| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smfsssmf | Structured version Visualization version GIF version | ||
| Description: If a function is measurable w.r.t. to a sigma-algebra, then it is measurable w.r.t. to a larger sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| smfsssmf.r | ⊢ (𝜑 → 𝑅 ∈ SAlg) |
| smfsssmf.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| smfsssmf.i | ⊢ (𝜑 → 𝑅 ⊆ 𝑆) |
| smfsssmf.f | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑅)) |
| Ref | Expression |
|---|---|
| smfsssmf | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1915 | . 2 ⊢ Ⅎ𝑎𝜑 | |
| 2 | smfsssmf.s | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 3 | smfsssmf.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ SAlg) | |
| 4 | smfsssmf.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑅)) | |
| 5 | eqid 2731 | . . . 4 ⊢ dom 𝐹 = dom 𝐹 | |
| 6 | 3, 4, 5 | smfdmss 46836 | . . 3 ⊢ (𝜑 → dom 𝐹 ⊆ ∪ 𝑅) |
| 7 | smfsssmf.i | . . . 4 ⊢ (𝜑 → 𝑅 ⊆ 𝑆) | |
| 8 | 7 | unissd 4868 | . . 3 ⊢ (𝜑 → ∪ 𝑅 ⊆ ∪ 𝑆) |
| 9 | 6, 8 | sstrd 3940 | . 2 ⊢ (𝜑 → dom 𝐹 ⊆ ∪ 𝑆) |
| 10 | 3, 4, 5 | smff 46835 | . 2 ⊢ (𝜑 → 𝐹:dom 𝐹⟶ℝ) |
| 11 | ssrest 23097 | . . . . 5 ⊢ ((𝑆 ∈ SAlg ∧ 𝑅 ⊆ 𝑆) → (𝑅 ↾t dom 𝐹) ⊆ (𝑆 ↾t dom 𝐹)) | |
| 12 | 2, 7, 11 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑅 ↾t dom 𝐹) ⊆ (𝑆 ↾t dom 𝐹)) |
| 13 | 12 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝑅 ↾t dom 𝐹) ⊆ (𝑆 ↾t dom 𝐹)) |
| 14 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑅 ∈ SAlg) |
| 15 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑅)) |
| 16 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ) | |
| 17 | 14, 15, 5, 16 | smfpreimalt 46834 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑅 ↾t dom 𝐹)) |
| 18 | 13, 17 | sseldd 3930 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹)) |
| 19 | 1, 2, 9, 10, 18 | issmfd 46838 | 1 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 {crab 3395 ⊆ wss 3897 ∪ cuni 4858 class class class wbr 5093 dom cdm 5619 ‘cfv 6487 (class class class)co 7352 ℝcr 11011 < clt 11152 ↾t crest 17330 SAlgcsalg 46411 SMblFncsmblfn 46798 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-pre-lttri 11086 ax-pre-lttrn 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-er 8628 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-ioo 13255 df-ico 13257 df-rest 17332 df-smblfn 46799 |
| This theorem is referenced by: bormflebmf 46856 |
| Copyright terms: Public domain | W3C validator |