![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > smfsssmf | Structured version Visualization version GIF version |
Description: If a function is measurable w.r.t. to a sigma-algebra, then it is measurable w.r.t. to a larger sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
smfsssmf.r | β’ (π β π β SAlg) |
smfsssmf.s | β’ (π β π β SAlg) |
smfsssmf.i | β’ (π β π β π) |
smfsssmf.f | β’ (π β πΉ β (SMblFnβπ )) |
Ref | Expression |
---|---|
smfsssmf | β’ (π β πΉ β (SMblFnβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1918 | . 2 β’ β²ππ | |
2 | smfsssmf.s | . 2 β’ (π β π β SAlg) | |
3 | smfsssmf.r | . . . 4 β’ (π β π β SAlg) | |
4 | smfsssmf.f | . . . 4 β’ (π β πΉ β (SMblFnβπ )) | |
5 | eqid 2733 | . . . 4 β’ dom πΉ = dom πΉ | |
6 | 3, 4, 5 | smfdmss 45449 | . . 3 β’ (π β dom πΉ β βͺ π ) |
7 | smfsssmf.i | . . . 4 β’ (π β π β π) | |
8 | 7 | unissd 4919 | . . 3 β’ (π β βͺ π β βͺ π) |
9 | 6, 8 | sstrd 3993 | . 2 β’ (π β dom πΉ β βͺ π) |
10 | 3, 4, 5 | smff 45448 | . 2 β’ (π β πΉ:dom πΉβΆβ) |
11 | ssrest 22680 | . . . . 5 β’ ((π β SAlg β§ π β π) β (π βΎt dom πΉ) β (π βΎt dom πΉ)) | |
12 | 2, 7, 11 | syl2anc 585 | . . . 4 β’ (π β (π βΎt dom πΉ) β (π βΎt dom πΉ)) |
13 | 12 | adantr 482 | . . 3 β’ ((π β§ π β β) β (π βΎt dom πΉ) β (π βΎt dom πΉ)) |
14 | 3 | adantr 482 | . . . 4 β’ ((π β§ π β β) β π β SAlg) |
15 | 4 | adantr 482 | . . . 4 β’ ((π β§ π β β) β πΉ β (SMblFnβπ )) |
16 | simpr 486 | . . . 4 β’ ((π β§ π β β) β π β β) | |
17 | 14, 15, 5, 16 | smfpreimalt 45447 | . . 3 β’ ((π β§ π β β) β {π₯ β dom πΉ β£ (πΉβπ₯) < π} β (π βΎt dom πΉ)) |
18 | 13, 17 | sseldd 3984 | . 2 β’ ((π β§ π β β) β {π₯ β dom πΉ β£ (πΉβπ₯) < π} β (π βΎt dom πΉ)) |
19 | 1, 2, 9, 10, 18 | issmfd 45451 | 1 β’ (π β πΉ β (SMblFnβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 β wcel 2107 {crab 3433 β wss 3949 βͺ cuni 4909 class class class wbr 5149 dom cdm 5677 βcfv 6544 (class class class)co 7409 βcr 11109 < clt 11248 βΎt crest 17366 SAlgcsalg 45024 SMblFncsmblfn 45411 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-pre-lttri 11184 ax-pre-lttrn 11185 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-er 8703 df-pm 8823 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-ioo 13328 df-ico 13330 df-rest 17368 df-smblfn 45412 |
This theorem is referenced by: bormflebmf 45469 |
Copyright terms: Public domain | W3C validator |