| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smfsssmf | Structured version Visualization version GIF version | ||
| Description: If a function is measurable w.r.t. to a sigma-algebra, then it is measurable w.r.t. to a larger sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| smfsssmf.r | ⊢ (𝜑 → 𝑅 ∈ SAlg) |
| smfsssmf.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| smfsssmf.i | ⊢ (𝜑 → 𝑅 ⊆ 𝑆) |
| smfsssmf.f | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑅)) |
| Ref | Expression |
|---|---|
| smfsssmf | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1913 | . 2 ⊢ Ⅎ𝑎𝜑 | |
| 2 | smfsssmf.s | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 3 | smfsssmf.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ SAlg) | |
| 4 | smfsssmf.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑅)) | |
| 5 | eqid 2734 | . . . 4 ⊢ dom 𝐹 = dom 𝐹 | |
| 6 | 3, 4, 5 | smfdmss 46705 | . . 3 ⊢ (𝜑 → dom 𝐹 ⊆ ∪ 𝑅) |
| 7 | smfsssmf.i | . . . 4 ⊢ (𝜑 → 𝑅 ⊆ 𝑆) | |
| 8 | 7 | unissd 4897 | . . 3 ⊢ (𝜑 → ∪ 𝑅 ⊆ ∪ 𝑆) |
| 9 | 6, 8 | sstrd 3974 | . 2 ⊢ (𝜑 → dom 𝐹 ⊆ ∪ 𝑆) |
| 10 | 3, 4, 5 | smff 46704 | . 2 ⊢ (𝜑 → 𝐹:dom 𝐹⟶ℝ) |
| 11 | ssrest 23130 | . . . . 5 ⊢ ((𝑆 ∈ SAlg ∧ 𝑅 ⊆ 𝑆) → (𝑅 ↾t dom 𝐹) ⊆ (𝑆 ↾t dom 𝐹)) | |
| 12 | 2, 7, 11 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑅 ↾t dom 𝐹) ⊆ (𝑆 ↾t dom 𝐹)) |
| 13 | 12 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝑅 ↾t dom 𝐹) ⊆ (𝑆 ↾t dom 𝐹)) |
| 14 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑅 ∈ SAlg) |
| 15 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑅)) |
| 16 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ) | |
| 17 | 14, 15, 5, 16 | smfpreimalt 46703 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑅 ↾t dom 𝐹)) |
| 18 | 13, 17 | sseldd 3964 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹)) |
| 19 | 1, 2, 9, 10, 18 | issmfd 46707 | 1 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 {crab 3419 ⊆ wss 3931 ∪ cuni 4887 class class class wbr 5123 dom cdm 5665 ‘cfv 6541 (class class class)co 7413 ℝcr 11136 < clt 11277 ↾t crest 17436 SAlgcsalg 46280 SMblFncsmblfn 46667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-pre-lttri 11211 ax-pre-lttrn 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-po 5572 df-so 5573 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 df-er 8727 df-pm 8851 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-ioo 13373 df-ico 13375 df-rest 17438 df-smblfn 46668 |
| This theorem is referenced by: bormflebmf 46725 |
| Copyright terms: Public domain | W3C validator |