MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftalem3 Structured version   Visualization version   GIF version

Theorem ftalem3 26506
Description: Lemma for fta 26511. There exists a global minimum of the function abs ∘ 𝐹. The proof uses a circle of radius 𝑟 where 𝑟 is the value coming from ftalem1 26504; since this is a compact set, the minimum on this disk is achieved, and this must then be the global minimum. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
ftalem.1 𝐴 = (coeff‘𝐹)
ftalem.2 𝑁 = (deg‘𝐹)
ftalem.3 (𝜑𝐹 ∈ (Poly‘𝑆))
ftalem.4 (𝜑𝑁 ∈ ℕ)
ftalem3.5 𝐷 = {𝑦 ∈ ℂ ∣ (abs‘𝑦) ≤ 𝑅}
ftalem3.6 𝐽 = (TopOpen‘ℂfld)
ftalem3.7 (𝜑𝑅 ∈ ℝ+)
ftalem3.8 (𝜑 → ∀𝑥 ∈ ℂ (𝑅 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
Assertion
Ref Expression
ftalem3 (𝜑 → ∃𝑧 ∈ ℂ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑧,𝐷   𝑥,𝑁   𝑥,𝑦,𝐹,𝑧   𝑥,𝐽,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝑅,𝑦
Allowed substitution hints:   𝐴(𝑦,𝑧)   𝐷(𝑦)   𝑅(𝑧)   𝑆(𝑥,𝑦,𝑧)   𝐽(𝑦)   𝑁(𝑦,𝑧)

Proof of Theorem ftalem3
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 ftalem3.5 . . . 4 𝐷 = {𝑦 ∈ ℂ ∣ (abs‘𝑦) ≤ 𝑅}
21ssrab3 4076 . . 3 𝐷 ⊆ ℂ
3 ftalem3.6 . . . . . . . 8 𝐽 = (TopOpen‘ℂfld)
43cnfldtopon 24228 . . . . . . 7 𝐽 ∈ (TopOn‘ℂ)
5 resttopon 22594 . . . . . . 7 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝐷 ⊆ ℂ) → (𝐽t 𝐷) ∈ (TopOn‘𝐷))
64, 2, 5mp2an 690 . . . . . 6 (𝐽t 𝐷) ∈ (TopOn‘𝐷)
76toponunii 22347 . . . . 5 𝐷 = (𝐽t 𝐷)
8 eqid 2731 . . . . 5 (topGen‘ran (,)) = (topGen‘ran (,))
9 cnxmet 24218 . . . . . . . 8 (abs ∘ − ) ∈ (∞Met‘ℂ)
109a1i 11 . . . . . . 7 (𝜑 → (abs ∘ − ) ∈ (∞Met‘ℂ))
11 0cn 11188 . . . . . . . 8 0 ∈ ℂ
1211a1i 11 . . . . . . 7 (𝜑 → 0 ∈ ℂ)
13 ftalem3.7 . . . . . . . 8 (𝜑𝑅 ∈ ℝ+)
1413rpxrd 12999 . . . . . . 7 (𝜑𝑅 ∈ ℝ*)
153cnfldtopn 24227 . . . . . . . 8 𝐽 = (MetOpen‘(abs ∘ − ))
16 eqid 2731 . . . . . . . . . . . . . 14 (abs ∘ − ) = (abs ∘ − )
1716cnmetdval 24216 . . . . . . . . . . . . 13 ((0 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0(abs ∘ − )𝑦) = (abs‘(0 − 𝑦)))
1811, 17mpan 688 . . . . . . . . . . . 12 (𝑦 ∈ ℂ → (0(abs ∘ − )𝑦) = (abs‘(0 − 𝑦)))
19 df-neg 11429 . . . . . . . . . . . . . 14 -𝑦 = (0 − 𝑦)
2019fveq2i 6881 . . . . . . . . . . . . 13 (abs‘-𝑦) = (abs‘(0 − 𝑦))
21 absneg 15206 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ → (abs‘-𝑦) = (abs‘𝑦))
2220, 21eqtr3id 2785 . . . . . . . . . . . 12 (𝑦 ∈ ℂ → (abs‘(0 − 𝑦)) = (abs‘𝑦))
2318, 22eqtrd 2771 . . . . . . . . . . 11 (𝑦 ∈ ℂ → (0(abs ∘ − )𝑦) = (abs‘𝑦))
2423breq1d 5151 . . . . . . . . . 10 (𝑦 ∈ ℂ → ((0(abs ∘ − )𝑦) ≤ 𝑅 ↔ (abs‘𝑦) ≤ 𝑅))
