![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shsupunss | Structured version Visualization version GIF version |
Description: The union of a set of subspaces is smaller than its supremum. (Contributed by NM, 26-Nov-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shsupunss | ⊢ (𝐴 ⊆ Sℋ → ∪ 𝐴 ⊆ (span‘∪ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shsspwh 31275 | . . . . 5 ⊢ Sℋ ⊆ 𝒫 ℋ | |
2 | sstr 4004 | . . . . 5 ⊢ ((𝐴 ⊆ Sℋ ∧ Sℋ ⊆ 𝒫 ℋ) → 𝐴 ⊆ 𝒫 ℋ) | |
3 | 1, 2 | mpan2 691 | . . . 4 ⊢ (𝐴 ⊆ Sℋ → 𝐴 ⊆ 𝒫 ℋ) |
4 | 3 | unissd 4922 | . . 3 ⊢ (𝐴 ⊆ Sℋ → ∪ 𝐴 ⊆ ∪ 𝒫 ℋ) |
5 | unipw 5461 | . . 3 ⊢ ∪ 𝒫 ℋ = ℋ | |
6 | 4, 5 | sseqtrdi 4046 | . 2 ⊢ (𝐴 ⊆ Sℋ → ∪ 𝐴 ⊆ ℋ) |
7 | spanss2 31374 | . 2 ⊢ (∪ 𝐴 ⊆ ℋ → ∪ 𝐴 ⊆ (span‘∪ 𝐴)) | |
8 | 6, 7 | syl 17 | 1 ⊢ (𝐴 ⊆ Sℋ → ∪ 𝐴 ⊆ (span‘∪ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3963 𝒫 cpw 4605 ∪ cuni 4912 ‘cfv 6563 ℋchba 30948 Sℋ csh 30957 spancspn 30961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-1cn 11211 ax-addcl 11213 ax-hilex 31028 ax-hfvadd 31029 ax-hv0cl 31032 ax-hfvmul 31034 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-map 8867 df-nn 12265 df-hlim 31001 df-sh 31236 df-ch 31250 df-span 31338 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |