MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftalem3 Structured version   Visualization version   GIF version

Theorem ftalem3 27012
Description: Lemma for fta 27017. There exists a global minimum of the function abs ∘ 𝐹. The proof uses a circle of radius 𝑟 where 𝑟 is the value coming from ftalem1 27010; since this is a compact set, the minimum on this disk is achieved, and this must then be the global minimum. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
ftalem.1 𝐴 = (coeff‘𝐹)
ftalem.2 𝑁 = (deg‘𝐹)
ftalem.3 (𝜑𝐹 ∈ (Poly‘𝑆))
ftalem.4 (𝜑𝑁 ∈ ℕ)
ftalem3.5 𝐷 = {𝑦 ∈ ℂ ∣ (abs‘𝑦) ≤ 𝑅}
ftalem3.6 𝐽 = (TopOpen‘ℂfld)
ftalem3.7 (𝜑𝑅 ∈ ℝ+)
ftalem3.8 (𝜑 → ∀𝑥 ∈ ℂ (𝑅 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
Assertion
Ref Expression
ftalem3 (𝜑 → ∃𝑧 ∈ ℂ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑧,𝐷   𝑥,𝑁   𝑥,𝑦,𝐹,𝑧   𝑥,𝐽,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝑅,𝑦
Allowed substitution hints:   𝐴(𝑦,𝑧)   𝐷(𝑦)   𝑅(𝑧)   𝑆(𝑥,𝑦,𝑧)   𝐽(𝑦)   𝑁(𝑦,𝑧)

Proof of Theorem ftalem3
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 ftalem3.5 . . . 4 𝐷 = {𝑦 ∈ ℂ ∣ (abs‘𝑦) ≤ 𝑅}
21ssrab3 4029 . . 3 𝐷 ⊆ ℂ
3 ftalem3.6 . . . . . . . 8 𝐽 = (TopOpen‘ℂfld)
43cnfldtopon 24697 . . . . . . 7 𝐽 ∈ (TopOn‘ℂ)
5 resttopon 23076 . . . . . . 7 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝐷 ⊆ ℂ) → (𝐽t 𝐷) ∈ (TopOn‘𝐷))
64, 2, 5mp2an 692 . . . . . 6 (𝐽t 𝐷) ∈ (TopOn‘𝐷)
76toponunii 22831 . . . . 5 𝐷 = (𝐽t 𝐷)
8 eqid 2731 . . . . 5 (topGen‘ran (,)) = (topGen‘ran (,))
9 cnxmet 24687 . . . . . . . 8 (abs ∘ − ) ∈ (∞Met‘ℂ)
109a1i 11 . . . . . . 7 (𝜑 → (abs ∘ − ) ∈ (∞Met‘ℂ))
11 0cn 11104 . . . . . . . 8 0 ∈ ℂ
1211a1i 11 . . . . . . 7 (𝜑 → 0 ∈ ℂ)
13 ftalem3.7 . . . . . . . 8 (𝜑𝑅 ∈ ℝ+)
1413rpxrd 12935 . . . . . . 7 (𝜑𝑅 ∈ ℝ*)
153cnfldtopn 24696 . . . . . . . 8 𝐽 = (MetOpen‘(abs ∘ − ))
16 eqid 2731 . . . . . . . . . . . . . 14 (abs ∘ − ) = (abs ∘ − )
1716cnmetdval 24685 . . . . . . . . . . . . 13 ((0 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0(abs ∘ − )𝑦) = (abs‘(0 − 𝑦)))
1811, 17mpan 690 . . . . . . . . . . . 12 (𝑦 ∈ ℂ → (0(abs ∘ − )𝑦) = (abs‘(0 − 𝑦)))
19 df-neg 11347 . . . . . . . . . . . . . 14 -𝑦 = (0 − 𝑦)
2019fveq2i 6825 . . . . . . . . . . . . 13 (abs‘-𝑦) = (abs‘(0 − 𝑦))
21 absneg 15184 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ → (abs‘-𝑦) = (abs‘𝑦))
2220, 21eqtr3id 2780 . . . . . . . . . . . 12 (𝑦 ∈ ℂ → (abs‘(0 − 𝑦)) = (abs‘𝑦))
2318, 22eqtrd 2766 . . . . . . . . . . 11 (𝑦 ∈ ℂ → (0(abs ∘ − )𝑦) = (abs‘𝑦))
2423breq1d 5099 . . . . . . . . . 10 (𝑦 ∈ ℂ → ((0(abs ∘ − )𝑦) ≤ 𝑅 ↔ (abs‘𝑦) ≤ 𝑅))
2524rabbiia 3399 . . . . . . . . 9 {𝑦 ∈ ℂ ∣ (0(abs ∘ − )𝑦) ≤ 𝑅} = {𝑦 ∈ ℂ ∣ (abs‘𝑦) ≤ 𝑅}
261, 25eqtr4i 2757 . . . . . . . 8 𝐷 = {𝑦 ∈ ℂ ∣ (0(abs ∘ − )𝑦) ≤ 𝑅}
