Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > smfsssmf | Structured version Visualization version GIF version |
Description: If a function is measurable w.r.t. to a sigma-algebra, then it is measurable w.r.t. to a larger sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
smfsssmf.r | ⊢ (𝜑 → 𝑅 ∈ SAlg) |
smfsssmf.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
smfsssmf.i | ⊢ (𝜑 → 𝑅 ⊆ 𝑆) |
smfsssmf.f | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑅)) |
Ref | Expression |
---|---|
smfsssmf | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1921 | . 2 ⊢ Ⅎ𝑎𝜑 | |
2 | smfsssmf.s | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
3 | smfsssmf.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ SAlg) | |
4 | smfsssmf.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑅)) | |
5 | eqid 2739 | . . . 4 ⊢ dom 𝐹 = dom 𝐹 | |
6 | 3, 4, 5 | smfdmss 43831 | . . 3 ⊢ (𝜑 → dom 𝐹 ⊆ ∪ 𝑅) |
7 | smfsssmf.i | . . . 4 ⊢ (𝜑 → 𝑅 ⊆ 𝑆) | |
8 | 7 | unissd 4807 | . . 3 ⊢ (𝜑 → ∪ 𝑅 ⊆ ∪ 𝑆) |
9 | 6, 8 | sstrd 3888 | . 2 ⊢ (𝜑 → dom 𝐹 ⊆ ∪ 𝑆) |
10 | 3, 4, 5 | smff 43830 | . 2 ⊢ (𝜑 → 𝐹:dom 𝐹⟶ℝ) |
11 | ssrest 21930 | . . . . 5 ⊢ ((𝑆 ∈ SAlg ∧ 𝑅 ⊆ 𝑆) → (𝑅 ↾t dom 𝐹) ⊆ (𝑆 ↾t dom 𝐹)) | |
12 | 2, 7, 11 | syl2anc 587 | . . . 4 ⊢ (𝜑 → (𝑅 ↾t dom 𝐹) ⊆ (𝑆 ↾t dom 𝐹)) |
13 | 12 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝑅 ↾t dom 𝐹) ⊆ (𝑆 ↾t dom 𝐹)) |
14 | 3 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑅 ∈ SAlg) |
15 | 4 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑅)) |
16 | simpr 488 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ) | |
17 | 14, 15, 5, 16 | smfpreimalt 43829 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑅 ↾t dom 𝐹)) |
18 | 13, 17 | sseldd 3879 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹)) |
19 | 1, 2, 9, 10, 18 | issmfd 43833 | 1 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2114 {crab 3058 ⊆ wss 3844 ∪ cuni 4797 class class class wbr 5031 dom cdm 5526 ‘cfv 6340 (class class class)co 7173 ℝcr 10617 < clt 10756 ↾t crest 16800 SAlgcsalg 43414 SMblFncsmblfn 43798 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5155 ax-sep 5168 ax-nul 5175 ax-pow 5233 ax-pr 5297 ax-un 7482 ax-cnex 10674 ax-resscn 10675 ax-pre-lttri 10692 ax-pre-lttrn 10693 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rab 3063 df-v 3401 df-sbc 3682 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-op 4524 df-uni 4798 df-iun 4884 df-br 5032 df-opab 5094 df-mpt 5112 df-id 5430 df-po 5443 df-so 5444 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-ov 7176 df-oprab 7177 df-mpo 7178 df-1st 7717 df-2nd 7718 df-er 8323 df-pm 8443 df-en 8559 df-dom 8560 df-sdom 8561 df-pnf 10758 df-mnf 10759 df-xr 10760 df-ltxr 10761 df-le 10762 df-ioo 12828 df-ico 12830 df-rest 16802 df-smblfn 43799 |
This theorem is referenced by: bormflebmf 43851 |
Copyright terms: Public domain | W3C validator |