2524rabbiia 3435 . . . . . . . . 9 {𝑦 ∈ ℂ ∣ (0(abs ∘ − )𝑦) ≤ 𝑅} = {𝑦 ∈ ℂ ∣ (abs‘𝑦) ≤ 𝑅}
261, 25eqtr4i 2762 . . . . . . . 8 𝐷 = {𝑦 ∈ ℂ ∣ (0(abs ∘ − )𝑦) ≤ 𝑅}
2715, 26blcld 23943 . . . . . . 7 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 𝑅 ∈ ℝ*) → 𝐷 ∈ (Clsd‘𝐽))
2810, 12, 14, 27syl3anc 1371 . . . . . 6 (𝜑𝐷 ∈ (Clsd‘𝐽))
2913rpred 12998 . . . . . . 7 (𝜑𝑅 ∈ ℝ)
30 fveq2 6878 . . . . . . . . . . 11 (𝑦 = 𝑥 → (abs‘𝑦) = (abs‘𝑥))
3130breq1d 5151 . . . . . . . . . 10 (𝑦 = 𝑥 → ((abs‘𝑦) ≤ 𝑅 ↔ (abs‘𝑥) ≤ 𝑅))
3231, 1elrab2 3682 . . . . . . . . 9 (𝑥𝐷 ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) ≤ 𝑅))
3332simprbi 497 . . . . . . . 8 (𝑥𝐷 → (abs‘𝑥) ≤ 𝑅)
3433rgen 3062 . . . . . . 7 𝑥𝐷 (abs‘𝑥) ≤ 𝑅
35 brralrspcev 5201 . . . . . . 7 ((𝑅 ∈ ℝ ∧ ∀𝑥𝐷 (abs‘𝑥) ≤ 𝑅) → ∃𝑠 ∈ ℝ ∀𝑥𝐷 (abs‘𝑥) ≤ 𝑠)
3629, 34, 35sylancl 586 . . . . . 6 (𝜑 → ∃𝑠 ∈ ℝ ∀𝑥𝐷 (abs‘𝑥) ≤ 𝑠)
37 eqid 2731 . . . . . . . 8 (𝐽t 𝐷) = (𝐽t 𝐷)
383, 37cnheibor 24400 . . . . . . 7 (𝐷 ⊆ ℂ → ((𝐽t 𝐷) ∈ Comp ↔ (𝐷 ∈ (Clsd‘𝐽) ∧ ∃𝑠 ∈ ℝ ∀𝑥𝐷 (abs‘𝑥) ≤ 𝑠)))
392, 38ax-mp 5 . . . . . 6 ((𝐽t 𝐷) ∈ Comp ↔ (𝐷 ∈ (Clsd‘𝐽) ∧ ∃𝑠 ∈ ℝ ∀𝑥𝐷 (abs‘𝑥) ≤ 𝑠))
4028, 36, 39sylanbrc 583 . . . . 5 (𝜑 → (𝐽t 𝐷) ∈ Comp)
41 ftalem.3 . . . . . . . . 9 (𝜑𝐹 ∈ (Poly‘𝑆))
42 plycn 25704 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (ℂ–cn→ℂ))
4341, 42syl 17 . . . . . . . 8 (𝜑𝐹 ∈ (ℂ–cn→ℂ))
44 abscncf 24346 . . . . . . . . 9 abs ∈ (ℂ–cn→ℝ)
4544a1i 11 . . . . . . . 8 (𝜑 → abs ∈ (ℂ–cn→ℝ))
4643, 45cncfco 24352 . . . . . . 7 (𝜑 → (abs ∘ 𝐹) ∈ (ℂ–cn→ℝ))
47 ssid 4000 . . . . . . . 8 ℂ ⊆ ℂ
48 ax-resscn 11149 . . . . . . . 8 ℝ ⊆ ℂ
494toponrestid 22352 . . . . . . . . 9 𝐽 = (𝐽t ℂ)
503tgioo2 24248 . . . . . . . . 9 (topGen‘ran (,)) = (𝐽t ℝ)
513, 49, 50cncfcn 24355 . . . . . . . 8 ((ℂ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℂ–cn→ℝ) = (𝐽 Cn (topGen‘ran (,))))
5247, 48, 51mp2an 690 . . . . . . 7 (ℂ–cn→ℝ) = (𝐽 Cn (topGen‘ran (,)))
5346, 52eleqtrdi 2842 . . . . . 6 (𝜑 → (abs ∘ 𝐹) ∈ (𝐽 Cn (topGen‘ran (,))))
544toponunii 22347 . . . . . . 7 ℂ = 𝐽
5554cnrest 22718 . . . . . 6 (((abs ∘ 𝐹) ∈ (𝐽 Cn (topGen‘ran (,))) ∧ 𝐷 ⊆ ℂ) → ((abs ∘ 𝐹) ↾ 𝐷) ∈ ((𝐽t 𝐷) Cn (topGen‘ran (,))))
5653, 2, 55sylancl 586 . . . . 5 (𝜑 → ((abs ∘ 𝐹) ↾ 𝐷) ∈ ((𝐽t 𝐷) Cn (topGen‘ran (,))))
5713rpge0d 13002 . . . . . . 7 (𝜑 → 0 ≤ 𝑅)
58 fveq2 6878 . . . . . . . . . 10 (𝑦 = 0 → (abs‘𝑦) = (abs‘0))
59 abs0 15214 . . . . . . . . . 10 (abs‘0) = 0
6058, 59eqtrdi 2787 . . . . . . . . 9 (𝑦 = 0 → (abs‘𝑦) = 0)
6160breq1d 5151 . . . . . . . 8 (𝑦 = 0 → ((abs‘𝑦) ≤ 𝑅 ↔ 0 ≤ 𝑅))
6261, 1elrab2 3682 . . . . . . 7 (0 ∈ 𝐷 ↔ (0 ∈ ℂ ∧ 0 ≤ 𝑅))
6312, 57, 62sylanbrc 583 . . . . . 6 (𝜑 → 0 ∈ 𝐷)
6463ne0d 4331 . . . . 5 (𝜑𝐷 ≠ ∅)