2715, 26blcld 24420 . . . . . . 7 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 𝑅 ∈ ℝ*) → 𝐷 ∈ (Clsd‘𝐽))
2810, 12, 14, 27syl3anc 1373 . . . . . 6 (𝜑𝐷 ∈ (Clsd‘𝐽))
2913rpred 12934 . . . . . . 7 (𝜑𝑅 ∈ ℝ)
30 fveq2 6822 . . . . . . . . . . 11 (𝑦 = 𝑥 → (abs‘𝑦) = (abs‘𝑥))
3130breq1d 5099 . . . . . . . . . 10 (𝑦 = 𝑥 → ((abs‘𝑦) ≤ 𝑅 ↔ (abs‘𝑥) ≤ 𝑅))
3231, 1elrab2 3645 . . . . . . . . 9 (𝑥𝐷 ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) ≤ 𝑅))
3332simprbi 496 . . . . . . . 8 (𝑥𝐷 → (abs‘𝑥) ≤ 𝑅)
3433rgen 3049 . . . . . . 7 𝑥𝐷 (abs‘𝑥) ≤ 𝑅
35 brralrspcev 5149 . . . . . . 7 ((𝑅 ∈ ℝ ∧ ∀𝑥𝐷 (abs‘𝑥) ≤ 𝑅) → ∃𝑠 ∈ ℝ ∀𝑥𝐷 (abs‘𝑥) ≤ 𝑠)
3629, 34, 35sylancl 586 . . . . . 6 (𝜑 → ∃𝑠 ∈ ℝ ∀𝑥𝐷 (abs‘𝑥) ≤ 𝑠)
37 eqid 2731 . . . . . . . 8 (𝐽t 𝐷) = (𝐽t 𝐷)
383, 37cnheibor 24881 . . . . . . 7 (𝐷 ⊆ ℂ → ((𝐽t 𝐷) ∈ Comp ↔ (𝐷 ∈ (Clsd‘𝐽) ∧ ∃𝑠 ∈ ℝ ∀𝑥𝐷 (abs‘𝑥) ≤ 𝑠)))
392, 38ax-mp 5 . . . . . 6 ((𝐽t 𝐷) ∈ Comp ↔ (𝐷 ∈ (Clsd‘𝐽) ∧ ∃𝑠 ∈ ℝ ∀𝑥𝐷 (abs‘𝑥) ≤ 𝑠))
4028, 36, 39sylanbrc 583 . . . . 5 (𝜑 → (𝐽t 𝐷) ∈ Comp)
41 ftalem.3 . . . . . . . . 9 (𝜑𝐹 ∈ (Poly‘𝑆))
42 plycn 26193 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (ℂ–cn→ℂ))
4341, 42syl 17 . . . . . . . 8 (𝜑𝐹 ∈ (ℂ–cn→ℂ))
44 abscncf 24821 . . . . . . . . 9 abs ∈ (ℂ–cn→ℝ)
4544a1i 11 . . . . . . . 8 (𝜑 → abs ∈ (ℂ–cn→ℝ))
4643, 45cncfco 24827 . . . . . . 7 (𝜑 → (abs ∘ 𝐹) ∈ (ℂ–cn→ℝ))
47 ssid 3952 . . . . . . . 8 ℂ ⊆ ℂ
48 ax-resscn 11063 . . . . . . . 8 ℝ ⊆ ℂ
494toponrestid 22836 . . . . . . . . 9 𝐽 = (𝐽t ℂ)
503tgioo2 24718 . . . . . . . . 9 (topGen‘ran (,)) = (𝐽t ℝ)
513, 49, 50cncfcn 24830 . . . . . . . 8 ((ℂ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℂ–cn→ℝ) = (𝐽 Cn (topGen‘ran (,))))
5247, 48, 51mp2an 692 . . . . . . 7 (ℂ–cn→ℝ) = (𝐽 Cn (topGen‘ran (,)))
5346, 52eleqtrdi 2841 . . . . . 6 (𝜑 → (abs ∘ 𝐹) ∈ (𝐽 Cn (topGen‘ran (,))))
544toponunii 22831 . . . . . . 7 ℂ = 𝐽
5554cnrest 23200 . . . . . 6 (((abs ∘ 𝐹) ∈ (𝐽 Cn (topGen‘ran (,))) ∧ 𝐷 ⊆ ℂ) → ((abs ∘ 𝐹) ↾ 𝐷) ∈ ((𝐽t 𝐷) Cn (topGen‘ran (,))))
5653, 2, 55sylancl 586 . . . . 5 (𝜑 → ((abs ∘ 𝐹) ↾ 𝐷) ∈ ((𝐽t 𝐷) Cn (topGen‘ran (,))))
5713rpge0d 12938 . . . . . . 7 (𝜑 → 0 ≤ 𝑅)
58 fveq2 6822 . . . . . . . . . 10 (𝑦 = 0 → (abs‘𝑦) = (abs‘0))
59 abs0 15192 . . . . . . . . . 10 (abs‘0) = 0
6058, 59eqtrdi 2782 . . . . . . . . 9 (𝑦 = 0 → (abs‘𝑦) = 0)
6160breq1d 5099 . . . . . . . 8 (𝑦 = 0 → ((abs‘𝑦) ≤ 𝑅 ↔ 0 ≤ 𝑅))
6261, 1elrab2 3645 . . . . . . 7 (0 ∈ 𝐷 ↔ (0 ∈ ℂ ∧ 0 ≤ 𝑅))
6312, 57, 62sylanbrc 583 . . . . . 6 (𝜑 → 0 ∈ 𝐷)
6463ne0d 4289 . . . . 5 (𝜑𝐷 ≠ ∅)
657, 8, 40, 56, 64evth2 24886 . . . 4 (𝜑 → ∃𝑧𝐷𝑥𝐷 (((abs ∘ 𝐹) ↾ 𝐷)‘𝑧) ≤ (((abs ∘ 𝐹) ↾ 𝐷)‘𝑥))
66 fvres 6841 . . . . . . . . 9 (𝑧𝐷 → (((abs ∘ 𝐹) ↾ 𝐷)‘𝑧) = ((abs ∘ 𝐹)‘𝑧))
6766ad2antlr 727 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → (((abs ∘ 𝐹) ↾ 𝐷)‘𝑧) = ((abs ∘ 𝐹)‘𝑧))
