| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smfsssmf | Structured version Visualization version GIF version | ||
| Description: If a function is measurable w.r.t. to a sigma-algebra, then it is measurable w.r.t. to a larger sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| smfsssmf.r | ⊢ (𝜑 → 𝑅 ∈ SAlg) |
| smfsssmf.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| smfsssmf.i | ⊢ (𝜑 → 𝑅 ⊆ 𝑆) |
| smfsssmf.f | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑅)) |
| Ref | Expression |
|---|---|
| smfsssmf | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . 2 ⊢ Ⅎ𝑎𝜑 | |
| 2 | smfsssmf.s | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 3 | smfsssmf.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ SAlg) | |
| 4 | smfsssmf.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑅)) | |
| 5 | eqid 2730 | . . . 4 ⊢ dom 𝐹 = dom 𝐹 | |
| 6 | 3, 4, 5 | smfdmss 46724 | . . 3 ⊢ (𝜑 → dom 𝐹 ⊆ ∪ 𝑅) |
| 7 | smfsssmf.i | . . . 4 ⊢ (𝜑 → 𝑅 ⊆ 𝑆) | |
| 8 | 7 | unissd 4883 | . . 3 ⊢ (𝜑 → ∪ 𝑅 ⊆ ∪ 𝑆) |
| 9 | 6, 8 | sstrd 3959 | . 2 ⊢ (𝜑 → dom 𝐹 ⊆ ∪ 𝑆) |
| 10 | 3, 4, 5 | smff 46723 | . 2 ⊢ (𝜑 → 𝐹:dom 𝐹⟶ℝ) |
| 11 | ssrest 23069 | . . . . 5 ⊢ ((𝑆 ∈ SAlg ∧ 𝑅 ⊆ 𝑆) → (𝑅 ↾t dom 𝐹) ⊆ (𝑆 ↾t dom 𝐹)) | |
| 12 | 2, 7, 11 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑅 ↾t dom 𝐹) ⊆ (𝑆 ↾t dom 𝐹)) |
| 13 | 12 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝑅 ↾t dom 𝐹) ⊆ (𝑆 ↾t dom 𝐹)) |
| 14 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑅 ∈ SAlg) |
| 15 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑅)) |
| 16 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ) | |
| 17 | 14, 15, 5, 16 | smfpreimalt 46722 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑅 ↾t dom 𝐹)) |
| 18 | 13, 17 | sseldd 3949 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹)) |
| 19 | 1, 2, 9, 10, 18 | issmfd 46726 | 1 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 {crab 3408 ⊆ wss 3916 ∪ cuni 4873 class class class wbr 5109 dom cdm 5640 ‘cfv 6513 (class class class)co 7389 ℝcr 11073 < clt 11214 ↾t crest 17389 SAlgcsalg 46299 SMblFncsmblfn 46686 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-pre-lttri 11148 ax-pre-lttrn 11149 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-po 5548 df-so 5549 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-1st 7970 df-2nd 7971 df-er 8673 df-pm 8804 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-ioo 13316 df-ico 13318 df-rest 17391 df-smblfn 46687 |
| This theorem is referenced by: bormflebmf 46744 |
| Copyright terms: Public domain | W3C validator |