Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzn0d Structured version   Visualization version   GIF version

Theorem uzn0d 44680
Description: The upper integers are all nonempty. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
uzn0d.1 (𝜑𝑀 ∈ ℤ)
uzn0d.2 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
uzn0d (𝜑𝑍 ≠ ∅)

Proof of Theorem uzn0d
StepHypRef Expression
1 uzn0d.1 . . 3 (𝜑𝑀 ∈ ℤ)
2 uzn0d.2 . . 3 𝑍 = (ℤ𝑀)
31, 2uzidd2 44671 . 2 (𝜑𝑀𝑍)
43ne0d 4328 1 (𝜑𝑍 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  wne 2932  c0 4315  cfv 6534  cz 12557  cuz 12821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-pre-lttri 11181
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-ov 7405  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-neg 11446  df-z 12558  df-uz 12822
This theorem is referenced by:  uzn0bi  44714  limsupvaluz2  44999  limsupgtlem  45038  smfsupxr  46077  smfinflem  46078  smflimsuplem3  46083  smflimsuplem4  46084  smfliminflem  46091  smfsupdmmbllem  46105  smfinfdmmbllem  46109
  Copyright terms: Public domain W3C validator