| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > harinf | Structured version Visualization version GIF version | ||
| Description: The Hartogs number of an infinite set is at least ω. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) |
| Ref | Expression |
|---|---|
| harinf | ⊢ ((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) → ω ⊆ (har‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnon 7811 | . . . . 5 ⊢ (𝑥 ∈ ω → 𝑥 ∈ On) | |
| 2 | 1 | adantl 481 | . . . 4 ⊢ (((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → 𝑥 ∈ On) |
| 3 | simplr 768 | . . . . . 6 ⊢ (((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → ¬ 𝑆 ∈ Fin) | |
| 4 | nnfi 9087 | . . . . . . . 8 ⊢ (𝑥 ∈ ω → 𝑥 ∈ Fin) | |
| 5 | 4 | adantl 481 | . . . . . . 7 ⊢ (((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → 𝑥 ∈ Fin) |
| 6 | sdomdom 8912 | . . . . . . 7 ⊢ (𝑆 ≺ 𝑥 → 𝑆 ≼ 𝑥) | |
| 7 | domfi 9108 | . . . . . . . 8 ⊢ ((𝑥 ∈ Fin ∧ 𝑆 ≼ 𝑥) → 𝑆 ∈ Fin) | |
| 8 | 7 | ex 412 | . . . . . . 7 ⊢ (𝑥 ∈ Fin → (𝑆 ≼ 𝑥 → 𝑆 ∈ Fin)) |
| 9 | 5, 6, 8 | syl2im 40 | . . . . . 6 ⊢ (((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → (𝑆 ≺ 𝑥 → 𝑆 ∈ Fin)) |
| 10 | 3, 9 | mtod 198 | . . . . 5 ⊢ (((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → ¬ 𝑆 ≺ 𝑥) |
| 11 | simpll 766 | . . . . . 6 ⊢ (((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → 𝑆 ∈ 𝑉) | |
| 12 | fidomtri 9896 | . . . . . 6 ⊢ ((𝑥 ∈ Fin ∧ 𝑆 ∈ 𝑉) → (𝑥 ≼ 𝑆 ↔ ¬ 𝑆 ≺ 𝑥)) | |
| 13 | 5, 11, 12 | syl2anc 584 | . . . . 5 ⊢ (((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → (𝑥 ≼ 𝑆 ↔ ¬ 𝑆 ≺ 𝑥)) |
| 14 | 10, 13 | mpbird 257 | . . . 4 ⊢ (((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → 𝑥 ≼ 𝑆) |
| 15 | elharval 9457 | . . . 4 ⊢ (𝑥 ∈ (har‘𝑆) ↔ (𝑥 ∈ On ∧ 𝑥 ≼ 𝑆)) | |
| 16 | 2, 14, 15 | sylanbrc 583 | . . 3 ⊢ (((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → 𝑥 ∈ (har‘𝑆)) |
| 17 | 16 | ex 412 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) → (𝑥 ∈ ω → 𝑥 ∈ (har‘𝑆))) |
| 18 | 17 | ssrdv 3937 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) → ω ⊆ (har‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2113 ⊆ wss 3899 class class class wbr 5095 Oncon0 6314 ‘cfv 6489 ωcom 7805 ≼ cdom 8876 ≺ csdm 8877 Fincfn 8878 harchar 9452 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-1o 8394 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-oi 9406 df-har 9453 df-card 9842 |
| This theorem is referenced by: ttac 43143 |
| Copyright terms: Public domain | W3C validator |