![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > weisoeq | Structured version Visualization version GIF version |
Description: Thus, there is at most one isomorphism between any two set-like well-ordered classes. Class version of wemoiso 8006. (Contributed by Mario Carneiro, 25-Jun-2015.) |
Ref | Expression |
---|---|
weisoeq | ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐹 = 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ (𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | |
2 | isocnv 7357 | . . . 4 ⊢ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ◡𝐹 Isom 𝑆, 𝑅 (𝐵, 𝐴)) | |
3 | isotr 7363 | . . . 4 ⊢ ((𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ◡𝐹 Isom 𝑆, 𝑅 (𝐵, 𝐴)) → (◡𝐹 ∘ 𝐺) Isom 𝑅, 𝑅 (𝐴, 𝐴)) | |
4 | 1, 2, 3 | syl2anr 597 | . . 3 ⊢ ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵)) → (◡𝐹 ∘ 𝐺) Isom 𝑅, 𝑅 (𝐴, 𝐴)) |
5 | weniso 7381 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ (◡𝐹 ∘ 𝐺) Isom 𝑅, 𝑅 (𝐴, 𝐴)) → (◡𝐹 ∘ 𝐺) = ( I ↾ 𝐴)) | |
6 | 5 | 3expa 1119 | . . 3 ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (◡𝐹 ∘ 𝐺) Isom 𝑅, 𝑅 (𝐴, 𝐴)) → (◡𝐹 ∘ 𝐺) = ( I ↾ 𝐴)) |
7 | 4, 6 | sylan2 593 | . 2 ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → (◡𝐹 ∘ 𝐺) = ( I ↾ 𝐴)) |
8 | simprl 771 | . . . 4 ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | |
9 | isof1o 7350 | . . . 4 ⊢ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐹:𝐴–1-1-onto→𝐵) | |
10 | f1of1 6855 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–1-1→𝐵) | |
11 | 8, 9, 10 | 3syl 18 | . . 3 ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐹:𝐴–1-1→𝐵) |
12 | simprr 773 | . . . 4 ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | |
13 | isof1o 7350 | . . . 4 ⊢ (𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐺:𝐴–1-1-onto→𝐵) | |
14 | f1of1 6855 | . . . 4 ⊢ (𝐺:𝐴–1-1-onto→𝐵 → 𝐺:𝐴–1-1→𝐵) | |
15 | 12, 13, 14 | 3syl 18 | . . 3 ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐺:𝐴–1-1→𝐵) |
16 | f1eqcocnv 7328 | . . 3 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–1-1→𝐵) → (𝐹 = 𝐺 ↔ (◡𝐹 ∘ 𝐺) = ( I ↾ 𝐴))) | |
17 | 11, 15, 16 | syl2anc 584 | . 2 ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → (𝐹 = 𝐺 ↔ (◡𝐹 ∘ 𝐺) = ( I ↾ 𝐴))) |
18 | 7, 17 | mpbird 257 | 1 ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐹 = 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 I cid 5586 Se wse 5643 We wwe 5644 ◡ccnv 5692 ↾ cres 5695 ∘ ccom 5697 –1-1→wf1 6566 –1-1-onto→wf1o 6568 Isom wiso 6570 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-po 5601 df-so 5602 df-fr 5645 df-se 5646 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-isom 6578 |
This theorem is referenced by: weisoeq2 7383 wemoiso 8006 oieu 9586 |
Copyright terms: Public domain | W3C validator |