![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > harinf | Structured version Visualization version GIF version |
Description: The Hartogs number of an infinite set is at least Ο. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) |
Ref | Expression |
---|---|
harinf | β’ ((π β π β§ Β¬ π β Fin) β Ο β (harβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon 7861 | . . . . 5 β’ (π₯ β Ο β π₯ β On) | |
2 | 1 | adantl 483 | . . . 4 β’ (((π β π β§ Β¬ π β Fin) β§ π₯ β Ο) β π₯ β On) |
3 | simplr 768 | . . . . . 6 β’ (((π β π β§ Β¬ π β Fin) β§ π₯ β Ο) β Β¬ π β Fin) | |
4 | nnfi 9167 | . . . . . . . 8 β’ (π₯ β Ο β π₯ β Fin) | |
5 | 4 | adantl 483 | . . . . . . 7 β’ (((π β π β§ Β¬ π β Fin) β§ π₯ β Ο) β π₯ β Fin) |
6 | sdomdom 8976 | . . . . . . 7 β’ (π βΊ π₯ β π βΌ π₯) | |
7 | domfi 9192 | . . . . . . . 8 β’ ((π₯ β Fin β§ π βΌ π₯) β π β Fin) | |
8 | 7 | ex 414 | . . . . . . 7 β’ (π₯ β Fin β (π βΌ π₯ β π β Fin)) |
9 | 5, 6, 8 | syl2im 40 | . . . . . 6 β’ (((π β π β§ Β¬ π β Fin) β§ π₯ β Ο) β (π βΊ π₯ β π β Fin)) |
10 | 3, 9 | mtod 197 | . . . . 5 β’ (((π β π β§ Β¬ π β Fin) β§ π₯ β Ο) β Β¬ π βΊ π₯) |
11 | simpll 766 | . . . . . 6 β’ (((π β π β§ Β¬ π β Fin) β§ π₯ β Ο) β π β π) | |
12 | fidomtri 9988 | . . . . . 6 β’ ((π₯ β Fin β§ π β π) β (π₯ βΌ π β Β¬ π βΊ π₯)) | |
13 | 5, 11, 12 | syl2anc 585 | . . . . 5 β’ (((π β π β§ Β¬ π β Fin) β§ π₯ β Ο) β (π₯ βΌ π β Β¬ π βΊ π₯)) |
14 | 10, 13 | mpbird 257 | . . . 4 β’ (((π β π β§ Β¬ π β Fin) β§ π₯ β Ο) β π₯ βΌ π) |
15 | elharval 9556 | . . . 4 β’ (π₯ β (harβπ) β (π₯ β On β§ π₯ βΌ π)) | |
16 | 2, 14, 15 | sylanbrc 584 | . . 3 β’ (((π β π β§ Β¬ π β Fin) β§ π₯ β Ο) β π₯ β (harβπ)) |
17 | 16 | ex 414 | . 2 β’ ((π β π β§ Β¬ π β Fin) β (π₯ β Ο β π₯ β (harβπ))) |
18 | 17 | ssrdv 3989 | 1 β’ ((π β π β§ Β¬ π β Fin) β Ο β (harβπ)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 397 β wcel 2107 β wss 3949 class class class wbr 5149 Oncon0 6365 βcfv 6544 Οcom 7855 βΌ cdom 8937 βΊ csdm 8938 Fincfn 8939 harchar 9551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7365 df-ov 7412 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-1o 8466 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-oi 9505 df-har 9552 df-card 9934 |
This theorem is referenced by: ttac 41775 |
Copyright terms: Public domain | W3C validator |