|   | Mathbox for Scott Fenton | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elhf2g | Structured version Visualization version GIF version | ||
| Description: Hereditarily finiteness via rank. Closed form of elhf2 36176. (Contributed by Scott Fenton, 15-Jul-2015.) | 
| Ref | Expression | 
|---|---|
| elhf2g | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Hf ↔ (rank‘𝐴) ∈ ω)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eleq1 2829 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ Hf ↔ 𝐴 ∈ Hf )) | |
| 2 | fveq2 6906 | . . 3 ⊢ (𝑥 = 𝐴 → (rank‘𝑥) = (rank‘𝐴)) | |
| 3 | 2 | eleq1d 2826 | . 2 ⊢ (𝑥 = 𝐴 → ((rank‘𝑥) ∈ ω ↔ (rank‘𝐴) ∈ ω)) | 
| 4 | vex 3484 | . . 3 ⊢ 𝑥 ∈ V | |
| 5 | 4 | elhf2 36176 | . 2 ⊢ (𝑥 ∈ Hf ↔ (rank‘𝑥) ∈ ω) | 
| 6 | 1, 3, 5 | vtoclbg 3557 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Hf ↔ (rank‘𝐴) ∈ ω)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ‘cfv 6561 ωcom 7887 rankcrnk 9803 Hf chf 36173 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-reg 9632 ax-inf2 9681 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-r1 9804 df-rank 9805 df-hf 36174 | 
| This theorem is referenced by: hfun 36179 hfsn 36180 hfelhf 36182 hfuni 36185 hfpw 36186 hfninf 36187 | 
| Copyright terms: Public domain | W3C validator |