Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfsssmf Structured version   Visualization version   GIF version

Theorem smfsssmf 44279
Description: If a function is measurable w.r.t. to a sigma-algebra, then it is measurable w.r.t. to a larger sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfsssmf.r (𝜑𝑅 ∈ SAlg)
smfsssmf.s (𝜑𝑆 ∈ SAlg)
smfsssmf.i (𝜑𝑅𝑆)
smfsssmf.f (𝜑𝐹 ∈ (SMblFn‘𝑅))
Assertion
Ref Expression
smfsssmf (𝜑𝐹 ∈ (SMblFn‘𝑆))

Proof of Theorem smfsssmf
Dummy variables 𝑎 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1917 . 2 𝑎𝜑
2 smfsssmf.s . 2 (𝜑𝑆 ∈ SAlg)
3 smfsssmf.r . . . 4 (𝜑𝑅 ∈ SAlg)
4 smfsssmf.f . . . 4 (𝜑𝐹 ∈ (SMblFn‘𝑅))
5 eqid 2738 . . . 4 dom 𝐹 = dom 𝐹
63, 4, 5smfdmss 44269 . . 3 (𝜑 → dom 𝐹 𝑅)
7 smfsssmf.i . . . 4 (𝜑𝑅𝑆)
87unissd 4849 . . 3 (𝜑 𝑅 𝑆)
96, 8sstrd 3931 . 2 (𝜑 → dom 𝐹 𝑆)
103, 4, 5smff 44268 . 2 (𝜑𝐹:dom 𝐹⟶ℝ)
11 ssrest 22327 . . . . 5 ((𝑆 ∈ SAlg ∧ 𝑅𝑆) → (𝑅t dom 𝐹) ⊆ (𝑆t dom 𝐹))
122, 7, 11syl2anc 584 . . . 4 (𝜑 → (𝑅t dom 𝐹) ⊆ (𝑆t dom 𝐹))
1312adantr 481 . . 3 ((𝜑𝑎 ∈ ℝ) → (𝑅t dom 𝐹) ⊆ (𝑆t dom 𝐹))
143adantr 481 . . . 4 ((𝜑𝑎 ∈ ℝ) → 𝑅 ∈ SAlg)
154adantr 481 . . . 4 ((𝜑𝑎 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑅))
16 simpr 485 . . . 4 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
1714, 15, 5, 16smfpreimalt 44267 . . 3 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑅t dom 𝐹))
1813, 17sseldd 3922 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t dom 𝐹))
191, 2, 9, 10, 18issmfd 44271 1 (𝜑𝐹 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  {crab 3068  wss 3887   cuni 4839   class class class wbr 5074  dom cdm 5589  cfv 6433  (class class class)co 7275  cr 10870   < clt 11009  t crest 17131  SAlgcsalg 43849  SMblFncsmblfn 44233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-ioo 13083  df-ico 13085  df-rest 17133  df-smblfn 44234
This theorem is referenced by:  bormflebmf  44289
  Copyright terms: Public domain W3C validator