| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > harinf | Structured version Visualization version GIF version | ||
| Description: The Hartogs number of an infinite set is at least ω. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) |
| Ref | Expression |
|---|---|
| harinf | ⊢ ((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) → ω ⊆ (har‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnon 7875 | . . . . 5 ⊢ (𝑥 ∈ ω → 𝑥 ∈ On) | |
| 2 | 1 | adantl 481 | . . . 4 ⊢ (((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → 𝑥 ∈ On) |
| 3 | simplr 768 | . . . . . 6 ⊢ (((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → ¬ 𝑆 ∈ Fin) | |
| 4 | nnfi 9189 | . . . . . . . 8 ⊢ (𝑥 ∈ ω → 𝑥 ∈ Fin) | |
| 5 | 4 | adantl 481 | . . . . . . 7 ⊢ (((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → 𝑥 ∈ Fin) |
| 6 | sdomdom 9002 | . . . . . . 7 ⊢ (𝑆 ≺ 𝑥 → 𝑆 ≼ 𝑥) | |
| 7 | domfi 9211 | . . . . . . . 8 ⊢ ((𝑥 ∈ Fin ∧ 𝑆 ≼ 𝑥) → 𝑆 ∈ Fin) | |
| 8 | 7 | ex 412 | . . . . . . 7 ⊢ (𝑥 ∈ Fin → (𝑆 ≼ 𝑥 → 𝑆 ∈ Fin)) |
| 9 | 5, 6, 8 | syl2im 40 | . . . . . 6 ⊢ (((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → (𝑆 ≺ 𝑥 → 𝑆 ∈ Fin)) |
| 10 | 3, 9 | mtod 198 | . . . . 5 ⊢ (((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → ¬ 𝑆 ≺ 𝑥) |
| 11 | simpll 766 | . . . . . 6 ⊢ (((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → 𝑆 ∈ 𝑉) | |
| 12 | fidomtri 10015 | . . . . . 6 ⊢ ((𝑥 ∈ Fin ∧ 𝑆 ∈ 𝑉) → (𝑥 ≼ 𝑆 ↔ ¬ 𝑆 ≺ 𝑥)) | |
| 13 | 5, 11, 12 | syl2anc 584 | . . . . 5 ⊢ (((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → (𝑥 ≼ 𝑆 ↔ ¬ 𝑆 ≺ 𝑥)) |
| 14 | 10, 13 | mpbird 257 | . . . 4 ⊢ (((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → 𝑥 ≼ 𝑆) |
| 15 | elharval 9583 | . . . 4 ⊢ (𝑥 ∈ (har‘𝑆) ↔ (𝑥 ∈ On ∧ 𝑥 ≼ 𝑆)) | |
| 16 | 2, 14, 15 | sylanbrc 583 | . . 3 ⊢ (((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → 𝑥 ∈ (har‘𝑆)) |
| 17 | 16 | ex 412 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) → (𝑥 ∈ ω → 𝑥 ∈ (har‘𝑆))) |
| 18 | 17 | ssrdv 3969 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) → ω ⊆ (har‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2107 ⊆ wss 3931 class class class wbr 5123 Oncon0 6363 ‘cfv 6541 ωcom 7869 ≼ cdom 8965 ≺ csdm 8966 Fincfn 8967 harchar 9578 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-1o 8488 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-oi 9532 df-har 9579 df-card 9961 |
| This theorem is referenced by: ttac 43011 |
| Copyright terms: Public domain | W3C validator |