| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smfsssmf | Structured version Visualization version GIF version | ||
| Description: If a function is measurable w.r.t. to a sigma-algebra, then it is measurable w.r.t. to a larger sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| smfsssmf.r | ⊢ (𝜑 → 𝑅 ∈ SAlg) |
| smfsssmf.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| smfsssmf.i | ⊢ (𝜑 → 𝑅 ⊆ 𝑆) |
| smfsssmf.f | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑅)) |
| Ref | Expression |
|---|---|
| smfsssmf | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1915 | . 2 ⊢ Ⅎ𝑎𝜑 | |
| 2 | smfsssmf.s | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 3 | smfsssmf.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ SAlg) | |
| 4 | smfsssmf.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑅)) | |
| 5 | eqid 2730 | . . . 4 ⊢ dom 𝐹 = dom 𝐹 | |
| 6 | 3, 4, 5 | smfdmss 46750 | . . 3 ⊢ (𝜑 → dom 𝐹 ⊆ ∪ 𝑅) |
| 7 | smfsssmf.i | . . . 4 ⊢ (𝜑 → 𝑅 ⊆ 𝑆) | |
| 8 | 7 | unissd 4867 | . . 3 ⊢ (𝜑 → ∪ 𝑅 ⊆ ∪ 𝑆) |
| 9 | 6, 8 | sstrd 3943 | . 2 ⊢ (𝜑 → dom 𝐹 ⊆ ∪ 𝑆) |
| 10 | 3, 4, 5 | smff 46749 | . 2 ⊢ (𝜑 → 𝐹:dom 𝐹⟶ℝ) |
| 11 | ssrest 23084 | . . . . 5 ⊢ ((𝑆 ∈ SAlg ∧ 𝑅 ⊆ 𝑆) → (𝑅 ↾t dom 𝐹) ⊆ (𝑆 ↾t dom 𝐹)) | |
| 12 | 2, 7, 11 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑅 ↾t dom 𝐹) ⊆ (𝑆 ↾t dom 𝐹)) |
| 13 | 12 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝑅 ↾t dom 𝐹) ⊆ (𝑆 ↾t dom 𝐹)) |
| 14 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑅 ∈ SAlg) |
| 15 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑅)) |
| 16 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ) | |
| 17 | 14, 15, 5, 16 | smfpreimalt 46748 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑅 ↾t dom 𝐹)) |
| 18 | 13, 17 | sseldd 3933 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹)) |
| 19 | 1, 2, 9, 10, 18 | issmfd 46752 | 1 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2110 {crab 3393 ⊆ wss 3900 ∪ cuni 4857 class class class wbr 5089 dom cdm 5614 ‘cfv 6477 (class class class)co 7341 ℝcr 10997 < clt 11138 ↾t crest 17316 SAlgcsalg 46325 SMblFncsmblfn 46712 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-pre-lttri 11072 ax-pre-lttrn 11073 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-er 8617 df-pm 8748 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-ioo 13241 df-ico 13243 df-rest 17318 df-smblfn 46713 |
| This theorem is referenced by: bormflebmf 46770 |
| Copyright terms: Public domain | W3C validator |