68 plyf 26130 . . . . . . . . . . 11 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
6941, 68syl 17 . . . . . . . . . 10 (𝜑𝐹:ℂ⟶ℂ)
7069ad2antrr 726 . . . . . . . . 9 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → 𝐹:ℂ⟶ℂ)
71 simplr 768 . . . . . . . . . 10 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → 𝑧𝐷)
722, 71sselid 3927 . . . . . . . . 9 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → 𝑧 ∈ ℂ)
73 fvco3 6921 . . . . . . . . 9 ((𝐹:ℂ⟶ℂ ∧ 𝑧 ∈ ℂ) → ((abs ∘ 𝐹)‘𝑧) = (abs‘(𝐹𝑧)))
7470, 72, 73syl2anc 584 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → ((abs ∘ 𝐹)‘𝑧) = (abs‘(𝐹𝑧)))
7567, 74eqtrd 2766 . . . . . . 7 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → (((abs ∘ 𝐹) ↾ 𝐷)‘𝑧) = (abs‘(𝐹𝑧)))
76 fvres 6841 . . . . . . . . 9 (𝑥𝐷 → (((abs ∘ 𝐹) ↾ 𝐷)‘𝑥) = ((abs ∘ 𝐹)‘𝑥))
7776adantl 481 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → (((abs ∘ 𝐹) ↾ 𝐷)‘𝑥) = ((abs ∘ 𝐹)‘𝑥))
78 simpr 484 . . . . . . . . . 10 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → 𝑥𝐷)
792, 78sselid 3927 . . . . . . . . 9 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → 𝑥 ∈ ℂ)
80 fvco3 6921 . . . . . . . . 9 ((𝐹:ℂ⟶ℂ ∧ 𝑥 ∈ ℂ) → ((abs ∘ 𝐹)‘𝑥) = (abs‘(𝐹𝑥)))
8170, 79, 80syl2anc 584 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → ((abs ∘ 𝐹)‘𝑥) = (abs‘(𝐹𝑥)))
8277, 81eqtrd 2766 . . . . . . 7 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → (((abs ∘ 𝐹) ↾ 𝐷)‘𝑥) = (abs‘(𝐹𝑥)))
8375, 82breq12d 5102 . . . . . 6 (((𝜑𝑧𝐷) ∧ 𝑥𝐷) → ((((abs ∘ 𝐹) ↾ 𝐷)‘𝑧) ≤ (((abs ∘ 𝐹) ↾ 𝐷)‘𝑥) ↔ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
8483ralbidva 3153 . . . . 5 ((𝜑𝑧𝐷) → (∀𝑥𝐷 (((abs ∘ 𝐹) ↾ 𝐷)‘𝑧) ≤ (((abs ∘ 𝐹) ↾ 𝐷)‘𝑥) ↔ ∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
8584rexbidva 3154 . . . 4 (𝜑 → (∃𝑧𝐷𝑥𝐷 (((abs ∘ 𝐹) ↾ 𝐷)‘𝑧) ≤ (((abs ∘ 𝐹) ↾ 𝐷)‘𝑥) ↔ ∃𝑧𝐷𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
8665, 85mpbid 232 . . 3 (𝜑 → ∃𝑧𝐷𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)))
87 ssrexv 3999 . . 3 (𝐷 ⊆ ℂ → (∃𝑧𝐷𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) → ∃𝑧 ∈ ℂ ∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
882, 86, 87mpsyl 68 . 2 (𝜑 → ∃𝑧 ∈ ℂ ∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)))
8963adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 0 ∈ 𝐷)
90 2fveq3 6827 . . . . . . . . 9 (𝑥 = 0 → (abs‘(𝐹𝑥)) = (abs‘(𝐹‘0)))
9190breq2d 5101 . . . . . . . 8 (𝑥 = 0 → ((abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) ↔ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹‘0))))
9291rspcv 3568 . . . . . . 7 (0 ∈ 𝐷 → (∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) → (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹‘0))))
9389, 92syl 17 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → (∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) → (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹‘0))))
