| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > weisoeq | Structured version Visualization version GIF version | ||
| Description: Thus, there is at most one isomorphism between any two set-like well-ordered classes. Class version of wemoiso 7905. (Contributed by Mario Carneiro, 25-Jun-2015.) |
| Ref | Expression |
|---|---|
| weisoeq | ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐹 = 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . 4 ⊢ (𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | |
| 2 | isocnv 7264 | . . . 4 ⊢ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ◡𝐹 Isom 𝑆, 𝑅 (𝐵, 𝐴)) | |
| 3 | isotr 7270 | . . . 4 ⊢ ((𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ◡𝐹 Isom 𝑆, 𝑅 (𝐵, 𝐴)) → (◡𝐹 ∘ 𝐺) Isom 𝑅, 𝑅 (𝐴, 𝐴)) | |
| 4 | 1, 2, 3 | syl2anr 597 | . . 3 ⊢ ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵)) → (◡𝐹 ∘ 𝐺) Isom 𝑅, 𝑅 (𝐴, 𝐴)) |
| 5 | weniso 7288 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ (◡𝐹 ∘ 𝐺) Isom 𝑅, 𝑅 (𝐴, 𝐴)) → (◡𝐹 ∘ 𝐺) = ( I ↾ 𝐴)) | |
| 6 | 5 | 3expa 1118 | . . 3 ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (◡𝐹 ∘ 𝐺) Isom 𝑅, 𝑅 (𝐴, 𝐴)) → (◡𝐹 ∘ 𝐺) = ( I ↾ 𝐴)) |
| 7 | 4, 6 | sylan2 593 | . 2 ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → (◡𝐹 ∘ 𝐺) = ( I ↾ 𝐴)) |
| 8 | simprl 770 | . . . 4 ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | |
| 9 | isof1o 7257 | . . . 4 ⊢ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐹:𝐴–1-1-onto→𝐵) | |
| 10 | f1of1 6762 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–1-1→𝐵) | |
| 11 | 8, 9, 10 | 3syl 18 | . . 3 ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐹:𝐴–1-1→𝐵) |
| 12 | simprr 772 | . . . 4 ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | |
| 13 | isof1o 7257 | . . . 4 ⊢ (𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐺:𝐴–1-1-onto→𝐵) | |
| 14 | f1of1 6762 | . . . 4 ⊢ (𝐺:𝐴–1-1-onto→𝐵 → 𝐺:𝐴–1-1→𝐵) | |
| 15 | 12, 13, 14 | 3syl 18 | . . 3 ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐺:𝐴–1-1→𝐵) |
| 16 | f1eqcocnv 7235 | . . 3 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–1-1→𝐵) → (𝐹 = 𝐺 ↔ (◡𝐹 ∘ 𝐺) = ( I ↾ 𝐴))) | |
| 17 | 11, 15, 16 | syl2anc 584 | . 2 ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → (𝐹 = 𝐺 ↔ (◡𝐹 ∘ 𝐺) = ( I ↾ 𝐴))) |
| 18 | 7, 17 | mpbird 257 | 1 ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐹 = 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 I cid 5508 Se wse 5565 We wwe 5566 ◡ccnv 5613 ↾ cres 5616 ∘ ccom 5618 –1-1→wf1 6478 –1-1-onto→wf1o 6480 Isom wiso 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 |
| This theorem is referenced by: weisoeq2 7290 wemoiso 7905 oieu 9425 |
| Copyright terms: Public domain | W3C validator |