Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > harinf | Structured version Visualization version GIF version |
Description: The Hartogs number of an infinite set is at least ω. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) |
Ref | Expression |
---|---|
harinf | ⊢ ((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) → ω ⊆ (har‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon 7693 | . . . . 5 ⊢ (𝑥 ∈ ω → 𝑥 ∈ On) | |
2 | 1 | adantl 481 | . . . 4 ⊢ (((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → 𝑥 ∈ On) |
3 | simplr 765 | . . . . . 6 ⊢ (((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → ¬ 𝑆 ∈ Fin) | |
4 | nnfi 8912 | . . . . . . . 8 ⊢ (𝑥 ∈ ω → 𝑥 ∈ Fin) | |
5 | 4 | adantl 481 | . . . . . . 7 ⊢ (((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → 𝑥 ∈ Fin) |
6 | sdomdom 8723 | . . . . . . 7 ⊢ (𝑆 ≺ 𝑥 → 𝑆 ≼ 𝑥) | |
7 | domfi 8935 | . . . . . . . 8 ⊢ ((𝑥 ∈ Fin ∧ 𝑆 ≼ 𝑥) → 𝑆 ∈ Fin) | |
8 | 7 | ex 412 | . . . . . . 7 ⊢ (𝑥 ∈ Fin → (𝑆 ≼ 𝑥 → 𝑆 ∈ Fin)) |
9 | 5, 6, 8 | syl2im 40 | . . . . . 6 ⊢ (((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → (𝑆 ≺ 𝑥 → 𝑆 ∈ Fin)) |
10 | 3, 9 | mtod 197 | . . . . 5 ⊢ (((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → ¬ 𝑆 ≺ 𝑥) |
11 | simpll 763 | . . . . . 6 ⊢ (((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → 𝑆 ∈ 𝑉) | |
12 | fidomtri 9682 | . . . . . 6 ⊢ ((𝑥 ∈ Fin ∧ 𝑆 ∈ 𝑉) → (𝑥 ≼ 𝑆 ↔ ¬ 𝑆 ≺ 𝑥)) | |
13 | 5, 11, 12 | syl2anc 583 | . . . . 5 ⊢ (((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → (𝑥 ≼ 𝑆 ↔ ¬ 𝑆 ≺ 𝑥)) |
14 | 10, 13 | mpbird 256 | . . . 4 ⊢ (((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → 𝑥 ≼ 𝑆) |
15 | elharval 9250 | . . . 4 ⊢ (𝑥 ∈ (har‘𝑆) ↔ (𝑥 ∈ On ∧ 𝑥 ≼ 𝑆)) | |
16 | 2, 14, 15 | sylanbrc 582 | . . 3 ⊢ (((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → 𝑥 ∈ (har‘𝑆)) |
17 | 16 | ex 412 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) → (𝑥 ∈ ω → 𝑥 ∈ (har‘𝑆))) |
18 | 17 | ssrdv 3923 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) → ω ⊆ (har‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3883 class class class wbr 5070 Oncon0 6251 ‘cfv 6418 ωcom 7687 ≼ cdom 8689 ≺ csdm 8690 Fincfn 8691 harchar 9245 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-oi 9199 df-har 9246 df-card 9628 |
This theorem is referenced by: ttac 40774 |
Copyright terms: Public domain | W3C validator |