9469ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → 𝐹:ℂ⟶ℂ)
95 ffvelcdm 7014 . . . . . . . . . . 11 ((𝐹:ℂ⟶ℂ ∧ 0 ∈ ℂ) → (𝐹‘0) ∈ ℂ)
9694, 11, 95sylancl 586 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (𝐹‘0) ∈ ℂ)
9796abscld 15346 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (abs‘(𝐹‘0)) ∈ ℝ)
98 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → 𝑥 ∈ (ℂ ∖ 𝐷))
9998eldifad 3909 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → 𝑥 ∈ ℂ)
10094, 99ffvelcdmd 7018 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (𝐹𝑥) ∈ ℂ)
101100abscld 15346 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (abs‘(𝐹𝑥)) ∈ ℝ)
102 ftalem3.8 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ ℂ (𝑅 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
103102ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → ∀𝑥 ∈ ℂ (𝑅 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
10498eldifbd 3910 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → ¬ 𝑥𝐷)
10532baib 535 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → (𝑥𝐷 ↔ (abs‘𝑥) ≤ 𝑅))
10699, 105syl 17 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (𝑥𝐷 ↔ (abs‘𝑥) ≤ 𝑅))
107104, 106mtbid 324 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → ¬ (abs‘𝑥) ≤ 𝑅)
10829ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → 𝑅 ∈ ℝ)
10999abscld 15346 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (abs‘𝑥) ∈ ℝ)
110108, 109ltnled 11260 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (𝑅 < (abs‘𝑥) ↔ ¬ (abs‘𝑥) ≤ 𝑅))
111107, 110mpbird 257 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → 𝑅 < (abs‘𝑥))
112 rsp 3220 . . . . . . . . . 10 (∀𝑥 ∈ ℂ (𝑅 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))) → (𝑥 ∈ ℂ → (𝑅 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))))
113103, 99, 111, 112syl3c 66 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))
11497, 101, 113ltled 11261 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (abs‘(𝐹‘0)) ≤ (abs‘(𝐹𝑥)))
115 simplr 768 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → 𝑧 ∈ ℂ)
11694, 115ffvelcdmd 7018 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (𝐹𝑧) ∈ ℂ)
117116abscld 15346 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (abs‘(𝐹𝑧)) ∈ ℝ)
118 letr 11207 . . . . . . . . 9 (((abs‘(𝐹𝑧)) ∈ ℝ ∧ (abs‘(𝐹‘0)) ∈ ℝ ∧ (abs‘(𝐹𝑥)) ∈ ℝ) → (((abs‘(𝐹𝑧)) ≤ (abs‘(𝐹‘0)) ∧ (abs‘(𝐹‘0)) ≤ (abs‘(𝐹𝑥))) → (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
119117, 97, 101, 118syl3anc 1373 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → (((abs‘(𝐹𝑧)) ≤ (abs‘(𝐹‘0)) ∧ (abs‘(𝐹‘0)) ≤ (abs‘(𝐹𝑥))) → (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