657, 8, 40, 56, 64evth2 24405 . . . 4 (𝜑 → ∃𝑧𝐷𝑥𝐷 (((abs ∘ 𝐹) ↾ 𝐷)‘𝑧) ≤ (((abs ∘ 𝐹) ↾ 𝐷)‘𝑥))
66 fvres 6897 . . . . . . . . 9 (𝑧𝐷 → (((abs ∘ 𝐹) ↾ 𝐷)‘𝑧) = ((abs ∘ 𝐹)‘𝑧))
6766ad2antlr 725 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → (((abs ∘ 𝐹) ↾ 𝐷)‘𝑧) = ((abs ∘ 𝐹)‘𝑧))
68 plyf 25641 . . . . . . . . . . 11 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
6941, 68syl 17 . . . . . . . . . 10 (𝜑𝐹:ℂ⟶ℂ)
7069ad2antrr 724 . . . . . . . . 9 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → 𝐹:ℂ⟶ℂ)
71 simplr 767 . . . . . . . . . 10 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → 𝑧𝐷)
722, 71sselid 3976 . . . . . . . . 9 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → 𝑧 ∈ ℂ)
73 fvco3 6976 . . . . . . . . 9 ((𝐹:ℂ⟶ℂ ∧ 𝑧 ∈ ℂ) → ((abs ∘ 𝐹)‘𝑧) = (abs‘(𝐹𝑧)))
7470, 72, 73syl2anc 584 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → ((abs ∘ 𝐹)‘𝑧) = (abs‘(𝐹𝑧)))
7567, 74eqtrd 2771 . . . . . . 7 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → (((abs ∘ 𝐹) ↾ 𝐷)‘𝑧) = (abs‘(𝐹𝑧)))
76 fvres 6897 . . . . . . . . 9 (𝑥𝐷 → (((abs ∘ 𝐹) ↾ 𝐷)‘𝑥) = ((abs ∘ 𝐹)‘𝑥))
7776adantl 482 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → (((abs ∘ 𝐹) ↾ 𝐷)‘𝑥) = ((abs ∘ 𝐹)‘𝑥))
78 simpr 485 . . . . . . . . . 10 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → 𝑥𝐷)
792, 78sselid 3976 . . . . . . . . 9 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → 𝑥 ∈ ℂ)
80 fvco3 6976 . . . . . . . . 9 ((𝐹:ℂ⟶ℂ ∧ 𝑥 ∈ ℂ) → ((abs ∘ 𝐹)‘𝑥) = (abs‘(𝐹𝑥)))
8170, 79, 80syl2anc 584 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → ((abs ∘ 𝐹)‘𝑥) = (abs‘(𝐹𝑥)))
8277, 81eqtrd 2771 . . . . . . 7 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → (((abs ∘ 𝐹) ↾ 𝐷)‘𝑥) = (abs‘(𝐹𝑥)))
8375, 82breq12d 5154 . . . . . 6 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → ((((abs ∘ 𝐹) ↾ 𝐷)‘𝑧) ≤ (((abs ∘ 𝐹) ↾ 𝐷)‘𝑥) ↔ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
8483ralbidva 3174 . . . . 5 ((𝜑𝑧𝐷) → (∀𝑥𝐷 (((abs ∘ 𝐹) ↾ 𝐷)‘𝑧) ≤ (((abs ∘ 𝐹) ↾ 𝐷)‘𝑥) ↔ ∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
8584rexbidva 3175 . . . 4 (𝜑 → (∃𝑧𝐷𝑥𝐷 (((abs ∘ 𝐹) ↾ 𝐷)‘𝑧) ≤ (((abs ∘ 𝐹) ↾ 𝐷)‘𝑥) ↔ ∃𝑧𝐷𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
8665, 85mpbid 231 . . 3 (𝜑 → ∃𝑧𝐷𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)))
87 ssrexv 4047 . . 3 (𝐷 ⊆ ℂ → (∃𝑧𝐷𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) → ∃𝑧 ∈ ℂ ∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
882, 86, 87mpsyl 68 . 2 (𝜑 → ∃𝑧 ∈ ℂ ∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)))
8963adantr 481 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 0 ∈ 𝐷)
