MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  weisoeq Structured version   Visualization version   GIF version

Theorem weisoeq 6833
Description: Thus, there is at most one isomorphism between any two set-like well-ordered classes. Class version of wemoiso 7386. (Contributed by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
weisoeq (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐹 = 𝐺)

Proof of Theorem weisoeq
StepHypRef Expression
1 id 22 . . . 4 (𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))
2 isocnv 6808 . . . 4 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐹 Isom 𝑆, 𝑅 (𝐵, 𝐴))
3 isotr 6814 . . . 4 ((𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐹 Isom 𝑆, 𝑅 (𝐵, 𝐴)) → (𝐹𝐺) Isom 𝑅, 𝑅 (𝐴, 𝐴))
41, 2, 3syl2anr 591 . . 3 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵)) → (𝐹𝐺) Isom 𝑅, 𝑅 (𝐴, 𝐴))
5 weniso 6832 . . . 4 ((𝑅 We 𝐴𝑅 Se 𝐴 ∧ (𝐹𝐺) Isom 𝑅, 𝑅 (𝐴, 𝐴)) → (𝐹𝐺) = ( I ↾ 𝐴))
653expa 1148 . . 3 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐹𝐺) Isom 𝑅, 𝑅 (𝐴, 𝐴)) → (𝐹𝐺) = ( I ↾ 𝐴))
74, 6sylan2 587 . 2 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → (𝐹𝐺) = ( I ↾ 𝐴))
8 simprl 788 . . . 4 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
9 isof1o 6801 . . . 4 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐹:𝐴1-1-onto𝐵)
10 f1of1 6355 . . . 4 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴1-1𝐵)
118, 9, 103syl 18 . . 3 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐹:𝐴1-1𝐵)
12 simprr 790 . . . 4 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))
13 isof1o 6801 . . . 4 (𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐺:𝐴1-1-onto𝐵)
14 f1of1 6355 . . . 4 (𝐺:𝐴1-1-onto𝐵𝐺:𝐴1-1𝐵)
1512, 13, 143syl 18 . . 3 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐺:𝐴1-1𝐵)
16 f1eqcocnv 6784 . . 3 ((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) → (𝐹 = 𝐺 ↔ (𝐹𝐺) = ( I ↾ 𝐴)))
1711, 15, 16syl2anc 580 . 2 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → (𝐹 = 𝐺 ↔ (𝐹𝐺) = ( I ↾ 𝐴)))
187, 17mpbird 249 1 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653   I cid 5219   Se wse 5269   We wwe 5270  ccnv 5311  cres 5314  ccom 5316  1-1wf1 6098  1-1-ontowf1o 6100   Isom wiso 6102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-po 5233  df-so 5234  df-fr 5271  df-se 5272  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-isom 6110
This theorem is referenced by:  weisoeq2  6834  wemoiso  7386  oieu  8686
  Copyright terms: Public domain W3C validator