Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfsssmf Structured version   Visualization version   GIF version

Theorem smfsssmf 44166
Description: If a function is measurable w.r.t. to a sigma-algebra, then it is measurable w.r.t. to a larger sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfsssmf.r (𝜑𝑅 ∈ SAlg)
smfsssmf.s (𝜑𝑆 ∈ SAlg)
smfsssmf.i (𝜑𝑅𝑆)
smfsssmf.f (𝜑𝐹 ∈ (SMblFn‘𝑅))
Assertion
Ref Expression
smfsssmf (𝜑𝐹 ∈ (SMblFn‘𝑆))

Proof of Theorem smfsssmf
Dummy variables 𝑎 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1918 . 2 𝑎𝜑
2 smfsssmf.s . 2 (𝜑𝑆 ∈ SAlg)
3 smfsssmf.r . . . 4 (𝜑𝑅 ∈ SAlg)
4 smfsssmf.f . . . 4 (𝜑𝐹 ∈ (SMblFn‘𝑅))
5 eqid 2738 . . . 4 dom 𝐹 = dom 𝐹
63, 4, 5smfdmss 44156 . . 3 (𝜑 → dom 𝐹 𝑅)
7 smfsssmf.i . . . 4 (𝜑𝑅𝑆)
87unissd 4846 . . 3 (𝜑 𝑅 𝑆)
96, 8sstrd 3927 . 2 (𝜑 → dom 𝐹 𝑆)
103, 4, 5smff 44155 . 2 (𝜑𝐹:dom 𝐹⟶ℝ)
11 ssrest 22235 . . . . 5 ((𝑆 ∈ SAlg ∧ 𝑅𝑆) → (𝑅t dom 𝐹) ⊆ (𝑆t dom 𝐹))
122, 7, 11syl2anc 583 . . . 4 (𝜑 → (𝑅t dom 𝐹) ⊆ (𝑆t dom 𝐹))
1312adantr 480 . . 3 ((𝜑𝑎 ∈ ℝ) → (𝑅t dom 𝐹) ⊆ (𝑆t dom 𝐹))
143adantr 480 . . . 4 ((𝜑𝑎 ∈ ℝ) → 𝑅 ∈ SAlg)
154adantr 480 . . . 4 ((𝜑𝑎 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑅))
16 simpr 484 . . . 4 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
1714, 15, 5, 16smfpreimalt 44154 . . 3 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑅t dom 𝐹))
1813, 17sseldd 3918 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t dom 𝐹))
191, 2, 9, 10, 18issmfd 44158 1 (𝜑𝐹 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  {crab 3067  wss 3883   cuni 4836   class class class wbr 5070  dom cdm 5580  cfv 6418  (class class class)co 7255  cr 10801   < clt 10940  t crest 17048  SAlgcsalg 43739  SMblFncsmblfn 44123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-pre-lttri 10876  ax-pre-lttrn 10877
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-er 8456  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-ioo 13012  df-ico 13014  df-rest 17050  df-smblfn 44124
This theorem is referenced by:  bormflebmf  44176
  Copyright terms: Public domain W3C validator