90 2fveq3 6883 . . . . . . . . 9 (𝑥 = 0 → (abs‘(𝐹𝑥)) = (abs‘(𝐹‘0)))
9190breq2d 5153 . . . . . . . 8 (𝑥 = 0 → ((abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) ↔ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹‘0))))
9291rspcv 3605 . . . . . . 7 (0 ∈ 𝐷 → (∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) → (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹‘0))))
9389, 92syl 17 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → (∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) → (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹‘0))))
9469ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → 𝐹:ℂ⟶ℂ)
95 ffvelcdm 7068 . . . . . . . . . . 11 ((𝐹:ℂ⟶ℂ ∧ 0 ∈ ℂ) → (𝐹‘0) ∈ ℂ)
9694, 11, 95sylancl 586 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (𝐹‘0) ∈ ℂ)
9796abscld 15365 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (abs‘(𝐹‘0)) ∈ ℝ)
98 simpr 485 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → 𝑥 ∈ (ℂ ∖ 𝐷))
9998eldifad 3956 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → 𝑥 ∈ ℂ)
10094, 99ffvelcdmd 7072 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (𝐹𝑥) ∈ ℂ)
101100abscld 15365 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (abs‘(𝐹𝑥)) ∈ ℝ)
102 ftalem3.8 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ ℂ (𝑅 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
103102ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → ∀𝑥 ∈ ℂ (𝑅 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
10498eldifbd 3957 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → ¬ 𝑥𝐷)
10532baib 536 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → (𝑥𝐷 ↔ (abs‘𝑥) ≤ 𝑅))
10699, 105syl 17 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (𝑥𝐷 ↔ (abs‘𝑥) ≤ 𝑅))
107104, 106mtbid 323 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → ¬ (abs‘𝑥) ≤ 𝑅)
10829ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → 𝑅 ∈ ℝ)
10999abscld 15365 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (abs‘𝑥) ∈ ℝ)
110108, 109ltnled 11343 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (𝑅 < (abs‘𝑥) ↔ ¬ (abs‘𝑥) ≤ 𝑅))
111107, 110mpbird 256 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → 𝑅 < (abs‘𝑥))
112 rsp 3243 . . . . . . . . . 10 (∀𝑥 ∈ ℂ (𝑅 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))) → (𝑥 ∈ ℂ → (𝑅 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))))
113103, 99, 111, 112syl3c 66 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))
11497, 101, 113ltled 11344 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (abs‘(𝐹‘0)) ≤ (abs‘(𝐹𝑥)))
