Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > harinf | Structured version Visualization version GIF version |
Description: The Hartogs number of an infinite set is at least ω. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) |
Ref | Expression |
---|---|
harinf | ⊢ ((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) → ω ⊆ (har‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon 7710 | . . . . 5 ⊢ (𝑥 ∈ ω → 𝑥 ∈ On) | |
2 | 1 | adantl 482 | . . . 4 ⊢ (((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → 𝑥 ∈ On) |
3 | simplr 766 | . . . . . 6 ⊢ (((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → ¬ 𝑆 ∈ Fin) | |
4 | nnfi 8930 | . . . . . . . 8 ⊢ (𝑥 ∈ ω → 𝑥 ∈ Fin) | |
5 | 4 | adantl 482 | . . . . . . 7 ⊢ (((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → 𝑥 ∈ Fin) |
6 | sdomdom 8749 | . . . . . . 7 ⊢ (𝑆 ≺ 𝑥 → 𝑆 ≼ 𝑥) | |
7 | domfi 8955 | . . . . . . . 8 ⊢ ((𝑥 ∈ Fin ∧ 𝑆 ≼ 𝑥) → 𝑆 ∈ Fin) | |
8 | 7 | ex 413 | . . . . . . 7 ⊢ (𝑥 ∈ Fin → (𝑆 ≼ 𝑥 → 𝑆 ∈ Fin)) |
9 | 5, 6, 8 | syl2im 40 | . . . . . 6 ⊢ (((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → (𝑆 ≺ 𝑥 → 𝑆 ∈ Fin)) |
10 | 3, 9 | mtod 197 | . . . . 5 ⊢ (((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → ¬ 𝑆 ≺ 𝑥) |
11 | simpll 764 | . . . . . 6 ⊢ (((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → 𝑆 ∈ 𝑉) | |
12 | fidomtri 9750 | . . . . . 6 ⊢ ((𝑥 ∈ Fin ∧ 𝑆 ∈ 𝑉) → (𝑥 ≼ 𝑆 ↔ ¬ 𝑆 ≺ 𝑥)) | |
13 | 5, 11, 12 | syl2anc 584 | . . . . 5 ⊢ (((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → (𝑥 ≼ 𝑆 ↔ ¬ 𝑆 ≺ 𝑥)) |
14 | 10, 13 | mpbird 256 | . . . 4 ⊢ (((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → 𝑥 ≼ 𝑆) |
15 | elharval 9296 | . . . 4 ⊢ (𝑥 ∈ (har‘𝑆) ↔ (𝑥 ∈ On ∧ 𝑥 ≼ 𝑆)) | |
16 | 2, 14, 15 | sylanbrc 583 | . . 3 ⊢ (((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑥 ∈ ω) → 𝑥 ∈ (har‘𝑆)) |
17 | 16 | ex 413 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) → (𝑥 ∈ ω → 𝑥 ∈ (har‘𝑆))) |
18 | 17 | ssrdv 3932 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ ¬ 𝑆 ∈ Fin) → ω ⊆ (har‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2110 ⊆ wss 3892 class class class wbr 5079 Oncon0 6264 ‘cfv 6431 ωcom 7704 ≼ cdom 8712 ≺ csdm 8713 Fincfn 8714 harchar 9291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-isom 6440 df-riota 7226 df-ov 7272 df-om 7705 df-2nd 7823 df-frecs 8086 df-wrecs 8117 df-recs 8191 df-1o 8286 df-er 8479 df-en 8715 df-dom 8716 df-sdom 8717 df-fin 8718 df-oi 9245 df-har 9292 df-card 9696 |
This theorem is referenced by: ttac 40853 |
Copyright terms: Public domain | W3C validator |