120114, 119mpan2d 694 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑥 ∈ (ℂ ∖ 𝐷)) → ((abs‘(𝐹𝑧)) ≤ (abs‘(𝐹‘0)) → (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
121120ralrimdva 3132 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → ((abs‘(𝐹𝑧)) ≤ (abs‘(𝐹‘0)) → ∀𝑥 ∈ (ℂ ∖ 𝐷)(abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
12293, 121syld 47 . . . . 5 ((𝜑𝑧 ∈ ℂ) → (∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) → ∀𝑥 ∈ (ℂ ∖ 𝐷)(abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
123122ancld 550 . . . 4 ((𝜑𝑧 ∈ ℂ) → (∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) → (∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) ∧ ∀𝑥 ∈ (ℂ ∖ 𝐷)(abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)))))
124 ralunb 4144 . . . . 5 (∀𝑥 ∈ (𝐷 ∪ (ℂ ∖ 𝐷))(abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) ↔ (∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) ∧ ∀𝑥 ∈ (ℂ ∖ 𝐷)(abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
125 undif2 4424 . . . . . . 7 (𝐷 ∪ (ℂ ∖ 𝐷)) = (𝐷 ∪ ℂ)
126 ssequn1 4133 . . . . . . . 8 (𝐷 ⊆ ℂ ↔ (𝐷 ∪ ℂ) = ℂ)
1272, 126mpbi 230 . . . . . . 7 (𝐷 ∪ ℂ) = ℂ
128125, 127eqtri 2754 . . . . . 6 (𝐷 ∪ (ℂ ∖ 𝐷)) = ℂ
129128raleqi 3290 . . . . 5 (∀𝑥 ∈ (𝐷 ∪ (ℂ ∖ 𝐷))(abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) ↔ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)))
130124, 129bitr3i 277 . . . 4 ((∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) ∧ ∀𝑥 ∈ (ℂ ∖ 𝐷)(abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))) ↔ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)))
131123, 130imbitrdi 251 . . 3 ((𝜑𝑧 ∈ ℂ) → (∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) → ∀𝑥 ∈ ℂ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
132131reximdva 3145 . 2 (𝜑 → (∃𝑧 ∈ ℂ ∀𝑥𝐷 (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) → ∃𝑧 ∈ ℂ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
13388, 132mpd 15 1 (𝜑 → ∃𝑧 ∈ ℂ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  {crab 3395  cdif 3894  cun 3895  wss 3897   class class class wbr 5089  ran crn 5615  cres 5616  ccom 5618  wf 6477  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006  *cxr 11145   < clt 11146  cle 11147  cmin 11344  -cneg 11345  cn 12125  +crp 12890  (,)cioo 13245  abscabs 15141  t crest 17324  TopOpenctopn 17325  topGenctg 17341  ∞Metcxmet 21276  fldccnfld 21291  TopOnctopon 22825  Clsdccld 22931   Cn ccn 23139  Compccmp 23301  cnccncf 24796  Polycply 26116  coeffccoe 26118  degcdgr 26119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-cls 22936  df-cn 23142  df-cnp 23143  df-haus 23230  df-cmp 23302  df-tx 23477  df-hmeo 23670  df-xms 24235  df-ms 24236  df-tms 24237  df-cncf 24798  df-0p 25598  df-ply 26120  df-coe 26122  df-dgr 26123
This theorem is referenced by:  fta  27017
  Copyright terms: Public domain W3C validator