115 simplr 767 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → 𝑧 ∈ ℂ)
11694, 115ffvelcdmd 7072 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (𝐹𝑧) ∈ ℂ)
117116abscld 15365 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (abs‘(𝐹𝑧)) ∈ ℝ)
118 letr 11290 . . . . . . . . 9 (((abs‘(𝐹𝑧)) ∈ ℝ ∧ (abs‘(𝐹‘0)) ∈ ℝ ∧ (abs‘(𝐹𝑥)) ∈ ℝ) → (((abs‘(𝐹𝑧)) ≤ (abs‘(𝐹‘0)) ∧ (abs‘(𝐹‘0)) ≤ (abs‘(𝐹𝑥))) → (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
119117, 97, 101, 118syl3anc 1371 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (((abs‘(𝐹𝑧)) ≤ (abs‘(𝐹‘0)) ∧ (abs‘(𝐹‘0)) ≤ (abs‘(𝐹𝑥))) → (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
120114, 119mpan2d 692 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → ((abs‘(𝐹𝑧)) ≤ (abs‘(𝐹‘0)) → (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
121120ralrimdva 3153 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → ((abs‘(𝐹𝑧)) ≤ (abs‘(𝐹‘0)) → ∀𝑥 ∈ (ℂ ∖ 𝐷)(abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
12293, 121syld 47 . . . . 5 ((𝜑𝑧 ∈ ℂ) → (∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) → ∀𝑥 ∈ (ℂ ∖ 𝐷)(abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
123122ancld 551 . . . 4 ((𝜑𝑧 ∈ ℂ) → (∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) → (∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) ∧ ∀𝑥 ∈ (ℂ ∖ 𝐷)(abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)))))
124 ralunb 4187 . . . . 5 (∀𝑥 ∈ (𝐷 ∪ (ℂ ∖ 𝐷))(abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) ↔ (∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) ∧ ∀𝑥 ∈ (ℂ ∖ 𝐷)(abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
125 undif2 4472 . . . . . . 7 (𝐷 ∪ (ℂ ∖ 𝐷)) = (𝐷 ∪ ℂ)
126 ssequn1 4176 . . . . . . . 8 (𝐷 ⊆ ℂ ↔ (𝐷 ∪ ℂ) = ℂ)
1272, 126mpbi 229 . . . . . . 7 (𝐷 ∪ ℂ) = ℂ
128125, 127eqtri 2759 . . . . . 6 (𝐷 ∪ (ℂ ∖ 𝐷)) = ℂ
129128raleqi 3322 . . . . 5 (∀𝑥 ∈ (𝐷 ∪ (ℂ ∖ 𝐷))(abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) ↔ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)))
130124, 129bitr3i 276 . . . 4 ((∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) ∧ ∀𝑥 ∈ (ℂ ∖ 𝐷)(abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))) ↔ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)))
131123, 130syl6ib 250 . . 3 ((𝜑𝑧 ∈ ℂ) → (∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) → ∀𝑥 ∈ ℂ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
132131reximdva 3167 . 2 (𝜑 → (∃𝑧 ∈ ℂ ∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) → ∃𝑧 ∈ ℂ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
