![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > harinf | Structured version Visualization version GIF version |
Description: The Hartogs number of an infinite set is at least Ο. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) |
Ref | Expression |
---|---|
harinf | β’ ((π β π β§ Β¬ π β Fin) β Ο β (harβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon 7876 | . . . . 5 β’ (π₯ β Ο β π₯ β On) | |
2 | 1 | adantl 481 | . . . 4 β’ (((π β π β§ Β¬ π β Fin) β§ π₯ β Ο) β π₯ β On) |
3 | simplr 768 | . . . . . 6 β’ (((π β π β§ Β¬ π β Fin) β§ π₯ β Ο) β Β¬ π β Fin) | |
4 | nnfi 9192 | . . . . . . . 8 β’ (π₯ β Ο β π₯ β Fin) | |
5 | 4 | adantl 481 | . . . . . . 7 β’ (((π β π β§ Β¬ π β Fin) β§ π₯ β Ο) β π₯ β Fin) |
6 | sdomdom 9001 | . . . . . . 7 β’ (π βΊ π₯ β π βΌ π₯) | |
7 | domfi 9217 | . . . . . . . 8 β’ ((π₯ β Fin β§ π βΌ π₯) β π β Fin) | |
8 | 7 | ex 412 | . . . . . . 7 β’ (π₯ β Fin β (π βΌ π₯ β π β Fin)) |
9 | 5, 6, 8 | syl2im 40 | . . . . . 6 β’ (((π β π β§ Β¬ π β Fin) β§ π₯ β Ο) β (π βΊ π₯ β π β Fin)) |
10 | 3, 9 | mtod 197 | . . . . 5 β’ (((π β π β§ Β¬ π β Fin) β§ π₯ β Ο) β Β¬ π βΊ π₯) |
11 | simpll 766 | . . . . . 6 β’ (((π β π β§ Β¬ π β Fin) β§ π₯ β Ο) β π β π) | |
12 | fidomtri 10017 | . . . . . 6 β’ ((π₯ β Fin β§ π β π) β (π₯ βΌ π β Β¬ π βΊ π₯)) | |
13 | 5, 11, 12 | syl2anc 583 | . . . . 5 β’ (((π β π β§ Β¬ π β Fin) β§ π₯ β Ο) β (π₯ βΌ π β Β¬ π βΊ π₯)) |
14 | 10, 13 | mpbird 257 | . . . 4 β’ (((π β π β§ Β¬ π β Fin) β§ π₯ β Ο) β π₯ βΌ π) |
15 | elharval 9585 | . . . 4 β’ (π₯ β (harβπ) β (π₯ β On β§ π₯ βΌ π)) | |
16 | 2, 14, 15 | sylanbrc 582 | . . 3 β’ (((π β π β§ Β¬ π β Fin) β§ π₯ β Ο) β π₯ β (harβπ)) |
17 | 16 | ex 412 | . 2 β’ ((π β π β§ Β¬ π β Fin) β (π₯ β Ο β π₯ β (harβπ))) |
18 | 17 | ssrdv 3986 | 1 β’ ((π β π β§ Β¬ π β Fin) β Ο β (harβπ)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 395 β wcel 2099 β wss 3947 class class class wbr 5148 Oncon0 6369 βcfv 6548 Οcom 7870 βΌ cdom 8962 βΊ csdm 8963 Fincfn 8964 harchar 9580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-om 7871 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-1o 8487 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-oi 9534 df-har 9581 df-card 9963 |
This theorem is referenced by: ttac 42457 |
Copyright terms: Public domain | W3C validator |