Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  harinf Structured version   Visualization version   GIF version

Theorem harinf 39831
Description: The Hartogs number of an infinite set is at least ω. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.)
Assertion
Ref Expression
harinf ((𝑆𝑉 ∧ ¬ 𝑆 ∈ Fin) → ω ⊆ (har‘𝑆))

Proof of Theorem harinf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nnon 7577 . . . . 5 (𝑥 ∈ ω → 𝑥 ∈ On)
21adantl 485 . . . 4 (((𝑆𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → 𝑥 ∈ On)
3 simplr 768 . . . . . 6 (((𝑆𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → ¬ 𝑆 ∈ Fin)
4 nnfi 8705 . . . . . . . 8 (𝑥 ∈ ω → 𝑥 ∈ Fin)
54adantl 485 . . . . . . 7 (((𝑆𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → 𝑥 ∈ Fin)
6 sdomdom 8529 . . . . . . 7 (𝑆𝑥𝑆𝑥)
7 domfi 8732 . . . . . . . 8 ((𝑥 ∈ Fin ∧ 𝑆𝑥) → 𝑆 ∈ Fin)
87ex 416 . . . . . . 7 (𝑥 ∈ Fin → (𝑆𝑥𝑆 ∈ Fin))
95, 6, 8syl2im 40 . . . . . 6 (((𝑆𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → (𝑆𝑥𝑆 ∈ Fin))
103, 9mtod 201 . . . . 5 (((𝑆𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → ¬ 𝑆𝑥)
11 simpll 766 . . . . . 6 (((𝑆𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → 𝑆𝑉)
12 fidomtri 9415 . . . . . 6 ((𝑥 ∈ Fin ∧ 𝑆𝑉) → (𝑥𝑆 ↔ ¬ 𝑆𝑥))
135, 11, 12syl2anc 587 . . . . 5 (((𝑆𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → (𝑥𝑆 ↔ ¬ 𝑆𝑥))
1410, 13mpbird 260 . . . 4 (((𝑆𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → 𝑥𝑆)
15 elharval 9018 . . . 4 (𝑥 ∈ (har‘𝑆) ↔ (𝑥 ∈ On ∧ 𝑥𝑆))
162, 14, 15sylanbrc 586 . . 3 (((𝑆𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → 𝑥 ∈ (har‘𝑆))
1716ex 416 . 2 ((𝑆𝑉 ∧ ¬ 𝑆 ∈ Fin) → (𝑥 ∈ ω → 𝑥 ∈ (har‘𝑆)))
1817ssrdv 3959 1 ((𝑆𝑉 ∧ ¬ 𝑆 ∈ Fin) → ω ⊆ (har‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wcel 2115  wss 3919   class class class wbr 5053  Oncon0 6179  cfv 6344  ωcom 7571  cdom 8499  csdm 8500  Fincfn 8501  harchar 9013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4826  df-int 4864  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-se 5503  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-isom 6353  df-riota 7104  df-om 7572  df-wrecs 7939  df-recs 8000  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-oi 8967  df-har 9014  df-card 9361
This theorem is referenced by:  ttac  39833
  Copyright terms: Public domain W3C validator