| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > harinf | Structured version Visualization version GIF version | ||
| Description: The Hartogs number of an infinite set is at least ω. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) |
| Ref | Expression |
|---|---|
| harinf | ⊢ ((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) → ω ⊆ (har‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnon 7797 | . . . . 5 ⊢ (𝑥 ∈ ω → 𝑥 ∈ On) | |
| 2 | 1 | adantl 481 | . . . 4 ⊢ (((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → 𝑥 ∈ On) |
| 3 | simplr 768 | . . . . . 6 ⊢ (((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → ¬ 𝑆 ∈ Fin) | |
| 4 | nnfi 9072 | . . . . . . . 8 ⊢ (𝑥 ∈ ω → 𝑥 ∈ Fin) | |
| 5 | 4 | adantl 481 | . . . . . . 7 ⊢ (((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → 𝑥 ∈ Fin) |
| 6 | sdomdom 8897 | . . . . . . 7 ⊢ (𝑆 ≺ 𝑥 → 𝑆 ≼ 𝑥) | |
| 7 | domfi 9093 | . . . . . . . 8 ⊢ ((𝑥 ∈ Fin ∧ 𝑆 ≼ 𝑥) → 𝑆 ∈ Fin) | |
| 8 | 7 | ex 412 | . . . . . . 7 ⊢ (𝑥 ∈ Fin → (𝑆 ≼ 𝑥 → 𝑆 ∈ Fin)) |
| 9 | 5, 6, 8 | syl2im 40 | . . . . . 6 ⊢ (((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → (𝑆 ≺ 𝑥 → 𝑆 ∈ Fin)) |
| 10 | 3, 9 | mtod 198 | . . . . 5 ⊢ (((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → ¬ 𝑆 ≺ 𝑥) |
| 11 | simpll 766 | . . . . . 6 ⊢ (((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → 𝑆 ∈ 𝑉) | |
| 12 | fidomtri 9878 | . . . . . 6 ⊢ ((𝑥 ∈ Fin ∧ 𝑆 ∈ 𝑉) → (𝑥 ≼ 𝑆 ↔ ¬ 𝑆 ≺ 𝑥)) | |
| 13 | 5, 11, 12 | syl2anc 584 | . . . . 5 ⊢ (((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → (𝑥 ≼ 𝑆 ↔ ¬ 𝑆 ≺ 𝑥)) |
| 14 | 10, 13 | mpbird 257 | . . . 4 ⊢ (((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → 𝑥 ≼ 𝑆) |
| 15 | elharval 9442 | . . . 4 ⊢ (𝑥 ∈ (har‘𝑆) ↔ (𝑥 ∈ On ∧ 𝑥 ≼ 𝑆)) | |
| 16 | 2, 14, 15 | sylanbrc 583 | . . 3 ⊢ (((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → 𝑥 ∈ (har‘𝑆)) |
| 17 | 16 | ex 412 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) → (𝑥 ∈ ω → 𝑥 ∈ (har‘𝑆))) |
| 18 | 17 | ssrdv 3938 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) → ω ⊆ (har‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2110 ⊆ wss 3900 class class class wbr 5089 Oncon0 6302 ‘cfv 6477 ωcom 7791 ≼ cdom 8862 ≺ csdm 8863 Fincfn 8864 harchar 9437 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-1o 8380 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-oi 9391 df-har 9438 df-card 9824 |
| This theorem is referenced by: ttac 43048 |
| Copyright terms: Public domain | W3C validator |