃𝑧 ∈ ℂ ∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
882, 86, 87mpsyl 68 . 2 (𝜑 → ∃𝑧 ∈ ℂ ∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)))
8963adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 0 ∈ 𝐷)
90 2fveq3 6925 . . . . . . . . 9 (𝑥 = 0 → (abs‘(𝐹𝑥)) = (abs‘(𝐹‘0)))
9190breq2d 5178 . . . . . . . 8 (𝑥 = 0 → ((abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) ↔ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹‘0))))
9291rspcv 3631 . . . . . . 7 (0 ∈ 𝐷 → (∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) → (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹‘0))))
9389, 92syl 17 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → (∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) → (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹‘0))))
9469ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → 𝐹:ℂ⟶ℂ)
95 ffvelcdm 7115 . . . . . . . . . . 11 ((𝐹:ℂ⟶ℂ ∧ 0 ∈ ℂ) → (𝐹‘0) ∈ ℂ)
9694, 11, 95sylancl 585 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (𝐹‘0) ∈ ℂ)
9796abscld 15485 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (abs‘(𝐹‘0)) ∈ ℝ)
98 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → 𝑥 ∈ (ℂ ∖ 𝐷))
9998eldifad 3988 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → 𝑥 ∈ ℂ)
10094, 99ffvelcdmd 7119 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (𝐹𝑥) ∈ ℂ)
101100abscld 15485 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (abs‘(𝐹𝑥)) ∈ ℝ)
102 ftalem3.8 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ ℂ (𝑅 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
103102ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → ∀𝑥 ∈ ℂ (𝑅 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
10498eldifbd 3989 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → ¬ 𝑥𝐷)
10532baib 535 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → (𝑥𝐷 ↔ (abs‘𝑥) ≤ 𝑅))
10699, 105syl 17 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (𝑥𝐷 ↔ (abs‘𝑥) ≤ 𝑅))
107104, 106mtbid 324 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → ¬ (abs‘𝑥) ≤ 𝑅)
10829ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → 𝑅 ∈ ℝ)
10999abscld 15485 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (abs‘𝑥) ∈ ℝ)
110108, 109ltnled 11437 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (𝑅 < (abs‘𝑥) ↔ ¬ (abs‘𝑥) ≤ 𝑅))
111107, 110mpbird 257 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → 𝑅 < (abs‘𝑥))
112 rsp 3253 . . . . . . . . . 10 (∀𝑥 ∈ ℂ (𝑅 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))) → (𝑥 ∈ ℂ → (𝑅 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))))
113103, 99, 111, 112syl3c 66 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))
11497, 101, 113ltled 11438 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (abs‘(𝐹‘0)) ≤ (abs‘(𝐹𝑥)))
115 simplr 768 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → 𝑧 ∈ ℂ)
11694, 115ffvelcdmd 7119 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (𝐹𝑧) ∈ ℂ)
117116abscld 15485 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (abs‘(𝐹𝑧)) ∈ ℝ)
118 letr 11384 . . . . . . . . 9 (((abs‘(𝐹𝑧)) ∈ ℝ ∧ (abs‘(𝐹‘0)) ∈ ℝ ∧ (abs‘(𝐹𝑥)) ∈ ℝ) → (((abs‘(𝐹𝑧)) ≤ (abs‘(𝐹‘0)) ∧ (abs‘(𝐹‘0)) ≤ (abs‘(𝐹𝑥))) → (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
119117, 97, 101, 118syl3anc 1371 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (((abs‘(𝐹𝑧)) ≤ (abs‘(𝐹‘0)) ∧ (abs‘(𝐹‘0)) ≤ (abs‘(𝐹𝑥))) → (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
120114, 119mpan2d 693 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → ((abs‘(𝐹𝑧)) ≤ (abs‘(𝐹‘0)) → (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
121120ralrimdva 3160 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → ((abs‘(𝐹𝑧)) ≤ (abs‘(𝐹‘0)) → ∀𝑥 ∈ (ℂ ∖ 𝐷)(abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
12293, 121syld 47 . . . . 5 ((𝜑𝑧 ∈ ℂ) → (∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) → ∀𝑥 ∈ (ℂ ∖ 𝐷)(abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
123122ancld 550 . . . 4 ((𝜑𝑧 ∈ ℂ) → (∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) → (∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) ∧ ∀𝑥 ∈ (ℂ ∖ 𝐷)(abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)))))
124 ralunb 4220 . . . . 5 (∀𝑥 ∈ (𝐷 ∪ (ℂ ∖ 𝐷))(abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) ↔ (∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) ∧ ∀𝑥 ∈ (ℂ ∖ 𝐷)(abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
125 undif2 4500 . . . . . . 7 (𝐷 ∪ (ℂ ∖ 𝐷)) = (𝐷 ∪ ℂ)
126 ssequn1 4209 . . . . . . . 8 (𝐷 ⊆ ℂ ↔ (𝐷 ∪ ℂ) = ℂ)
1272, 126mpbi 230 . . . . . . 7 (𝐷 ∪ ℂ) = ℂ
128125, 127eqtri 2768 . . . . . 6 (𝐷 ∪ (ℂ ∖ 𝐷)) = ℂ
129128raleqi 3332 . . . . 5 (∀𝑥 ∈ (𝐷 ∪ (ℂ ∖ 𝐷))(abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) ↔ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)))
130124, 129bitr3i 277 . . . 4 ((∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) ∧ ∀𝑥 ∈ (ℂ ∖ 𝐷)(abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))) ↔ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)))
131123, 130imbitrdi 251 . . 3 ((𝜑𝑧 ∈ ℂ) → (∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) → ∀𝑥 ∈ ℂ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
132131reximdva 3174 . 2 (𝜑 → (∃𝑧 ∈ ℂ ∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) → ∃𝑧 ∈ ℂ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
13388, 132mpd 15 1 (𝜑 → ∃𝑧 ∈ ℂ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  {crab 3443  cdif 3973  cun 3974  wss 3976   class class class wbr 5166  ran crn 5701  cres 5702  ccom 5704  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  *cxr 11323   < clt 11324  cle 11325  cmin 11520  -cneg 11521  cn 12293  +crp 13057  (,)cioo 13407  abscabs 15283  t crest 17480  TopOpenctopn 17481  topGenctg 17497  ∞Metcxmet 21372  fldccnfld 21387  TopOnctopon 22937  Clsdccld 23045   Cn ccn 23253  Compccmp 23415  cnccncf 24921  Polycply 26243  coeffccoe 26245  degcdgr 26246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-cls 23050  df-cn 23256  df-cnp 23257  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-0p 25724  df-ply 26247  df-coe 26249  df-dgr 26250
This theorem is referenced by:  fta  27141
  Copyright terms: Public domain W3C validator