13388, 132mpd 15 1 (𝜑 → ∃𝑧 ∈ ℂ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3060  wrex 3069  {crab 3431  cdif 3941  cun 3942  wss 3944   class class class wbr 5141  ran crn 5670  cres 5671  ccom 5673  wf 6528  cfv 6532  (class class class)co 7393  cc 11090  cr 11091  0cc0 11092  *cxr 11229   < clt 11230  cle 11231  cmin 11426  -cneg 11427  cn 12194  +crp 12956  (,)cioo 13306  abscabs 15163  t crest 17348  TopOpenctopn 17349  topGenctg 17365  ∞Metcxmet 20863  fldccnfld 20878  TopOnctopon 22341  Clsdccld 22449   Cn ccn 22657  Compccmp 22819  cnccncf 24321  Polycply 25627  coeffccoe 25629  degcdgr 25630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-inf2 9618  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169  ax-pre-sup 11170  ax-addf 11171  ax-mulf 11172
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-tp 4627  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-isom 6541  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-of 7653  df-om 7839  df-1st 7957  df-2nd 7958  df-supp 8129  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-2o 8449  df-er 8686  df-map 8805  df-pm 8806  df-ixp 8875  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-fsupp 9345  df-fi 9388  df-sup 9419  df-inf 9420  df-oi 9487  df-card 9916  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-div 11854  df-nn 12195  df-2 12257  df-3 12258  df-4 12259  df-5 12260  df-6 12261  df-7 12262  df-8 12263  df-9 12264  df-n0 12455  df-z 12541  df-dec 12660  df-uz 12805  df-q 12915  df-rp 12957  df-xneg 13074  df-xadd 13075  df-xmul 13076  df-ioo 13310  df-icc 13313  df-fz 13467  df-fzo 13610  df-fl 13739  df-seq 13949  df-exp 14010  df-hash 14273  df-cj 15028  df-re 15029  df-im 15030  df-sqrt 15164  df-abs 15165  df-clim 15414  df-rlim 15415  df-sum 15615  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17127  df-ress 17156  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17350  df-topn 17351  df-0g 17369  df-gsum 17370  df-topgen 17371  df-pt 17372  df-prds 17375  df-xrs 17430  df-qtop 17435  df-imas 17436  df-xps 17438  df-mre 17512  df-mrc 17513  df-acs 17515  df-mgm 18543  df-sgrp 18592  df-mnd 18603  df-submnd 18648  df-mulg 18923  df-cntz 19147  df-cmn 19614  df-psmet 20870  df-xmet 20871  df-met 20872  df-bl 20873  df-mopn 20874  df-cnfld 20879  df-top 22325  df-topon 22342  df-topsp 22364  df-bases 22378  df-cld 22452  df-cls 22454  df-cn 22660  df-cnp 22661  df-haus 22748  df-cmp 22820  df-tx 22995  df-hmeo 23188  df-xms 23755  df-ms 23756  df-tms 23757  df-cncf 24323  df-0p 25116  df-ply 25631  df-coe 25633  df-dgr 25634
This theorem is referenced by:  fta  26511
  Copyright terms: Public domain W3C validator