MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  weisoeq Structured version   Visualization version   GIF version

Theorem weisoeq 7348
Description: Thus, there is at most one isomorphism between any two set-like well-ordered classes. Class version of wemoiso 7956. (Contributed by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
weisoeq (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐹 = 𝐺)

Proof of Theorem weisoeq
StepHypRef Expression
1 id 22 . . . 4 (𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))
2 isocnv 7323 . . . 4 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐹 Isom 𝑆, 𝑅 (𝐵, 𝐴))
3 isotr 7329 . . . 4 ((𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐹 Isom 𝑆, 𝑅 (𝐵, 𝐴)) → (𝐹𝐺) Isom 𝑅, 𝑅 (𝐴, 𝐴))
41, 2, 3syl2anr 597 . . 3 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵)) → (𝐹𝐺) Isom 𝑅, 𝑅 (𝐴, 𝐴))
5 weniso 7347 . . . 4 ((𝑅 We 𝐴𝑅 Se 𝐴 ∧ (𝐹𝐺) Isom 𝑅, 𝑅 (𝐴, 𝐴)) → (𝐹𝐺) = ( I ↾ 𝐴))
653expa 1118 . . 3 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐹𝐺) Isom 𝑅, 𝑅 (𝐴, 𝐴)) → (𝐹𝐺) = ( I ↾ 𝐴))
74, 6sylan2 593 . 2 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → (𝐹𝐺) = ( I ↾ 𝐴))
8 simprl 769 . . . 4 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
9 isof1o 7316 . . . 4 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐹:𝐴1-1-onto𝐵)
10 f1of1 6829 . . . 4 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴1-1𝐵)
118, 9, 103syl 18 . . 3 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐹:𝐴1-1𝐵)
12 simprr 771 . . . 4 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))
13 isof1o 7316 . . . 4 (𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐺:𝐴1-1-onto𝐵)
14 f1of1 6829 . . . 4 (𝐺:𝐴1-1-onto𝐵𝐺:𝐴1-1𝐵)
1512, 13, 143syl 18 . . 3 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐺:𝐴1-1𝐵)
16 f1eqcocnv 7295 . . 3 ((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) → (𝐹 = 𝐺 ↔ (𝐹𝐺) = ( I ↾ 𝐴)))
1711, 15, 16syl2anc 584 . 2 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → (𝐹 = 𝐺 ↔ (𝐹𝐺) = ( I ↾ 𝐴)))
187, 17mpbird 256 1 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541   I cid 5572   Se wse 5628   We wwe 5629  ccnv 5674  cres 5677  ccom 5679  1-1wf1 6537  1-1-ontowf1o 6539   Isom wiso 6541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549
This theorem is referenced by:  weisoeq2  7349  wemoiso  7956  oieu  9530
  Copyright terms: Public domain W3C validator